
IJCSNS International Journal of Computer Science and Network Security, VOL.17 No.10, October 2017

81

Manuscript received October 5, 2017
Manuscript revised October 20, 2017

Efficient Utilization of Cryptographic Resources in Embedded
Computing Systems

Muhammad Nabeel Asim1, Muhammad Salman Khalid1, Muhammad Idrees2, Abdur Rehman3

Al-Khwarizmi Institute of Computer Science, University of Engineering and Technology, Lahore, Pakistan1
Department of Computer Science and Engineering, University of Engineering & Technology, Narowal, Pakistan2

 Department of Computer Science and Engineering University of Gujrat, Gujrat Pakistan3

Abstract
The world is becoming a global village of intercon-nected
electronic devices. With the cost of silicon going down, the
number of connected devices is increasing day by day. With
introduction of Internet of Things concept, embedded devices are
finding their way into this global network. Eventually, more
elaborate techniques would be required to maintain the security
and privacy in this interconnected world. Application of
Cryptographic techniques in embedded systems is now
indispensable. This paper surveys the concerns and the constraints
that need to be taken care of while selecting a particular
cryptographic algorithm for embedded systems. We present an
overview of cryptography and embedded systems. Then we
provide some of the constraints in embedded systems development.
In the end, we provide a survey of how different cryptographic
techniques perform in an embedded environment.
Key words:
Cryptographic, embedded, computing system

1. Introduction

According to [2] almost 98% of all the 32-bit
microprocessors deployed in electronic devices throughout
the world are found in embedded systems. Since embedded
systems have now become an integral part of the connected
word, the information interchanged must be protected for
privacy and security. The security breaches in embedded
systems are equally disastrous as they are for traditional
host PCs. They can not only compromise their own security
but also the security of the other components of the system.
It is a well-known concern that software defects are easily
exploited by intruders for hacking into computer
systems[3]. Software Applications that communicate over
internet are most vulner-able to security risks [15]. A
number of security risks that need to be taken care of are
shown in figure1 (Also taken from [15]). Different types of
security need to be ensured for different layers of the
embedded systems architecture. The most common two
concerns that are encountered in securing networked
embedded systems are [16]:

1) Protecting data that is transferred from one place to
another.

2) Protecting data within the embedded device.

Fig. 1: Common Security Concerns Encountered in Embedded Systems

In this paper we mainly look at the ways to protect data that
is transferred from one place to another, and how different
implementations are suitable or well enough. The data in a
public network passes through a number of points and links.
For this data to be secured it must be communicated in ways
such that it is of no use or value for intermediate nodes but
end users who are authorized for this data can interpret this
data. The techniques should be powerful enough that no
intermediated node or eavesdropper can interpret it or draw
meaningful data out of it and at the same time the
computational complexities of such techniques should be
such that embedded systems are able to handle them. This
is because embedded systems are normally resource
constrained from many aspects such as performance,
memory and cost. Some of the most common techniques
used for securing data are Cryptography[1], Digital
Signatures and Digital Cer-tificates. Cryptography is a very
important tool for securing network against malicious
activities. It is the art and science of keeping the messages
secures[6]. However their mathematical complexities often
complicate the applications at hand. At the same time
limitations enforced by embedded systems such as low
memory[8], limited processing power further aggravate the
complexities of the tasks. Therefore it is very important that
optimized algorithms must be used and at the same time no
compromise on security and privacy should be made. These

IJCSNS International Journal of Computer Science and Network Security, VOL.17 No.10, October 2017 82

limitations make the implementation of cryptographic
algorithms in embedded systems a challenging task for the
embedded developer[9]. In this paper, first we provide a
general overview of cryptography and embedded systems.
Then we outline embedded system constraints that may
affect the performance of cryptographic algorithms. In the
end we present a case study done by [7] to evaluate the
performance of some well know cryptographic algorithm.

Fig. 2: Process of Cryptography

2. Literature review

A. cryptography

Cryptography came from two Greek words which mean
secret writing [10]. Basically it is a technique of encrypting
simple written information into some unreadable form so
that others cannot understand it.
It is an art of hiding information in an abstract manner so
that any irrelevant person cannot identify the content of the
writing. The basic concept of cryptography is to share infor-
mation among people in such an approach that other cannot
understand it. It is a combination of words and
mathematical techniques. This concept began in early days
when humans started to communicate using written text. As
time passes many cryptographic approaches have been
developed which include shifting of alphabets and complex
computer based encryption techniques. Basic concept of
cryptography includes a message or information which is
called plaintext or clear text and an encrypted mangled text
called cipher text. Encryption is the process of converting
plaintext into cipher text. Whole method is shown in
figure2.
While new and modern cryptographic techniques are in-
troduced, some people are always attempting to break these
encryption methods. Both the groups try to keep themselves
ahead of each other.
Cryptographic techniques include some algorithm for mod-
ifying the plaintext and a secret value which is known as
key. Using the key reduces the effort to device new
algorithms that can never be more secure and allow the
decryption or reverse engineering of the encrypted text.
Designing one secure algorithm and using different key
combination can lead to a more secure cryptographic
system. Having a strong cryptographic approach will allow
everybody including bad guys to access the algorithm and
the encrypted cipher text because without key the
knowledge of algorithm is useless. The concept of key is
similar to the simple combination lock system of daily use.
It also has thousands of combinations

Fig. 3: : Private key cryptography scheme

Depending upon available digits. Nobody can open the lock
even if he has access to it without having proper knowledge
of the correct combination.
Cryptographic algorithms should be efficient so that the
person having the key can decrypt the information within
no time [11]. This is not an impossible task to break these
algorithms without having the key. A person can break it by
trying all the possible key combinations. So the best
possible approach should take thousands or perhaps
millions of year to break by trying all possible key
combinations using powerful computers available. Let us
consider an example of combinational lock having 4
numbers with each number ranging from 1 to 20. Let’s
assume that it takes about 10 seconds to try a combination
for a person with the working key of combination. How
much will it takes for a bad guy to try all possible
combinations? There are 204 = 16000 combinations. If each
takes 10 seconds then it would require about 18.5 days to
break for worst case scenario (if you have to try all). For an
average case it would require half of that time. To make it
more difficult and time consuming the number can be
increased to 99 from 20, then it would take more than 3
years to break that algorithm using all possible
combinations. So by increasing key length the scheme is
more secure. This is similar to the algorithms used in
cryptography. Sometime they have variable length keys.
While other times they have fixed length keys. There are
two primary types of cryptography. 1) Private key
cryptography 2) Public key cryptography

3. Types of Cryptography

A. Private key cryptography

In this type of cryptography, a message is encrypted using a
secret but shared private key. This key is similar for both
sender and receiver thats why it is also called a symmetric
key cryptography. Encryption key is almost similar to the
key used for decryption, but in some cases it can be partially

IJCSNS International Journal of Computer Science and Network Security, VOL.17 No.10, October 2017 83

modified using a simple character transformation. The key
remains a secret between communicating partners to share
private information in public channels. Figure 3 refers to the
symmetric key encryption scheme

Fig. 4: Public key cryptography

Some examples of popular and well-respected symmetric
algorithms include Two fish, Serpent, AES (Rijndael),
Blowfish, CAST5, RC4, 3DES, and IDEA.
There are two basic fundamental methods of symmetric
encryption techniques, Substitution and transposition. In
sub-situation technique, letters are replaced by some other
false characters, which actually make no sense and are
chosen randomly or using specific pattern. For example, we
replace letter d by z. In transposition technique, letters are
just repo-sitioned to make the text incomprehensible. These
algorithms are largely applied to large amount of data for
the sack of fast operation.
In secret key algorithms, the important aspect of protecting
data lies in sharing the key in a highly sophisticated and
secure manner. All the strength of data privacy in the
algorithm is based on the key. If the key is exposed to some
unintended user or attacker, algorithm can do nothing to
protect the data from being decrypted. Knowledge of
algorithm is not sufficient to retrieve data because key is
needed to decrypt the information, So when using the
symmetric key techniques, the key sharing mechanism
should be very secure.

B. Public key cryptography

Sharing the key in secure manner is an important issue, this
is a significant disadvantage of symmetric key algorithms.
So the solution to this problem is solved by introducing
asymmetric keys that are used for the same purpose of
encryption/decryption. This is also known as public key
cryp-tography. Unlike secret key encryption, there are two
keys associated with every individual, a public key that can
be shared publically and a private key which is not exposed
to anyone. Public key cryptography scheme is shown in
figure 4. In this scheme, one can have same pair of keys for
every cipher rather than to have a different secret key.

Public key is used to encrypt the data ad it can be shared to
everyone without any privacy, but for the decryption
purpose a private key is needed. Public key cannot be used
to decrypt data and it also do not provide any information
about private key.
This type of cryptographic technique provide good support
for user authentication and non-repudiation (Sender cannot
deny that the data was encrypted using his private key).
There is still a problem associated with this technique,
someone hav-ing the public key of sender can easily decrypt
the information encrypted by the private key of particular
sender.
Authentication of the message is carried out by treating the
message with private key. This results in generating digital
signatures which can be verified by anybody by processing
the signatures with public key of the signer and verifying
the content of the message. This ensures that message was
not modified and no one else has performed signature
operation as the private key of the signer remains
undisclosed.

C. Embedded Systems

Embedded Systems are computer systems that are a part of
some larger system with often a dedicated and specific
function to perform. Most often, the functions they perform
are real-time and the computing resources are limited.
These limited resources can include processing speed,
power, mem-ory footprints etc. The embedded systems
hardware usually consists of a microcontroller or a
microprocessor placed on a PCB board with some
peripherals on-chip and others off-chip. These peripherals
include the following:

1- Serial Communication Interfaces (SCI): RS-232,
RS-422, RS-485 etc.

2- Universal Serial Bus (USB)
3- Multi Media Cards (SD Cards, Compact Flash etc.)
4- Synchronous Serial Communication Interfaces: I2C,

SPI etc.
5- Networks: Ethernet, Wi-Fi, etc.
6- Timers
7- Field buses: CAN-Bus, LIN-Bus, PROFIBUS, etc.
8- LCD Displays and Touch Panels
9- Analog to Digital/Digital to Analog Converters

(ADC/DAC)
10- Discrete IO e.g. General Purpose Input/output

(GPIO)
11- Analog to Digital/Digital to Analog Converters

(ADC/DAC)
12- Debugging: JTAG, ISP, ICSP, BDM Port etc.

Processor architectures used are based on both Von Neu-
mann and Harvard computer architectures. These
microprocessors and microcontrollers are based on
computer architectures such as ARM, ColdFire,

IJCSNS International Journal of Computer Science and Network Security, VOL.17 No.10, October 2017 84

MicroBlaze, MIPS, NIOS II, PowerPC, SuperH, PIC and
8051.DSP processors are also used to perform calculation
intensive tasks. With the advent of advanced fabrication
techniques the trend is also shifting towards using multi
core processors for improved performance and speed.

Embedded Systems are nothing without the software that
operates them. The types of software that are used range
from simple control loops and interrupt driven architectures
to complex Real Time Operating Systems (RTOS). The type
of software solution used depends upon the application.
Simple software solutions like loops and interrupt driven
code is used for small, specific and very simple applications
such as displaying some data, controlling temperature,
simple clock etc. Complex Operating Systems are used for
more advance applications such as automotive, networking,
telecommunica-tion where complex software stacks are
required and a lot of tasks need to be taken care of. Some of
the well-known RTOS include Mentor Graphics Nucleus
RTOS, Wind Rivers VxWorks, Express Logics ThreadX
and Microsoft Windows CE. Linux and its embedded
variant are also used in embedded systems. Embedded
Systems are involved in all applications from our daily
lives. There applications range from digital watches and
portable media players to advanced flight control systems
for aircrafts. Be it military, consumer, cooking, auto-motive,
space exploration or medical, we today owe our lives to
embedded systems.

The world has now become a global village with hundreds
of millions devices connected to the internet. It was
inevitable that embedded computing systems have now
eventually found their way into this global village. These
embedded computing devices can be used to monitor
environment, manage transport, monitoring health of
people remotely, energy management like smart grid etc.
This is the basic concept behind Internet of Things
framework which is a network of uniquely identifiable
embedded systems within the existing Internet
infrastructure. In near future, it is estimated that the number
of devices connected to the internet will surpass tens of
billions.

With the exposure of embedded systems to the internet, the
obvious security and privacy threats faced by ordinary host
PCs are also faced by embedded systems[12]. Embedded
communications also required to be secured using
cryptogra-phy techniques [13]. The issue related to
unauthorized data access, man in the middle attacks, Denial
of Service attacks, user authentication are there and if care
is not taken the consequences may be disastrous. For
example consider a cars onboard computer that controls
critical functions such as braking, lights and engines. If this
system is also connected to the Internet and is no emphasis
on security was given by the application developer, an

attacker may be able to modify the functions of critical
components and hence cause havoc for the driver. To solve
security and privacy issues in embedded systems we must
employ techniques that not only address the problem in
question but also meet the constraints and limitations set by
embedded devices. Embedded Systems also employ
cryptography to solve such security and privacy issues.
However the criterion for selection of cryptographic
algorithm is now governed by the limitations set by embed-
ded systems[14]. In this paper we explore the parameters
of embedded systems and application in questions that help
select the algorithm for cryptography. First we present the
constraints and limitations of embedded systems that can
affect the choice of algorithm. Then we present a survey of
different experiments conducted to judge the feasibility of a
cryptographic algorithm.

D. Embedded system constraints

Embedded systems are the most resource contained systems
when it comes to meeting requirements of a specific task at
hand. Almost, all the time, they contain just enough
resources to meet the demands of the task at hand.
Therefore, an efficient utilization of these resources must be
accomplished [16]. In this section we present some of the
design constraints posed by embedded systems to an
application in question. These constraints [15] will help us
understand the complexities of embedded systems while
implementing cryptographic algorithms. These constraints are:

1- Power Requirement
2- Memory Footprint
3- Performance and Speed
4- Cost
5- Reliability

1) POWER REQUIREMENT: A considerable percentage

of embedded devices are battery operated devices. A more
power hungry system needs larger batteries to keep up with
the power requirements. This adds to the weight and size of
the device and ultimately to the cost of the system. If a
processor inside an embedded system is busy executing
some piece of code then it consumes more power than if it
is sitting in idle condition[18]. So the algorithm designers
must design algorithms that perform their task more quickly
and efficiently.

Most of the embedded systems of today have special
features for saving power such as Dynamic Voltage Scaling
and Dynamic Frequency Scaling. With such features we can
lower the Voltage and frequency on the fly. Both the voltage
and frequency have direct impact on the power
consumption. However, there are some tradeoffs that have
to be made. By decreasing the frequency we not only lower
the power consumption of the processor core but also its
performance. Also if we decrease the operating voltage, we

IJCSNS International Journal of Computer Science and Network Security, VOL.17 No.10, October 2017 85

also have to lower the frequency which also degrades
performance. Since embedded systems usually have to meet
tight timing constraints, this tradeoff between power and
performance must be managed properly and efficiently by
the system developer or the application programmer. Power
consumption is the one of the constraints that we are going
to explore and look how different algorithms affect the
power consumption of an embedded device.

2) MEMORY FOOTPRINT: In an embedded system,
especially a one based on microcontrollers, memory is a
precious and a scarce resource. On microcontrollers
memory is usually available in the form of on-chip ROM
and RAM. The sizes of these on-chip memories are usually
small. Although expanding memories in the form of adding
external SDRAMs is an available option, this can only be
done at the time of designing and manufacturing and adds
to the overall cost of the system [18]. Expanding memory
in embedded systems sometimes can cost more than the
embedded system itself. Therefore it is up to the
programmer to use the available memory as efficiently as
possible. Minimizing code and data sizes are amongst one
of the most painstaking job an embedded developer has to
perform. Although todays compilers are intelligent enough
and optimize code and data sizes very efficiently, an
inefficient implementation of an algorithm eventually leads
to expanded memory requirements. We also look at the
memory consumption requirements of different algorithms.

3) PERFORMANCE AND SPEED: A real time
embedded systems needs to maintain time critical
deadlines. A variety of single core and multi-core devices
are available today with tremendous processing speeds.
However a faster processor means more power
consumption. Therefore, the code written for embedded
systems must be optimized for speed. Intelligent compilers
today optimize code brilliantly but an algorithm is the major
factor that determines the speed at which a particular task
would be completed [17]. A slow algorithm will keep the
processor busy and will definitely affect other real-time
critical tasks in the system.

4) COST: Since embedded systems are usually a part of
larger system it is favorable that their cost should be
minimal as possible and at the same time they should
perform their tasks flawlessly. There are many factors
affecting the cost of embedded systems. Some of the most
important factors are processor speed, memory, storage and
development tools.

5) RELIABILITY: Most of the Embedded System
devices run continuously for an extended period of time (not
limited to months or years). It is highly demanded that they
continue running without errors and faults. Even if errors or
faults occur, embedded systems must employ methods and
techniques to recover from these errors if the task at hand is

a very critical one. Many times the embedded systems are
employed in very extreme operating conditions. They may
be exposed to high temperatures, shocks, moisture and
vibrations. The hardware must be reliable enough to
withstand all these extreme conditions. In environments like
military and medical, military and medical grade
components must be used which are much expensive as
compared to consumer ones.

The reliability of embedded systems is not only limited
to hardware. The software written for the embedded system
must also be reliable enough to handle all the scenarios that
it may encounter in the field. This software reliability must
deal with security, real-time and safety aspects of the
system. The failure to provide such reliability could have
consequences ranging from minor nuisance to security
breaches to even loss of lives. For example if a light is
turned on or off with a little delay in a home smart grid
environment then it may not be an annoyance but if there is
a delay in application of brakes of an automobiles Anti-lock
Braking System, lives could be at stake. Good programming
practices, code reviews, code reuse, testing and quality
assurance play an important role in making a particular
software solution reliable.

4. Common encryption algorithms and their
performance evaluation

In this section we present different common encryption
algorithms used in practice. Then we look at their
performance from different aspects such as power
consumption, code size, data size and speed.

A. Encryption algorithms

1) DES- DATA ENCRYPTION STANDARD: The Data
Encryption Algorithm is a symmetric key algorithm and a
block cipher standardized by the National Bureau of
Standards (NBS) in 1977. This algorithm uses a key of 64
bits. Out of these 64 bits eight bits are used for parity
checking and 56 bits are the actual key used for encryption.
The algorithm consists of 16 rounds. Feistel cipher serves
as the basis for Data encryption standard. First an initial
permutation IP is performed. Each block is broken into two
parts. In each round a specially calculated round key is used
and then permutation and substitution is performed. The
details can be found in (Eckert 2006, p. 315). Finally, at the
end a final permutation FP is performed which is the inverse
of first initial permutation IP. For the source code
implementation of this algorithm refers to (Schneier 2005).
DES is now considered to be unsafe for almost all
applications. A major reason for this is the short key length.
Even a brute force approach can be easily used to break this
algorithm.

IJCSNS International Journal of Computer Science and Network Security, VOL.17 No.10, October 2017 86

2) DES TRIPLE DATA ENCRYPTION STANDARD:

The major problem with DES was its short key length.
Triple Data Encryption Standard extends the key length of
the original Data Encryption Standard algorithm by
applying Data Encryption Standard three times to each data
block. This algorithm is considered to be practically safe
although theoretical attacks have been demonstrated.

3) AES-ADVANCED ENCRYPTION STANDARD:
The Advanced Encryption Standard is a symmetric key
algorithm. It is based on Rijndael algorithm. It utilizes block
and key length of variable sizes. The standard specifies key
lengths of 128, 192 and 256 bits long. First the message is
broken down into several smaller size blocks. First block is
XORed with the first round key and is processed in 10
rounds using Substitution, Permutation, Diffusion and Key
generation (Eckert 2006, p. 324). Decryption uses the same
key-schedule for the round keys and this is performed using
inverse of the encryption function. The decryption process
is more complex so it takes more time. The AES is
considered to be safe for many practical applications so far.

4) RC4 (RONS CODE 4): The RC4 algorithm was
proposed by Ron Rivest in 1987. The secret key is
composed of up to 2048 bits. This is large so breaking it is
practically very difficult. The S-box is first initialized from
0 to 255 in a linear manner. Then a KBox is initialized with
the secret and is repeated if necessary. After generation of
the key stream, random bytes are created and XORed with
the plaintext (Schneier 1996, 2005, p. 455). The large key
size of 2048 bits makes this algorithm out of question for
brute force attacks.

B. Performance evaluation

Fig. 5: ZEBRA Module Shielded, Unshielded and backside view

[6] has conducted the performance evaluation of some of
the most well know encryption algorithms. The
performance parameters evaluated for any encryption
algorithm are speed, power consumption and memory
requirement. The author has used a point based scheme to

judge the feasibility of a particular algorithm and also to
develop a comparison between them. For evaluation
purposes the author has used a ZigBee Enabled Board
Application for Radio Applications (ZEBRA) from senTec
Elektronik GmbH. It is shown in figure 5 (Also taken from
[6]). The ZEBRA module has an

Fig. 6: Comparison of times taken for both Encryption and Decryption

HCS8GT60 microcontroller manufactured by Freescale
Semiconductors. Now we will present the results calculated
by the author for different encryption algorithms. The
algorithms compared were Data Encryption Standard and
its two variants, Advanced Encryption Standard and Rons
Code 4.

1) DES: A 1000 encryption and decryptions were per-
formed. The duration for 1000 encryptions was calculated
to be 342.016 ms. Total energy consumption came out to be
375.0793 uWh. Disk space utilized was 16110 bytes. On the
authors scale this algorithm scored 68 points

2) 3DES-112: A 1000 encryption and decryptions were
performed. The duration for 1000 encryptions was
calculated to be 1033.202 ms. Total energy consumption
came out to be 1144.3418 uWh. Disk space utilized was
16133 bytes. On the authors scale this algorithm scored 25
points.

3) 3DES-168: A 1000 encryption and decryptions were
performed. The duration for 1000 encryptions was
calculated to be 1033.168 ms. Total energy consumption
came out to be 1157.1705 uWh. Disk space utilized was
16174 bytes. On the authors scale this algorithm scored 24
points.

4) AES: A 1000 encryption and decryptions were per-
formed. The duration for 1000 encryptions was calculated
to be 795.072 ms. Total energy consumption came out to be
886.7849 uWh. Disk space utilized was 23384 bytes. On the
authors scale this algorithm scored 34 points.

5) RC4: A 1000 encryption and decryptions were per-
formed. The duration for 1000 encryptions was calculated
to be 232.736 ms. Total energy consumption came out to be
284.9429 uWh. Disk space utilized was 2374s bytes. On the
authors scale this algorithm scored 84 points. Now to show
a comparison of the techniques used above we present a

IJCSNS International Journal of Computer Science and Network Security, VOL.17 No.10, October 2017 87

number of Figures from [6]. The Figures 6 , 7 and 8
compare the Duration, Energy Consumption and Memory
Requirements of all the algorithms presented above
respectively and are self-

6) Explanatory. The Figure 9 gives the final verdict by
showing the overall performance of all algorithms using the
point based scheme. It shows that RC4 algorithm is the most
suited one if all the embedded systems constraints are to be
taken into account for this ZEBRA module.

5. Conclusion

The key motivation for writing this paper is to have a
glimpse of the performance of various cryptographic
algorithms in an embedded systems environment.
Embedded Systems is an emerging field but even then it is
expected that the numbers of embedded device connected
to the internet would surpass tens of billions in the near
future. Therefore in this connected environment issues of
privacy and security will be huge. Cryptography is a very
active research area not only because of the security
concerns but also because of its mathematical importance.
This research focuses on limitations posed

Fig. 7: Energy Consumption.

Fig. 8: Memory Requirements

by embedded systems on cryptographic implementations
and a how different algorithms perform under these

limitations.

Fig. 9 Evaluation on point based scheme

REFERENCES
[1] Diffie, Whitfield, and Martin Hellman. ”New directions in

cryptography.” IEEE transactions on Information Theory
22.6 (1976): 644-654.

[2] Wolf, Wayne, and Jan Madsen. ”Embedded systems
education for the future.” Proceedings of the IEEE 88.1
(2000): 23-30.

[3] McGraw, Gary, and Greg Hoglund. ”Exploiting software:
How to break code.” Invited Talk, Usenix Security
Symposium, San Diego. 2004.

[4] Kocher, Paul, et al. ”Security as a new dimension in
embedded system design.” Proceedings of the 41st annual
Design Automation Conference. ACM, 2004.

[5] Anoop, M. S. ”Security needs in embedded systems.” IACR
Cryptology ePrint Archive 2008 (2008): 198

[6] Schneier, B. ”Applied Cryptography, ohn Wiley & Sons Inc.”
New York, New York, Sa, 4 (1996).

[7] Alexander, Miller, and Ing Gunar Schorcht. ”Embedded
Systems Secu-rity: Performance Investigation of Various
Cryptographic Techniques in Embedded Systems.”
Proceedings of IT Security Conference for the Next
Generation. 2011.

[8] Sharif Mansouri, Shohreh. Design and Implementation of
Efficient and Secure Lightweight Cryptosystems. Diss. KTH
Royal Institute of Tech-nology, 2014.

[9] Paar, Christof, and Jan Pelzl. Understanding cryptography: a
textbook for students and practitioners. Springer Science &
Business Media, 2009.

[10] Stinson, Douglas R. Cryptography: theory and practice. CRC
press, 2005.

[11] Poschmann, Axel York. ”Lightweight cryptography:
cryptographic en-gineering for a pervasive world.” PH. D.
THESIS. 2009.

[12] Kermani, Mehran Mozaffari, et al. ”Emerging frontiers in
embedded security.” VLSI Design and 2013 12th
International Conference on Embedded Systems (VLSID),
2013 26th International Conference on. IEEE, 2013.

[13] Dhillon, Parwinder Kaur, and Sheetal Kalra. ”Elliptic curve
cryptogra-phy for real time embedded systems in IoT
networks.” Wireless Networks and Embedded Systems
(WECON), 2016 5th International Conference on. IEEE,
2016.

[14] Fysarakis, Konstantinos, et al. ”Embedded Systems Security
Chal-lenges.” PECCS. 2014.

IJCSNS International Journal of Computer Science and Network Security, VOL.17 No.10, October 2017 88

[15] Kocher, Paul, et al. ”Security as a new dimension in
embedded system design.” Proceedings of the 41st annual
Design Automation Conference. ACM, 2004.

[16] Anoop, M. S. ”Security needs in embedded systems.” IACR
Cryptology ePrint Archive 2008 (2008): 198.

[17] Duranton, Marc. ”The challenges for high performance
embedded sys-tems.” Digital System Design: Architectures,
Methods and Tools, 2006. DSD 2006. 9th EUROMICRO
Conference on. IEEE, 2006.

[18] Oliveira, Lizandro, Jlio CB Mattos, and Lisane
Brisolara. ”Survey of memory optimization techniques for
embedded systems.” Computing Systems Engineering
(SBESC), 2013 III Brazilian Symposium on.

Muhammad Nabeel Asim received his
Bachelor degree from University of
Management and Technology (UMT) and
Master’s degree in Electrical Engineering
from University of Engineering and
Technology, Lahore, Pakistan. Currently
working as Research Officer at Al-
Khawarizmi Institute of Computer Science
(KICS)

University of Engineering and Technology (UET), Lahore
Pakistan. His research interests are Bioinformatics, Artificial
Intelligence, Machine Learning, Network Security, and Embedded
Systems.

Muhammad Salman Khalid completed his
Bachelor degree from University of
Management and Technology (UMT) in
Electrical Engineering and Masters in
Computer Engineering from University of
Engineering and Technology, Lahore,
Pakistan. He worked as Lab engineer in
University of Management and Technology.
He also have worked in Network

Architecture Lab (NAL) at EPFL, Switzerland.

 Muhammad Idrees Completed his PhD
from UET Lahore in computer science. He
worked as an Assistant Professor and Head
of Department of Computer Science and
Information Technology, in BZU, Lahore
and UoS, Lahore Campus for four years
since 2011 to 2016. Now, he is working as
an Assistant Professor and Head of
Department in Computer science and

Engineering, in University of Engineering and Technology Lahore,
Narowal Campus since 2016 to date. His research interests include
Bioinformatics, Databases, Software Engineering, Network
Security, Artificial Intelligence and Embedded Systems.

 Abdur Rehman Completed his PhD from
UET Lahore in computer science. During his
PhD, he has been part of Al-Khawarizmi
Institute of Computer Science, UET Lahore
for 8 year working as a researcher on
different posts. His core expertise are in the
field of machine learning and his focused
area of research is “Text Classification”. He
is currently working as Assistant Professor

in Department of Computer Science, University of Gujrat.

