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Abstract: 
This paper attempted to propose a SDRE controller with 
regulation of adapting weighting coefficients for blood glucose 
concentration control in patients with type 1 diabetes. The 
weighting coefficients found in the cost function of SDRE 
controller were adjusted through a neuro-fuzzy network. In 
other words, the term "smart” in the title refers to neuro-fuzzy 
networks.  
In this paper, a successful practical model was selected and 
smart and stable techniques were integrated to desirably control 
glucose levels. To this end, a neuro-fuzzy network was adopted 
to identify and control the nonlinear system behavior, while 
comparing LQR and SDRE controllers. At the next stage, a new 
diabetes controller was designed based on assigning adaptive 
weights to the SDRE controller. Finally, the newly proposed 
method was simulated on the diabetes model to demonstrate its 
great capability in blood glucose concentration control. 
Keywords: 
Glucose concentration control, SDRE controller, Adaptive 
Fuzzy Neural Identification 

1. Introduction 

The human body needs energy for daily activities. The 
most important source of energy is glucose, which is 
absorbed daily by nutrition. As the cells are fed, the 
essential energy will be supplied for physical and mental 
activity. 

The glucose concentrations in the body should be 
maintained at a certain level. The pancreas secretes 
insulin and glucagon hormones to regulate blood glucose, 
because the two factors are complementary. Insulin is 
released to reduce glucose when plasma glucose 
concentration is high, while glucagon is released to boost 
it when the concentrations are too low. Diabetes mellitus 
is one of the most common endocrine disorders in the 
human body caused by damage to β cells (Beta) in the 
pancreas. In this condition, insulin will not secrete 
sufficiently to regulate blood glucose.  In the presence of 
high glucose, the glucagon stop function will be hindered, 
pushing the patient’s blood glucose to levels greater than 
normal range, i.e. 70-110 mg/dl equivalent to 4-4 mmol/L. 
Type 1 diabetes, also known as insulin-dependent 
diabetes, is caused by destruction of the immune system 

of β cells. This disease can be associated completely with 
insulin deficiency. 

The followings are important for drug delivery modeling: 

 1. Limited access time  

 2. Robustness to uncertainties 

The human body is extremely sensitive to variations in 
glucose concentration. One slight change for a long 
period can cause brain and heart damage. Therefore, the 
timing in glucose regulation is vital. 

 It should be noted that a small change in some 
parameters can affect the closed-loop performance and 
even lead to the patient’s death. Resistance is one of the 
remarkable features in practical implementation of the 
newly designed controller.  

The most important goal in treatment of diabetes is to 
maintain normal blood glucose levels. 

Several mathematical models have so far been proposed 
for diabetes based on insulin and glucose interactions. 
There are a number of commonly used models for 
diabetes, falling under the ODE¹ DDE² category, 
including negative feedback model ODE DDE (Tolic and 
Sturis, 2000) DDE Engelborghs models in 2001 (Gourley 
and Bennett, 2004) (Mason and Kuang, Li, 2006) models 
based on diagnostic tests3) Bergman Minimal Model, 
Palumbo, Panunzi, De Gaetano (2007) [1]. 

The primary models presented for diabetes could not 
model the delay from rising blood glucose level until 
insulin secretion. 

1: Ordinary Differential Equation   

2: Delay Differential Equation  

 3: Diagnostic tests      

The basic model provided by Palumbo et al. (2010) has 
been discussed as an applied model in the control of 
diabetes, such as in [4 and 14].  
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Concerning the closed-loop control of diabetes, several 
techniques have been developed for diabetes mellitus 
such as linear and nonlinear predictive control methods, 
nonlinear sliding mode, robust controllers 𝐻𝐻∞ , classic 
controllers designed based on linearized equations around 
stable equilibrium point, nonlinear state feedback, and 
linear and nonlinear observers design for nonlinear 
models in References [2-3]. Based on SDRET Adaptive 
Weighting, this paper intended to propose a solution for 
optimal control of non-linear delay systems relying on the 
idea of quasi-linearization. By examining the stability of 
the newly proposed method based on the new controller, 
the optimal glucose level in the patient and optimal rate 
of insulin injection for type 1 diabetics were obtained. 
Then, the results of the proposed method were compared 
against the nonlinear control method based on the 
Palumbo feedback linearization. The most important 
advantage of the new method lies in its efficiency in 
controlling a set of delayed non-linear systems in the 
state variable and generalizability in solving many other 
problems. 

2. State-dependent Riccati controller 

This section describes SDRE1 and LQR² algorithms, 
exploring their similarities and differences. The two 
control methods serve to find the u* control inputs, which 
are applied to the system under control (1) to maintain the 
system, satisfy the preset constraints, minimize the 
defined cost function (Equation 2) and converge the 
system state variables toward zero at minimal control 
effort. [16] 

�̇�𝑥(𝑡𝑡) = 𝐴𝐴𝑥𝑥(𝑡𝑡) + 𝐵𝐵𝐵𝐵(𝑡𝑡)    (1) 

 

   (2) 
In Q(2), H is the symmetric positive matrix, and R is the 
positive definite matrix. 

In the LQR method, B(x) and A(x) are assumed to be 
constant and are no longer a function of system state (x). 
In the SDRE method, however, these two matrices are a 
function of system state (x). Therefore, the linear LQR 
method and 

1: State-dependent Riccati equation 2: Linear Quadratic 
Regulators  

while SDRE method is nonlinear. In both methods, the 
general form of control input is calculated from (3): 

u*=-R⁻¹Bᵀ(x)Kx     (3) 

In (3), K is the Lagrange coefficients obtained by solving 
a Riccati equation. This Riccati equation is solved 
differently in SDRE and LQR. In LQR, the Riccati 
equation (4) is a first-order differential equation obtained 
by numerical methods from the final simulation time to 
initial time (having the final values of K):  

K=-KA-AᵀK-Q+KBR⁻¹BᵀK    (4) 
In SDRE, the left side of equation (4) is set to zero 
(Riccati algebra equation - equation 5), and the algebraic 
equation obtained by having the initial values of state 
variables is solved based on initial simulation until final 
time. 

0=-KA-AᵀK-Q+KBR⁻¹BᵀK    (5) 
The main advantages of method 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆, some of which 
actually valid in method 𝐿𝐿𝐿𝐿𝑆𝑆, include: 

• This method can be employed in the design of 
controller, observer and filter 
• Offering more freedom to the designer due to 
lack of system's quasi-linear non-unique representation  
• Possibility to easily build compromise between 
control signal and operation  

3. Simulation of adaptive weighting SDRE 
and comparison against Palumbo 

This section simulates the newly proposed controller to 
control the blood glucose level in patients with type 1 
diabetes while determining the appropriate dosage for 
insulin infusion.  

 The diabetes model was presented in 2007 [6]. This 
model is based on experimental data on IV injection 
according to (6):  

𝑑𝑑𝑑𝑑(𝑡𝑡)
𝑑𝑑𝑡𝑡 = −𝐾𝐾𝑥𝑥𝑥𝑥𝑥𝑥𝐼𝐼(𝑡𝑡)𝑑𝑑(𝑡𝑡) +

𝑇𝑇𝑥𝑥ℎ
𝑉𝑉𝑥𝑥

 

𝑑𝑑𝑑𝑑(𝑡𝑡)
𝑑𝑑𝑡𝑡

= −𝐾𝐾𝑥𝑥𝑥𝑥𝐼𝐼(𝑡𝑡) + 𝑇𝑇𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖

𝑉𝑉𝑖𝑖
𝑓𝑓(𝑑𝑑(𝑡𝑡 − 𝜏𝜏𝑥𝑥)) + 𝐵𝐵(𝑡𝑡)  (6) 

𝑑𝑑(𝜏𝜏) = 𝑑𝑑0(𝜏𝜏) , 𝐼𝐼(𝜏𝜏) = 𝐼𝐼0(𝜏𝜏) , 𝜏𝜏 ∈ [−𝜏𝜏𝑥𝑥, 0] 

where,  

𝑓𝑓(𝑑𝑑) =
� 𝑑𝑑𝑑𝑑∗�

𝛾𝛾

1 + � 𝑑𝑑𝑑𝑑∗�
𝛾𝛾 

𝑇𝑇𝑥𝑥ℎ = 𝐾𝐾𝑥𝑥𝑥𝑥𝑥𝑥𝐼𝐼𝑏𝑏𝑑𝑑𝑏𝑏𝑉𝑉𝑥𝑥     (7) 

𝑇𝑇𝑥𝑥𝑥𝑥𝑖𝑖𝑖𝑖𝑥𝑥 = 𝐾𝐾𝑥𝑥𝑥𝑥𝐼𝐼𝑏𝑏𝑉𝑉𝑥𝑥
1 + �𝑑𝑑𝑏𝑏𝑑𝑑∗�

𝛾𝛾

�𝑑𝑑𝑏𝑏𝑑𝑑∗�
𝛾𝛾  
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where 𝑑𝑑(𝑡𝑡) is plasma glucose concentration in millimolol 
𝑚𝑚𝑚𝑚, 𝐼𝐼(𝑡𝑡) is plasma insulin concentration in picomol 𝑝𝑝𝑚𝑚, 
and 𝐵𝐵(𝑡𝑡) is control signal and IV insulin injection rate in 
picomoles per minute 𝑝𝑝𝑚𝑚/𝑚𝑚𝑚𝑚𝑚𝑚. 

 𝑑𝑑0(𝜏𝜏), 𝐼𝐼0(𝜏𝜏) displays the initial values of plasma glucose 
and insulin, which are approximately assumed to be 
𝑑𝑑(0) = 𝑑𝑑𝑏𝑏 and 𝐼𝐼(0) = 𝐼𝐼𝑏𝑏  based on the values of 𝐼𝐼𝑏𝑏  .𝑑𝑑𝑏𝑏 و 
The other parameters are given in Table (1). 

Patient under study had a body mass index of 50. The 
parameter Gb=6.14 indicated a higher than normal blood 
glucose level in the patient, and the insulin resistance 
index was Kxgi≤10-4. These factors indicate an under-
normal insulin secretion rate for a newly diagnosed 
diabetic patient. Factors such as obesity, inactivity, 
genetics, etc. have led to a gradual decrease in the insulin 
secretion rate in the patient. The patient will have 
symptoms of type 2 diabetes, if not treated. 

1: Body Mass Index (BMI) 

After being affected by the disease, the patient did not go 
through any treatment for 1-2 years. Naturally, the 
patient’s pancreatic insulin levels dropped sharply, while 
insulin resistance remained unchanged, leaving the 
patient with chronic hyperglycemia. 

The glucose reference signal was considered to decrease 
exponentially from the initial blood glucose level 
(Gb=10.37 mM to a normal value of 5.12 mM as shown 
in (8)) (I=48.95) 

Table 1: Actual parameters identified for the type 1 diabetic patient  

Parameter Value of 
parameter Description 

𝛾𝛾 3.205 

A constant, positive 
parameter representing 
the responsiveness of 
pancreas to glucose 

circulation in plasma. 

 𝑉𝑉𝑥𝑥 0.187 Glucose distribution rate 

𝑇𝑇𝑥𝑥𝑥𝑥𝑖𝑖𝑖𝑖𝑥𝑥  0.242 
Maximum insulin 

secretion rate in the 
second phase 

𝑉𝑉𝑥𝑥 0.25 Insulin distribution rate 
in plasma 

𝜏𝜏𝑥𝑥 24 

Delay in insulin 
secretion from pancreas 

in exchange for an 
increase in blood 

glucose concentration 

𝐾𝐾𝑥𝑥𝑥𝑥𝑥𝑥  
3.11
× 10−5 

Reserved glucose rate 
depending on produced 

glucose 

 𝑇𝑇𝑥𝑥ℎ 0.003 Hepatic glucose and 
received glucose index 

𝑑𝑑∗ 9 Glucose concentration 
steady state value 

𝐾𝐾𝑥𝑥𝑥𝑥  
1.211
× 10−2 

Plasma insulin 
concentration decline 

index 
The parameters in nonlinear model of diabetes for 
patients under study were obtained based on least squares 
fitting generalized on experimental data on insulin 
infusion testing as shown in [12]. 

Gref (T)=5.12+(10.37-5.12)e¯⁰∙⁰²ᵀ   (8) 
𝑦𝑦�̇(𝑡𝑡) = 𝑑𝑑𝑑𝑑 − 𝑑𝑑(𝑡𝑡)     (9) 

Hence, it will be an additional quasi-linear representation 
according to (10). 

�
�̇�𝑑(𝑡𝑡)
𝐼𝐼(̇𝑡𝑡)
𝑦𝑦�̇(𝑡𝑡)

� = �
𝑎𝑎11 𝑎𝑎12 0
𝑎𝑎21 𝑎𝑎22 0
−1 0 0

� �
𝑑𝑑(𝑡𝑡)
𝐼𝐼(𝑡𝑡)
𝑦𝑦�(𝑡𝑡)

� + �
0
1
0
� 𝐵𝐵(𝑡𝑡)  (10) 

where, 

𝑎𝑎11 = −𝐾𝐾𝑥𝑥𝑥𝑥𝑥𝑥𝐼𝐼(𝑡𝑡), 𝑎𝑎12 = 𝑇𝑇𝑖𝑖ℎ
𝑉𝑉𝑖𝑖𝑑𝑑(𝑡𝑡) , 𝑎𝑎21 = 𝑇𝑇𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖

𝑉𝑉𝑖𝑖𝐺𝐺(𝑡𝑡) 𝑓𝑓 �𝑑𝑑�𝑡𝑡 −

𝜏𝜏𝑥𝑥�� , 𝑎𝑎22 = −𝐾𝐾𝑥𝑥𝑥𝑥     (11) 

3.1 SDRE tracking system  

In tracking, the relations governing the system will be as 
follows [17]: 

�
�̇�𝑥(𝑡𝑡) = 𝑓𝑓�𝑥𝑥(𝑡𝑡)� + 𝐵𝐵�𝑥𝑥(𝑡𝑡)�𝐵𝐵(𝑥𝑥(𝑡𝑡), 𝑡𝑡)

𝑥𝑥(0) = 0                   
𝑦𝑦(𝑡𝑡) = 𝐻𝐻𝑥𝑥(𝑡𝑡)               

   (12) 

These equations are in regulation mode, with the 
exception that equation y  has been added, since the 
reference signal is tracked by the output as a few 
variables arise from the state space in the output. The cost 
function for the tracking problem is according to (13). 

𝐽𝐽 = 1
2 ∫ [(𝑦𝑦 − 𝑟𝑟)𝑇𝑇(𝑡𝑡)𝐿𝐿(𝑦𝑦 − 𝑟𝑟) + 𝐵𝐵𝑇𝑇(𝑡𝑡)𝑆𝑆𝐵𝐵(𝑡𝑡)]𝑑𝑑𝑡𝑡𝑇𝑇

0   (13) 

For the equations to be expressed in terms of 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 , 
nonlinear function 𝑓𝑓(𝑥𝑥) is reformulated as 𝑓𝑓(𝑥𝑥) = 𝐴𝐴(𝑥𝑥)𝑥𝑥. 
As a result, the Hamiltonian matrix will be as follows: 

𝐻𝐻(𝑥𝑥,𝐵𝐵, 𝜆𝜆) = 1
2

(𝐻𝐻𝑥𝑥 − 𝑟𝑟)𝑇𝑇𝐿𝐿(𝐻𝐻𝑥𝑥 − 𝑟𝑟) + 1
2
𝐵𝐵𝑇𝑇𝑆𝑆𝐵𝐵 + 𝜆𝜆𝑇𝑇(𝐴𝐴(𝑥𝑥)𝑥𝑥 +

𝐵𝐵𝐵𝐵)      (14) 
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Sufficient conditions for optimal control according to the 
Hamiltonian matrix can be seen in (15). 

⎩
⎪
⎨

⎪
⎧ �̇�𝑥∗(𝑡𝑡) = 𝜕𝜕𝜕𝜕

𝜕𝜕𝜕𝜕
= 𝐴𝐴(𝑥𝑥∗)𝑥𝑥∗ + 𝐵𝐵𝐵𝐵∗ 

�̇�𝜆 = −𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥

= −𝐻𝐻𝑇𝑇𝐿𝐿(𝐻𝐻𝑥𝑥∗ − 𝑟𝑟) − 𝐴𝐴𝑇𝑇(𝑥𝑥∗)𝜆𝜆 − ∑ 𝑥𝑥𝑥𝑥∗ �
𝜕𝜕𝐴𝐴1→𝑖𝑖,𝑖𝑖

𝜕𝜕𝑥𝑥
(𝑥𝑥∗)�𝑖𝑖

𝑥𝑥=1

𝑇𝑇
𝜆𝜆

0 = 𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

= 𝑆𝑆𝐵𝐵∗ + 𝐵𝐵𝑇𝑇𝜆𝜆
      (15) 

where  ∂A1→m,i
∂x

 is a column derivative operator defined 
below. 

𝜕𝜕𝐴𝐴1→𝑖𝑖,𝑖𝑖

𝜕𝜕𝑥𝑥
= �

𝜕𝜕𝐴𝐴1𝑥𝑥/𝜕𝜕𝑥𝑥1 ⋯ 𝜕𝜕𝐴𝐴1𝑥𝑥/𝜕𝜕𝑥𝑥𝑖𝑖
⋮ ⋱ ⋮

𝜕𝜕𝐴𝐴𝑖𝑖𝑥𝑥/𝜕𝜕𝑥𝑥1 ⋯ 𝜕𝜕𝐴𝐴𝑖𝑖𝑥𝑥/𝜕𝜕𝑥𝑥𝑖𝑖
�  (16) 

Finally, the control rule is 𝐵𝐵∗(𝑡𝑡) = −𝑆𝑆−1𝐵𝐵𝑇𝑇𝜆𝜆∗(𝑡𝑡) . 
However, the question to be be answered now is how to 
calculate λ∗. 

In tracking mode, the response family will be selected in 
the form of 𝜆𝜆 = 𝑃𝑃�𝑥𝑥∗(𝑡𝑡)�𝑥𝑥∗ + 𝑠𝑠(𝑡𝑡), where 𝑠𝑠(𝑡𝑡) has been 
added to the regulation mode. By adding a time-
dependent parameter in the overall structure of the 
response, the tracking problem will be solved easier. 

In the same procedure as stated in the regulation mode, 
(17) will be obtained to calculate 𝑃𝑃. 

𝑃𝑃(𝑥𝑥∗)[𝐴𝐴(𝑥𝑥∗)𝑥𝑥∗ − 𝐵𝐵𝑆𝑆−1𝐵𝐵𝑇𝑇(𝑃𝑃(𝑥𝑥∗)𝑥𝑥∗ + 𝑠𝑠)] + �̇�𝑠 + 𝑆𝑆𝑡𝑡𝑃𝑃(𝑥𝑥∗)𝑥𝑥∗ =
−𝐻𝐻𝑇𝑇𝐿𝐿(𝐻𝐻𝑥𝑥∗ − 𝑟𝑟) − 𝐴𝐴𝑇𝑇(𝑥𝑥∗)(𝑃𝑃(𝑥𝑥∗)𝑥𝑥∗ + 𝑠𝑠) −

 ∑ 𝑥𝑥𝑥𝑥∗ �
𝜕𝜕𝐴𝐴1→𝑖𝑖,𝑖𝑖

𝜕𝜕𝑥𝑥
(𝑥𝑥∗)�𝑖𝑖

𝑥𝑥=1

𝑇𝑇
(𝑃𝑃(𝑥𝑥∗)𝑥𝑥∗ + 𝑠𝑠)   (17) 

In this equation, DtP(x∗) is the time derivative of matrix 
P  defined according to equation DtP(x) =
∑ 𝑥𝑥𝑘𝑘 �

𝜕𝜕𝜕𝜕(𝑥𝑥)
𝜕𝜕𝑥𝑥𝑘𝑘

�̇�𝑥𝑘𝑘�𝑖𝑖
𝑘𝑘=1 . 

In regulation mode, the problem is solved by considering 
small variations in 𝑃𝑃  and 𝐴𝐴 . Upon this assumption, 
Riccati equation (5) is obtained. In tracking mode, the 
cost paid for the above assumption involved a trend from 
optimality to sub-optimality. 

In tracking mode, the noteworthy point is that 𝑠𝑠 should 
also be calculated as follows. Hence, small variations 
assumed for 𝑃𝑃 and 𝐴𝐴 will be inapplicable. This leads to 
an increase in calculations of the tracking problem 
compared to the regulation problem. 

�̇�𝑠 + 𝐴𝐴𝑇𝑇(𝑥𝑥)𝑠𝑠 − 𝑃𝑃(𝑥𝑥)𝐵𝐵𝑆𝑆−1𝐵𝐵𝑇𝑇𝑠𝑠 − 𝐻𝐻𝑇𝑇𝐿𝐿𝑟𝑟 +

∑ 𝑥𝑥𝑥𝑥 �
𝜕𝜕𝐴𝐴1→𝑖𝑖,𝑖𝑖

𝜕𝜕𝑥𝑥
(𝑥𝑥𝑥𝑥)�𝑖𝑖

𝑥𝑥=1

𝑇𝑇
(𝑃𝑃(𝑥𝑥𝑥𝑥)𝑥𝑥𝑥𝑥 + 𝑠𝑠) + 𝑆𝑆𝑡𝑡𝑃𝑃(𝑥𝑥)𝑥𝑥 = 0 (18) 

4. Open-loop results 

The behavior of all state variables can be observed in 
Figure (1), Figure (2) and Figure (3). In these figures, the 
horizontal axis represents a sampling time of 15 minutes. 
It can be observed that insulin and glucose concentrations 
(which should be between 4 and 6) exceed the normal 
range. Therefore, it is vital to use injectable insulin to 
reduce glucose. This section provides the results of using 
the new controller in regulation of glucose concentration 
through the proposed method. 

 

Fig. 1 Variations in the first state variable of diabetic patient (glucose 
concentration) 

 

Fig. 2 Variations in the second state variable of diabetic patient (insulin 
concentration) 
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Fig. 3 Variations in the third state variable of diabetic patient 
(difference between blood glucose concentration and desired 

concentration) 

5. SDRE controller with adaptive weighting 

This section explores the results of glucose 
concentrations control in a diabetic patient using the new 
approach.  

Figure (4) displays the overall closed-loop structure in the 
presence of adaptive weight regulator. 

 
 

 

Fig. 4 The overall closed-loop structure of diabetes control in the presence of SDRE controller neuro-fuzzy network for adaptive weighting  

In Figure (5), the red curve displays the optimal trend, 
while the blue curve displays the variations in current 
glucose in the patient’s blood. In this graph, the initial 
conditions (about 10.3) were selected with a difference 
from natural conditions. As previously noted in Figure 
(2), the glucose levels will rise if insulin is not injected. 
By application of injectable insulin as a control input, 
however, glucose concentration reached a normal level as 
seen in the following figure. 

This figure also indicates the response from controller 
𝐿𝐿𝐿𝐿𝑆𝑆 previously provided in paper (18), marked red in the 
graph. Evidently, the lower convergence rate in 𝐿𝐿𝐿𝐿𝑆𝑆 is 
lower than that in the newly proposed method.  

This can be associated with non-adaptive weighting and 
linearity of 𝐿𝐿𝐿𝐿𝑆𝑆  method. Since there is no bias in the 
output response, the non-adaptability of 𝐿𝐿𝐿𝐿𝑆𝑆  method 
plays a greater role in its weaker performance compared 
proposed method. 

 

Fig. 5 Closed-loop response of controlled system (glucose variations), 
comparison of proposed method against LQR 

 
The following figure shows the level of insulin injection 
functioning as control input. 
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Fig. 6 Level of insulin injected through the proposed controller 

In an effort to further explore the various aspects of the 
new method, it will be compared against the method 
presented in [19]. The main difference between the two 
methods lies in adaptive weighting through matrices 𝑆𝑆 
and 𝐿𝐿 involving a neuro-fuzzy network. If the system is 
in its nominal state, and the tracking path is set to a small 
range, there will be insignificant difference between the 
two methods. Glucose will only fall within the 4-6 
milloles band slightly faster.  

As shown in Figure (7), comparing the method proposed 
in this paper and that presented in [19], the former travels 
within the standard the 4-6 milloles band far faster than 
the latter. 

 

Fig. 7 Closed-loop response of controlled system (glucose variations), 
comparison of proposed method against SDRE 

Nonetheless, the main advantage of the proposed method 
over that presented in [19] is the time when variations 
occur in the model parameters. In Figure (8), the result is 
reported by applying 10% variation in 𝛾𝛾. Evidently, there 
is a significant difference between the method proposed 
in this paper and that in [19]. That is because in an 

adaptive weighting, the significance of variables can be 
regulated to prevent excessive weighting. It should be 
noted, if there is uncertainty in the system, overweighting 
of state variables will result in lower response quality and 
even instability. 

 

Fig. 8 Closed-loop response of controlled system (glucose variations in 
the patient), comparison of the proposed method against SDRE if there 

is 10% variation in 𝜸𝜸 

6. Summary and conclusions 

One of the most effective methods for controlling 
diabetes involves an optimal controller to help the 
patient's glucose achieve normal levels at an optimum 
insulin secretion rate. In this paper, a new glucose-insulin 
regulatory system was designed based on Palumbo’s 
delayed nonlinear model for diabetes mellitus. Then, the 
idea of quasi-linearization in nonlinear delayed systems 
was adopted along with an optimal closed-loop control 
method called Adaptive Weighting SDRE to converge 
the blood glucose with its normal level in type 1 diabetic 
patients, thus archiving an optimal injection rate. Since 
control methods for delayed nonlinear systems have not 
extensively developed other than in Palumbo’s feedback 
linearization as a solution, the newly proposed method 
can be considered a highly robust strategy. Furthermore, 
the results were compared against those of Palumbo's 
method based on feedback linearization. 

It is recommended to improve the new method by online 
model identification, thereby to mitigate closed-loop 
sensitivity to parametric variations. It is also strongly 
recommended that a mechanism be developed to satisfy 
operational constraints, such as predictive controllers. 
However, the prediction horizon should be sufficiently 
large. 
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