
IJCSNS International Journal of Computer Science and Network Security, VOL.17 No.10, October 2017

198

Manuscript received October 5, 2017
Manuscript revised October 20, 2017

Security Investigation and Analysis of OpenID: Problems and
Enhancements

Waleed A. Alrodhan and Alya I. Alqarni

College of Computer and Information Sciences
Al-Imam Muhammad ibn Saud University

Summary
OpenID is a widely used identity management system (IdMS) by
which identity providers (IdPs) provide their users with 'open'
identities that can be used to log in to particular relaying parties
(RPs). OpenID implements a single sign-on (SSO) solution that
reduces the number of authentication credentials that are required.
An SSO permits users to authenticate themselves to many SPs by
using one set of authentication credentials. OpenID is faster and
easier than the traditional method, which requires the user to
manage a large number of digital identities, since each SP only
recognises the identity it has issued. This increases the security
risk of identity theft and, at the same time, forms an obstacle with
regard to user convenience. The aim of this paper is to analyse the
security of OpenID by identifying its weaknesses and
vulnerabilities using OWASP tools, and to enhance OpenID
current protocols by proposing a novel high-level integration
model of OpenID and Higgins (an Information Card based IdMS).
Key words:
OpenID, Higgins, Security, Identity, Privacy..

1. Introduction

This paper aims to analyse and enhance the security of
OpenID, one of the most commonly used identity
management systems on the web, by proposing
enhancements to OpenID’s by analysing and investigating
its security framework. The analysis will be conducted
using specific tools (OWASP ZAP1 and VCG2), and will
cover most of the OpenID framework. We will identify the
weaknesses in the OpenID's protocol and propose and
evaluate ways to support the exposed weaknesses.

OpenID is an identity management system (or IDMS). An
IdMS permits confidential sources to implement identity
management tasks using an effective structure [1]. OpenID
supports single sign-on (or SSO) authentication procedure.
An SSO is an identity management protocol which permits
users to use only one account which is secured and trusted
for admission to different resources. A SSO permits
networked services to realise authentication objectives
using overwhelming just-in-time identity information from

1 https://www.owasp.org/index.php/OWASP_Zed_Attack_Proxy_Project
2 https://github.com/nccgroup/VCG/tree/master/VisualCodeGrepper

confident sources that exist in other systems or structural
areas, at the moment when the user uses the method [2].
SSO aims at boosting-up the user-convenience and
mitigating the risk of users forgetting their security
credentials.

1.1 OpenID system

OpenID is one of the IDMS’s that offer users with a
universal identity, permitting them to sign in to several
relying parties (or RPs). OpenID supports SSO which
prevents the necessity to have individual signings and
passwords for to each website which supports OpenID [3].
The method of confirming with OpenID on the SSO system
has several security issues. One main threat inherited in the
OpenID authentication procedure is phishing attacks [3].
Furthermore, weaknesses in the design of web SSO permit
attackers to satirise users [2]. OpenID is in the possession
of, and managed by, the OpenID Foundation3, a non-profit,
global calibration organization of individuals and
corporations dedicated to allowing, helping, and guarding
OpenID knowledge. The foundation is held by numerous
well-known administrations containing Google, IBM,
Microsoft, Yahoo!, PayPal and VeriSign. Conferring with
the OpenID website indicates that there are presently more
than one billion OpenID-allowed identities and about nine
million OpenID-allowed SPs on the Internet. On the other
hand, almost nothing of these SPs provides admission to
any data of any existent value, even though this may be
modified in the future [1].

OpenID is regionalised. The regionalisation permits the
user to select an OpenID provider appropriate to personal
favourites and enables the user to develop an identity
provider. In addition, the SSO advantage grants users'
admission to various websites with the use of one login.
Usability is an imperative feature of a user-collaborating
protocol or system. In this deference, the usability of
OpenID is imperative since the user cooperates directly
with the protocol through the OpenID progression. There
are two recognised attacks on the OpenID protocol: the

3 https://openid.net/

IJCSNS International Journal of Computer Science and Network Security, VOL.17 No.10, October 2017

199

cross-site request forgery attack (CSRF) and the open
forward attack. OpenID Connect is defenceless against
CSRF attacks that are performed in several stages. Once
attackers log on to OpenID, they be able to read secretive
messages, post remarks, modify payment information, and
so on. After that, they will be able to disconnect from the
provider, and no one will know about whatever has
occurred. The open forward attack is a method to forward
the value related with a claims value to a user; for example,
a URL without any authentication. This weakness is
typically exploited in phishing attacks to entice users to
access malicious sites without understanding what is
happening [4].

OpenID has quickly emerged on the Internet. There were
around one billion OpenIDs and 50 thousands enabled-SPs
in 2010. The constraints of OpenID have been defined as
worries from amount of security restrictions. Of specific
concern is its dependence on the concept of universal
indenters that increases important privacy concerns [1].

The reminder of the paper is organised as follows. Section
2 provides a background overview. In Section 3 we discuss
our security analysis of OpenID Connect using two security
analysis tools; namely, OWASP's Zed Attack Proxy (ZAP)
and the Visual Code Gripper (VGC). In Section 4, we
discuss two security enhancements of OpendID Connect;
one has proposed by the OpenID developers and the other
by the authors of this paper. An analysis of both
enhancements will be given in the same section. Finally,
Section 5 concludes the paper and discusses future work.

2. Background overview

This section provides an overview of the OpenID 2.0 and
OAuth 2.01 protocols by defining their roles, endpoints,
protocol flow. Also, it describes OpenID Connect (the latest
OpenID version) and Higgins-Identity2. In addition, this
section discusses the tools we used to analyse the OpenID
connect protocol. Finally, an overview of previous related
work will be provided.

2.1 OpenID 2.0

OpenID 2.0 is a regionalised web-based SSO protocol. Its
main objective is to sign in an end user, epitomised by an
identifier, at RPs by an identity provider (or IdP) named the
OpenID provider (or OP). To possess an OpenID, an end
user must create an index with an OP (e.g., Google or
Yahoo).

OpenID 2.0 framework contains four main parties:

1 https://oauth.net/

1. End User: A user applying a user agent (e.g. a web
browser) to log in to an RP.

2. Relaying Party (RP): A service provider (e.g. web server).

3. OpenID Provider (OP): An identity provider.

4. Identifier Host: A host, assumed an OpenID Identifier,
accountable for determining the identity of the issuing OP.

Fig. 1 OpenID 2.0 Protocol Flow.

Figure 1 depicts the OpenID 2.0 protocol stream to validate
the communication between the above-defined parts [5]:

1. The OpenID 2.0 confirmation method is start by
the end user requesting a confirmation-required
service of the RP.

2. The RP asks the end user to provide her/his
OpenID Identifier within a signing page.

3. The end user provides her/his identifier.
4. The RP refers the expected identifier to the

identifier host.
5. The identifier host determines the expected

identifier and replies through the identity of its
conforming OpenID provider composed through
extra information.

6. (&7) In the interior connotation stage, the RP and
the OP exchange a public secret for digitally
logging in and confirming the to-be-exchanged
token.

8. The RP forwards the end user to the OP.
9. (&10) The end user confirms her/his identity to the

OP.
11. The OP issues a confirmation token, employed by

the previously switched secret, forwards the end
user back to the RP and attaches the token to the
demand.

12. The RP confirms the authority of the expected
token and presents the end user the effect of the
confirmation method.

2 http://www.eclipse.org/projects/archives.php

IJCSNS International Journal of Computer Science and Network Security, VOL.17 No.10, October 2017

200

2.2 OAuth 2.0

Prior to discussing OpenID Connect it is important to
understand the OAuth 2.0 protocol. OpenID Connect uses
this protocol to provide identity services. OAuth 2.0 is an
authorization protocol for gaining access tokens for web
APIs and secure resources. OpenID Connect relies on the
OAuth 2.0 semantics and streams to permit applications to
admit users.

OAuth 2.0 structures, which are define by the Internet
Engineering Task Force (IETF) in RFCs 6749 and 6750,
became available in 2012. These structures were intended
to support the improvement of authentication and
authorization protocols. They provide an assortment of
standardised information flows that depend on JSON and
HTTP.

The OAuth 2.0 authorization structure allows a third-party
(e.g. an RP) application to gain partial access to an HTTP
service, either on behalf of a resource owner by
coordinating an agreement communication between the
resource owner and the HTTP service or by permitting the
third-party application to gain access on its own behalf [6].

2.2.1 Roles

OAuth 2.0 framework involves four main parties:

• Resource Server: the server that holds the
protected resource.

• Resource Owner: the individual who owns the
protected resource.

• Client: the application that requests the access to
the protected resource on behalf of the user;
usually, it is a web browser.

• Authorization Server: a server that, on behalf of
the owner, authorises the client to access the
resource.

The communication between an authorization server and a
resource server is beyond the scope of the OAuth 2.0
specifications. The authorization server could match the
resource server or a diverse object. A single authorization
server could issue access tokens as agreed by several
resource servers [6].

2.2.2 Access Tokens

Access tokens are authorizations that are used to access
resources. The access token is a string that acts as a
representative of an authorization allotted to the client. This
string is regularly impervious to the client. Tokens
epitomise detailed scopes and times of access, approved by
the resource owner, and that are required by the resource
server and authorization server. The token could represent

the identifier used to regain the authorization data or can
self-hold the authorization data in a provable.

An access token provides a concept layer by changing
several agreement values, such as user name and password,
with one implicit token by the resource server. This concept
allows issuing admission tokens more preventive than the
authorization allowance that is used to gain them and also
eliminates the resource server's desire to understand a
varied choice of authentication approaches. The access
tokens may have dissimilar arrangements, configurations,
and procedures of operation, depending on resource server
security [6].

2.2.3 Protocol Endpoints

There are three protocol endpoints in the OAuth 2.0
specifications. They can be defined as follows:

• Authorization endpoint. This endpoint is used
through the client to gain authorization from the
resource owner by the user agent (or UA)
forwarding. The resource owner decisions are
forwarded to the authorization endpoint of the
authorization server so it can reply to the
'authorization request' of the client. This endpoint
may have a redirection endpoint, which is found
when each client has to inventory one or more
forward URI(s), constructing its redirection
endpoint with the authorization server that
requires interconnection. The authorization grants
are forwarded to the 'forwarding endpoint' of the
client.

• Token endpoint. To regain a confirm access token,
the client must refer to an HTTP POST request
along with the received authorization grant as a
claim value to the token endpoint of the
authorization server. The user can identify
herself/himself to the authorization server within
this request.

• Access token endpoint. The authorization and

token endpoints permit the client to require the
scope of the admission request by using a 'scope
request value'. The authorization server uses the
'scope response value' to cognize the client of the
scope of the access token allotted.

2.2.4 Protocol Flow

 The OAuth 2.0 protocol flow is showed in Figure 2; it
defines the communication between the four parties and
consists of the following steps:

IJCSNS International Journal of Computer Science and Network Security, VOL.17 No.10, October 2017

201

A. The client sends an authorization request to the
resource owner.

B. The client receives an authorization grant. This
grant proofs the consent of the resource owner on
the resource access.

C. The client forwards the received authorization
grant to the authorization server.

D. The authorization server verifies the authorization
grant; then, if the grant was successfully verified,
it replies with an access token.

E. The client forwards the received access token to
the resource server.

The resource server verifies the access token; then, if the
token was successfully verified, it allows the access to the
protected resource.

Fig. 2 OAuth 2.0 protocol flow.

2.3 OpenID Connect

OpenID is an open source identity management system in
which IdPs provide the user with open identifiers that may
be used to log in to several service providers (or SPs) [2].
An SP in OpenID terminology, is essentially an RP.

OpenID enable the user to use her/his account to log in to
various SPs (e.g. websites) using a global identifier in order
to eliminate the need to possess multiple identifiers along
with the security credentials (e.g. usernames and
passwords). Within the OpenID framework, the user
controls which data associated with her/his OpenID
account (e.g. name, email address, etc.) can be shared with
the SPs. Through OpenID, the password is exclusive to the
identity provider which is the party responsible of the user
authentication and is trusted by all SPs in a given circle of
trust (or CoT).

The initial version of OpenID was released in 2005, version
2.0 was released in December 2007, and the newest version
of OpenID is OpenID Connect was released in March

1 https://developers.google.com/identity/protocols/OpenIDConnect/

2014. The first generation of OpenID had many
implementation issues, but it was encouraged due to the
new possibilities it promised. OpenID 2.0 presented good
security and operated well when it was executed correctly.
However, it was plagued by numerous policy limitations,
primarily the fact that SPs might be web pages but not
native applications.

OpenID Connect was built on top of OAuth 2.0, discussed
in Section 2.1. The main limitation of the OAuth 2.0
protocol is its interoperability. Each RP wants to modify its
operation for each maintained IdP that runs a unique API
and endpoints for retrieving their private specific
information. In addition, the level of identity guarantee is
not carried in the protocol. OpenID Connect seeks to fix
these limitations [2].

OpenID Connect resembles OpenID 2.0 in many
architectural points. However, OpenID 2.0 uses XML and
a traditional message signature scheme that, in repetition,
was occasionally difficult for developers to attain. OpenID
2.0 executions would occasionally strangely cease
interoperation. OAuth 2.0, the pillar of OpenID Connect,
uses the Web’s built-in Transport Layer Security
(SSL/TLS) for encryption, which is widely adopted.
Moreover, OpenID Connect uses JSON Web Token (JWT)
data structures when marks are necessary. OpenID Connect
is easier to deal for developers than its predecessor. OpenID
Connect adheres to standard token type, standard
cryptography, and validation process and combines
authentication within short/long lived delegated access.

One of the biggest OpenID Connect adopters is Google.
Google's OpenID Connect/OAuth 2.0 APIs are used for
both authentication and authorization1. Google Sign-in and
Google Client services are built on those APIs. User
authentication is carried out by finding a specific ID token
and verifying it. The ID token specifications are set by
OpenID Connect as a part of the OpenID Connect's
agreement with Google. There are two methods for user
authentication, namely, the server flow and the implicit
flow. The server flow method delegates the back-end server
to authenticate the user's identity; whereas in the implicit
flow method the user authentication is performed at client-
side using a JavaScript execute it by the browser.

2.3.1 Roles

The OpenID Connect framework involves three parties.
The relationship between these roles can be seen in Figure
3 [5]. The parties are:

• The End User. The end user is represented by her/his
user agent (UA), and requests certain services from the
client. Thus, they need to verify their identities to the

http://openid.net/2014/02/26/the-openid-foundation-launches-the-openid-connect-standard/
https://developers.google.com/identity/protocols/OpenIDConnect

IJCSNS International Journal of Computer Science and Network Security, VOL.17 No.10, October 2017

202

client. Moreover, the end user has the ability to
authorize the client to admit a definite set of their
resources, defined by the scope and claims value, in
their names.

• Client. A client is an application that facilitates the
authentication of an end user who requests access to
services and the conforming OpenID provider (OP).
Thus, the client asks the end user for her/his ID token
for verification and the OP for the OAuth 2.0 access
token to grant access to requested secure resources of
the end user. The provisions on the application state
that the client has the capability to authenticate himself
or herself to the OP.

• OpenID Provider (OP). The OP provides an ID token
by holding a detailed set of claims verifying the
identity of the end user. It also generates an OAuth 2.0
access token to the client for the requested resources
after it successfully authenticated and authorized the
end user.

Fig. 3 The relationship between roles on OpenID connect 1.0 Protocol.

2.3.2 The Endpoints

There are five types of endpoints within the OpenID
Connect framework; namely:

• Authorisation endpoint. This is the OP server endpoint
wherever the user is asked to authenticate and allow the
client application admission to the user's identity (ID token)
and, theoretically, other demanded details, such as email
and name (named UserInfo claims). This is the endpoint
that the user requests to intermingle with the OP, by the user
agent, that role is classically via the web browser.

• Forwarding endpoint. Each client must register one or
more Forward Uniform Resource Identifier URIs with the
OP it needs to interconnect with. The client then augments
a specific URI as a demand value to the initial
authentication request. This URI must compete at a
minimum of one of the client's registered ones. Therefore,

after successfully relating with the OP, the end user can be
forwarded to the forwarding endpoint of the client. The
endpoint can accept an authorization code, ID token, access
token, or grouping of the three as the invitation value.

•
• Token endpoint. This endpoint confirms the client

application, then it provides it with the code resulted from
the authorization endpoint for an ID token and access token.
The token endpoint could, moreover, receive other OAuth
2.0 allowance types instead of issue tokens.

• JavaScript Object Notation (JSON) web key set endpoint.

If asymmetric cryptography is used to digitally sign and
encrypt the ID token, the client requests the signature
verification and decryption keys from the OP. The JSON
web key set endpoint of an OP holds a JSON web key set
(JWKS) obtaining that for the need to the public keys.

• User information endpoint. To verify the end user claims, a

client has the option to request certain end user information
via the end user information endpoint of the conforming OP.
This request must hold the access token issued by the OP
after the end user was successfully authenticated. All the
communications with user information endpoint must be
SSL/TLS encrypted.

The following is an example of a user information
endpoint:

 {
 "sub": "2482889761001",
 "name": "Name Example",
 "given_name": "Given Example",
 "family_name": "Family Example",
 "preferred_username": "g.family",
 "email": "ginenFamily@example.com",
 "picture": "http://example.com/ ginenFamily/me.jpg"
 }

2.3.3 ID Token

The ID token bears a resemblance to the idea of an identity
card. To obtain one, the client asks to refer the end user to
its OP with an authentication request.

The ID token is a security token inclosing claims about the
end user. the token must be signed by the OP using the
JSON web signature (JWS), and could also be encrypted
using JSON web encryption (JWE). The token holds the
following list of items:

 The user identifier, termed subject in OpenID (sub).

 The issuing OP (iss).

 The audience identifier (i.e., client; aud).

http://connect2id.com/learn/openid-connect#auth-methods
https://www.google.com.sa/url?sa=t&rct=j&q=&esrc=s&source=web&cd=4&ved=0ahUKEwiw_avovqvRAhWbcFAKHZ1xANkQFggzMAM&url=https%3A%2F%2Ftools.ietf.org%2Fhtml%2Frfc3986&usg=AFQjCNFEL6RwHsa6hMJTbSH2y7nuddRhwg
http://openid.net/specs/openid-connect-core-1_0.html#IDToken

IJCSNS International Journal of Computer Science and Network Security, VOL.17 No.10, October 2017

203

 A nonce (nonce).

 The authentication time (auth_time).

 The authentication method (acr).

 The issuance time (iat).

 The expiration time (exp).

 It can also contain some information about the end user,
such as name and email address.

 If digitally signed, it would contain the signature value.

The following example is the JWT claims set in an ID
token:

2.4 Higgins

Higgins-identity is an information card-based identity
management (ICIM) tool that provides a protected and
simple method for users to manage and protect their
personal information. Also. it allows RPs (e.g. websites) to
verify end user claims for authentication and authorization
purposes. Further, it can be identified as a personal data
service (PDS) that allows users to control shared personal
data.

There are different versions of Higgin. The first, Higgin 1.0,
was released in 2008 and is based on a visual card-wallet
metaphor. This card is named an information cards, or an i-
card. In 2011, Higgins 2.0 was released; it is based on
different code to implement a back-end services PDS. A
PDS is a cloud-based service that works on behalf of the
end user.

Higgins Personal Data Service (PDS) and Local Attribute
Data Storage (ADS) are server modules with which the user
communicates during the authentication phase, as shown in
Figure 4.

1 http://www.owasp.org

Fig. 4 Higgin 2.0 structure.

Higgins protocol workflow is as follows:

1. UA  RP: HTTP request: to GET (sign-in web
page).

2. RP  UA: HTTP/S response. A sign-in page is
reversion holding the Higgins-enabling labels in
which the RP security rule is set in.

3. User  UA: The RP website page proposals the
choice to usage Higgins. If it is first time to use it,
the Higgins 'identity selector' will show the
identity of the RP and provide the user the choice
to either continue or terminate the protocol.

4. Identity Selector  ADS: The identity selector
registered Higgins identities.

5. User  ADS: The user selects one of his Higgins
identities.

6. SelectorHiggins. The identity selector
generates a Security Token value as a reply to the
Request Security Token (RST) to the Higgins.

7. UA  RP: forwards the received Security Token.

8. RP  UA: confirms the validity of the Security
Token.

2.5 OWASP Tools

The Open Web Application Security Project (OWASP)1
was founded on the first of December 2001. It is a non-
commercial organisation that sets operational and security
standards for web applications. Also, it is an open society
devoted to qualifying organisations to understand, develop,
evaluate, turn on, and maintain trusted applications.

OWASP frequently publishes a list of the top ten
application security risks along with recommended

IJCSNS International Journal of Computer Science and Network Security, VOL.17 No.10, October 2017

204

measures for each risk to be mitigated. The newest list was
released in 2017 [7].

2.5.1 OWASP Zed Attack Proxy (ZAP)

The Zed Attack Proxy (ZAP) is a security analysis tool for
discovering vulnerabilities in web applications. ZAP is one
of the most prominent and active OWASP projects. It is
aimed to be used through people with a wide assortment of
security knowledge.

ZAP's main functions is to crawl websites actively and
passively to scan web applications for vulnerabilities [8].
ZAP provides the following services:

1. Interrupting Proxy. By acting as an interrupting
proxy ZAP helps monitoring the traffic flow
request/response, interrupting it, and editing it on
the pass.

2. Automatic Scanner. The automatic scanner
recognises the security aperture that exists in the
web application by putting on a real attack. Thus,
it analyses the security position of an application
with dynamism.

3. Passive Scanning. By analysing the responses
from the server to identify security issues.

4. Brute Force Scanner. This scanner enforces
access controls on files and directories.

5. Spidering. This aims at crawling websites to detect
vulnerabilities.

6. Dynamic SSL Licenses. Such licenses are used to
interrupt requests/responses to/from the server.

Figure 5 shows the basic ZAP screen.

Fig. 5 A basic screenshot of ZAP.

2.6 The Visual Code Gripper

The Visual Code Gripper (VCG) is open-source static code
analysis tool. It was developed by the NCC Group. The

VCG has the ability to examine software without executing
it.

VCG performs a 'white-box' analysis, and is capable of
analysing both web and non-web software to discover
security in issues in the inputs and outputs; these issues
cannot be discovered by web scanning tools such as ZAP.
Figure 6 shows the basic VCG screen.

Fig. 6 A basic VCG screen shot.

2.7 Related Work

In this section we spot the light on previous related work.
In [9] a comparison study was conducted between protected
SSO protocols with regard to convenience and safety. The
study focused on three SSO protocols, namely: LDAP,
SAML, and OpenID. The security analysis is an
investigation of publicly available data on the web. Another
study [10] investigated tools and methods for growing the
pliability and dependability of IdPs centred on OpenID. In
addition, it has categorised the types attacks depending on
the impact severity.

In [2] Sun proposes improvements to enhance of the
security of web SSO system. He illustrated that though
OpenID and OAuth have been approved via IdPs, including
Google, Facebook, Yahoo, and Microsoft, as well as
millions of RP websites, the normal user still poorly
understands web SSO. Sun concluded that users need to
advance their understanding and that enhancements to
usability and security would assist them in doing so. Sun
investigated users' opinions and concerns towards the usage
of web SSO systems and implemented a systematic security
analysis of OpenID 2.0. Moreover, Sun has studied the
OAuth 2.0 executions of three major IdPs and 96 popular
RP websites by examining browser-relayed requests
through SSO. Finally, He has proposed a novel method by
which websites could stop SQL injection attacks and a user-
centric access control solution that would improve both
Open ID and OAuth protocols. Similar study was also
discussed in [11].

Bochum and Mainka advanced a security analysis tool that
was based on OpenID SSO [12]. Since OpenID is
commonly used by several SPs, including Own Cloud,
Word Press, Open Street, Drupal, and Map, they
documented that security should be examined in the

IJCSNS International Journal of Computer Science and Network Security, VOL.17 No.10, October 2017

205

standings of malicious users and network attackers. They
presented an attack of OpenID that involved an open-source
malicious OpenID IdP. Such malicious IdPs are able to
create OpenID signing tokens for uninformed user
identities that can hint to serious security defects. They
developed a tool to address this issue. However, this tool
can only analyse verified traffic. It is probable to operate
any Open ID claims value of uninformed switched
messages. The tool is flexible and permits an alteration in
IdP performance in every single OpenID stage. Table 1
shows a comparison between the mentioned related studies.

Table 1. A comparison between the mentioned related studies

Result Method Author

They concluded that
the LDAP protocol

was designed for local
networks, not web
requests, and that

SAML is out of date
and is no longer use

for web requests.

Compared and
implemented

security
investigations on

three SSO
protocols: LDAP,

SAML, and
OpenID

Nick Heijmink –
[9]

They concluded that
Ops could achieve

good throughput, and
are appropriate to

support thousands of
users.

OpenID IdPs:
Integrity,

Availability, and
Confidentiality for
Information and

Process.

Kreutz, D.,
Feitosa, E.,
Cunha, H.,

Niedermayer,
H., & Kinkelin,

H – [10]

They concluded that
users lack security
awareness, and that

enhancements to
usability and security

would help.

Systematic
Analysis of the
OpenID 2.0 and

OAuth 2.0
Protocol.

Sun, S.-T – [2]

The tool is flexible
and controls attack

directions.

Development of a
Security Analysis
Tool for OpenID.

Mainka, C –
[12]

They suggested an
easy, scalable method
for OpenID-enabled

websites (RPs) to
mitigate the risk of
man-in-the-middle

attacks even without
SSL/TLS.

Systematic
Analysis of the

Protocol that uses
both a Formal

Model Checking an
Empirical

Evaluation.

Sun, S.-T.,
Hawkey, K., &
Beznosov, K –

[11]

All of the discussed work omits the fact that OpenID is
vulnerable to a series of CSRF attacks that are imperfect or
have been poorly implement. Moreover, they all focus on
vulnerabilities and weaknesses within the authentication
phase. Finally, they have not proposed a solution for
heterogeneous RPs and IdPs.

1 http://tetraph.com/covert_redirect/oauth2_openid_covert_redirect.html

3. Security Analysis of the OpenID Protocol

This chapter is divided into four parts. The first two parts
outline vulnerabilities and attacks on OpenID Connect
along with the attacker's capabilities. The third part
describes our security analysis using OWASP ZAP and
discusses the results. Finally, the last part describes our
security analysis using the VCG and discusses the results.

3.1 Vulnerabilities within OpenID Connect

OpenID and OpenID suffered from several security issues.
Many of those issued have been addressed in OpenID
Connect. OpenID Connect has resolved many problems by
adopting an asymmetric cryptography framework. This
framework provides essential security services such as
confidentiality, integrity, authentication and non-
repudiation. OpenID Connect has reached a better
acceptance level, compared to its predecessors, due to its
simplicity in both usage and integration. However, there are
a number of security vulnerabilities in OpenID Connect that
have not been addressed yet. This section discusses those
vulnerabilities.

3.1.1 Vulnerabilities of the UA

In this section we briefly describe OpenID Connect
vulnerabilities reside in the UA.

• Covert Redirect Vulnerability. This vulnerability
allows attackers to disclose the end user protected data
by redirecting the UA (e.g. a web browser) to
malicious sites1. An attacker can generate OAuth 2.0
tokens to deceive users. Once the user has logged in to
the malicious site, the attacker will be able to obtain
access to the user's data stored at the OP sever. This
vulnerability is called the 'covert redirec' since the
attacker can defeat the pretentious protocols by a pop-
up request over Facebook, for example, and
impersonate genuine websites. Covert redirect
vulnerability happens because there is not a reliable
verification procedure of the forwarded URLs. In the
case of Facebook, the data at risk are personal such as
age, email address, work history, friends list,
mailboxes, online state, etc.

• Phishing vulnerability. One of the main concerns

associated to OpenID Connect is phishing. An attacker
can deceive users' into log in to a malicious OP in order
to obtain the users' security credentials.

IJCSNS International Journal of Computer Science and Network Security, VOL.17 No.10, October 2017

206

3.1.2 Vulnerabilities of the RP

One of the most serious OpenID Connect vulnerabilities is
the Second-order vulnerability that is associated with RP.
This vulnerability is related to the exchanged messages
amongst the framework parties (i.e. client and end user,
client and OP, and OP and end user). A detailed description
of this vulnerability can be found in [13].

3.2 Attacks on OpenID Connect

This section discusses a number of attacks on OpenID
Connect.

3.2.1 Attacks on the UA

One of the most famous attacks that can target OpenID
Connect is The 307 Redirect attack [10]. In the OAuth
protocol, the UA is redirected from the IdP to the RP after
the user has been authenticated by the IdP. This attack can
be launched if the IdP uses an HTTP status 307 redirect in
the POST request. This redirection method can be easily
modified by an attacker controlling the UA to deceive the
RP and access protected resources [14].

3.2.2 Attacks on the OP

In this section we list attacks on the OpenID Connect OP
[13].

• A Server Side Request Forgery (SSRF) attack. An
SSRF attack is realised by exploiting vulnerable web
services in the Internet to bypass firewalls.

• Denial-of-service (DoS) attacks. There are many
techniques by which an attacker can launch a DoS
attack on the OP.

• Code injection attacks. The attacker can forge the ID
an Access tokens via code injections in order to
impersonate legit users and log in to the OP.

• Breaking the end user authentication. Using attacks
like replay or wire-tapping.

• Man-in-the-middle (MITM) attack.

3.2.3 Attacks on the end user

By launching attack such as Masquerade attack, the attacker
can impersonate the end user by falsely obtaining HTTP
cookies [15].

3.2.4 Attacks on the RP

A good example of such attacks would be the Identity
provider mix-up attack by which the attacker deceives the

RP by falsely using an access token that was issued for a
legit user [14].

3.3 OWASP ZAP Analysis

Our OWASP ZAP analysis consists of the following steps:

1. First we configure the web browser to use ZAP as a
proxy (ZAP use: Address: localhost and Port: 8080)

2. Once ZAP is set as a proxy between our web browser
and the web service, the connection will be interrupted
by an SSL/TLS (HTTPS) certificate authentication
request since ZAP encrypts and decrypts all inbound
and outbound traffic using SSL/TLS. ZAP will
automatically be issued with SSL/TLS certificates by
ZAP's own Certificate Authority (CA). To make the
web browser trust that CA, we must first import and
trust the ZAP's Root CA certificate. On the bar menu,
we select 'Options' then 'Dynamic SSL Certificates'
and save it as shown in Figure 7. After that, we install
the ZAP certificate as a 'Trusted Root Certificate', as
shown in Figure 8.

Fig. 7 A ZAP root CA certificate.

Fig. 8 Trusted root certification authorities.

IJCSNS International Journal of Computer Science and Network Security, VOL.17 No.10, October 2017

207

3. We implement a 'Quick Start' test after typing the full
URL of the web service that we want to analyse. After
clicking the Attack button, ZAP will start crawling the
web service by its spider, then passively scanning all
retrieved pages. Figure 9 shows the run of an attack we
launched on the Gmail log in subordinate to Google
Corporation).

Fig. 9 Passive scan of a Gmail account.

After passively scanning the ZAP records and the requests
and responses sent to all HTTP pages, ZAP shows alerts
beside each suspicious record. Figure 10 shows ZAP alerts
(red flags).

Fig. 10 Alerts after finishing a scan.

3.3.1 Results

After a planned ZAP analysis, we found the following
vulnerabilities in OpenID Connect:

• Cross-site scripting (XSS). Cross-site scripting (XSS)
defects occur when a web service receives an untrusted
confirmation and refers it to a web browser devoid of
appropriate authentication. XSS permits attackers to
implement scripts in the victim's browser in order to
hijack the user's sessions, damage websites, and/or
forward the user to malicious websites. While the
HTTPOnly flag is comprised in the HTTP reply header,
the cookie cannot be retrieved over the client side
script. XSS attacks aim to holdup session cookies. A

server should set the HTTPOnly flag on the cookies it
issues so that it cannot be accessible on the client side.

• Remote File Include (RFI). OpenID Connect is
vulnerable to the RFI attack. Once web services get
user responses (URL, claims value, etc.) and permit
them in the instructions file, the web service can be
deceived into with remote files through malicious code.
Practically all web service structures support file
implying. File implying is mostly used for packaging
public code into dispersed files, which are indicated via
main service elements. if a web service used a
comprise file, the code in this file can be implemented
indirectly or obviously by occupation definite actions.
An attacker can use RFI to execute malicious code on
both the server and/or client sides. To resolve this
problem, we must apply a reliable input authentication
policy.

3.4. Static code analysis using VCG

We have conducted a 'static code analysis' (or source code
analysis) using VCG as a code evaluation tool. This
analysis is performed at the execution level of the security
development lifecycle (SDL). Static code analysis aims at
discovering vulnerabilities within the static code (i.e.
source code) via various methods (e.g. defect analysis, data
stream analysis, and few more).

Visual code grepper (VCG) is an automatic code security
evaluation tool that supports multiple languages such as C#,
C++, PHP, VB, Java and PL/SQL.

Our VCG analysis consists of the following steps:

1. Download the source code of OpenID Connect written
in C# language.

2. We configure the VCG tool to evaluate C# code. The,
we open the OpenID Connect code, as shown in Figure
11. Finally, from the scan menu bar, we choose 'scan
only code' as the 'scan type'. Figure 12 shows the scan
progress.

Fig. 11 Opening the OpenID connect code.

IJCSNS International Journal of Computer Science and Network Security, VOL.17 No.10, October 2017

208

Fig. 12 Starting the scan OpenID connect code.

Our static code analysis discovered a number of serious
vulnerabilities, as shown in Figure 13. and sorts the
weaknesses code that was discovered. The following image
details these weaknesses:

Fig. 13. The results of the VCG source code scan. (red indicates a
high threat and orange indicates a medium threat)

The discovered vulnerabilities are:

• Invalidated/forwards redirects (unsafe code
directive).

var value = “default-src ‘self’; script-src ‘self’ {0}; style-src
‘self’ ‘unsafe-inline’ {1}; img-src {2}; “;

This means that the web services could redirect or forward
users to another website or service based on information
that has not been properly validated. Attackers can exploit
the vulnerability to forward victims to malicious web sites
or use forwards to authenticate fake pages [16]. Also,
attackers can use the 'unsafe' directive that permits the use
of C-style pointers in the code, this will cause unexpected
performance with memory leaks and crashes or buffer
overflows.

• Hard-coded password (code appears to contain a
hard-coded password).

public const string Password = “password”;
public const string InvalidUsernameOrPassword =
“InvalidUsernameOrPassword”;

The code has a hard-coded password that an attacker can
obtain from the source code or by disassembling while the
running. This vulnerability is a challenging one and often
ignored; however, it is very sensitive.

• User passwords and information to log files
(application appears to log user passwords).

Logger.Warn (“validation error: username or password
missing”);

The code logs user passwords in log files which results in
generating a threat of qualification theft. This could be
exploited by an attacker to log false access consents or
inject malicious content on the logs. Coders usually use log
files to save the history of actions. Depending on the
environment of the code, revising log files can be done
either manually or automatically using a tool that
automatically rejects suspicious logs or imposed records.
Discovering such logs would not be straightforward if the
attacker has figured out a way to write them using a legit
service. For example, an attacker can write false records in
the log file by launching a code injection attack on a legit
service and force it to write false records in the log file.
Moreover, the attacker could try to modify the structure of
the log file or inject invisible characters to it in order to
make it difficult for automatic log files managing tools to
discover false records. Finally, thae attacker can indirectly
modify log files' indicators. This can be realised be
injecting code and/or commands into the log files [16].

• CSRF (.NET debugging enabled).

The code execution is designed so that it returns .NET
debugging information to help developers finding code
bugs. However, this could leak private data and/or useful
information about the code that can be used to attack the
system. A cross-site request forgery (CSRF) is an attack by
which the attacker can forge HTTP requests to obtain such
information. An attacker can build malicious web pages
that produce fake HTTP requests and deceive victims by
appearance labels, XSS, or many other methods [16].

4. Proposed Security Enhancements

In this section we discuss a security solution for OpenID
Connect that was proposed lately by OpenID developers.
This solution mandates the use of cryptographic hash and
token binding. Then, we propose a high-level and generic
integration model of OpenID Connect with Higgins, this
will result in a number of practical and security advantages.

4.1 Enhanced Authentication Profile (EAP)

OpenID has proposed a modification in the OpenID
Connect specifications that permit users to authenticate
OpenID Providers using strong cryptographic
authentication mechanisms. This is achieved by mandating
the usage of cryptographic hash and token binding in order
to resolve RFI attacks.

IJCSNS International Journal of Computer Science and Network Security, VOL.17 No.10, October 2017

209

The cryptographic hash function provides an instrument to
examine the integrity of messages. A hash function returns
an arbitrarily message as an input then creates, a generally
much smaller, fixed length hash, called hash value or some
time called digest. A cryptographic hash is used to generate
a Message Authentication Code (MAC), which is a
symmetric cryptography mechanism for message
authentication. By using MACs, the integrity of all
transferred messages will be preserved. Examples of hash
functions include: MD5 (produces a 128-bit hash value),
SHA-1 (produces a 160-bit hash value) and many more [17].

Token binding protects the authentication stream from XSS
and CSRF attacks and invalidated/forwards redirects
attacks. It will protect the ID Token over the SSL/TLS
session during the authentication phase. This solution
mandates the usage of a token binding ID within the ID
token instead of the RSA digital signature. This technique
is more efficient and practical and it uses SHA-256
cryptographic hash1. Also, this solution would decrease the
size of the ID token.

This is an example of an ID token before using the token
binding ID:

 {
 "iss": "https://ServerExample.DomainExample.com",
 "sub": "NzrgLsXh8uDCcd-
6MfNwXF4W_7noWX5FZAfHkxZsRGC9Xs",
 "aud": "0d8f5947e-bcj45-46]b2-957cf-043c88aa5ecc ",
 "nonce": "n-0R6_WzA2Mj",
 "exp": 131124381970,
 "iat": 13124280970,
 "sub_jwk": {
 "kty":"RSA",
 "n":
"0vxfdf7agoebGcQSuuPiLJXZptN9nndrQmbXEps2aiAFb
WhM78LhWx

4cbbfAAtVT86zwu1RK7aPFFxuhDR1L6tSoc_BJECPebW
KRXjBZCiFV4n3oknjhMs
 tn64tZ_2W-
 SD08qNLyrdkt-
bFTWhAI4vMQFh6WeZu0fM4lFd2NcRwr3XPksINHaQ-
G_xBniIqb
 w0Ls1jF44-csFCur-kEgU8awapJzKnqDKgw",
 "e":"AQAB"
 }
 }

This is an example of an ID token that uses token binding
ID (tbh field holds the token binding hash and cnf field
holds the confirmation claim):

1 http://openid.net/wg/eap/

 {
 "iss": "https://ServerExample.DomainExample.com",
 "sub": "0fgh6LkoE3Ks23PyxQ",
 "aud": "0d8f5947e-bcj45-46]b2-957cf-043c88aa5ecc",
 "iat": 146715103451,
 "exp": 146217151651,
 "nonce": "1KjVrfsFnQRd4V2XC6",
 "cnf":{
 "tbh":
"l1X0aVl3repikNqDhaH92VwGgrFdAY0tSackYis1r_-fPo"
 }}

4.2 A Proposed Integration Model

As we discussed in Section 3, our security analysis of
OpenID Connect using OWASP ZAP and VCG tools
showed that OpenID suffers from an number of security
issues such as XSS (which is ranked amongst the OWASP's
top ten most influential Internet attacks in 20172), the use
of hard-coded passwords, and implementing
Invalidated/forwards redirects. Our proposed integration
model aims to address these issues.

Integrating OpenID Connect with Higgins (discussed in
Section 2.3) could help boosting up the security, scalability
and practicality of OpenID Connect. Higgins is an
Information Card based Identity Management (ICIM)
system [1]; and its security tokens are issues by a Security
Token Service (STS). The use of an STS is mandatory for
IdPs and optional for RPs; However, in our proposed model
we assume that all RPs are equipped with an STS. Also, we
assume that the end user's browser understands Higgins
browser extensions (HBX). In addition, we assume that RP
is Higgins-enabled, whilst the IdP is both OpenID and
Higgin-enabled. Finally, we assume that the user is an
OpenID Connect and Higgins user.

The proposed model's protocol-run is as follows.

1. UA → RP: it is a HTTP request: to GET (sign-in
web page).

2. RP → UA: HTTP/S response. A sign-in page is
reversion holding the Higgins-enabling labels.

3. HGX ↔ UA: The Higgins extension service
retrieves the RP security policy to determine the
registered claim set and which ones to embed in
the information card.

4. User → UA: The user confirms using Higgins to
log in. If it is first time, the identity selector on the
user machine will show the identity of the RP and
provide the user the choice to either continue or
terminate the protocol.

2 https://www.owasp.org/index.php/Top_10_2017-A3-Cross-
Site_Scripting_(XSS)

IJCSNS International Journal of Computer Science and Network Security, VOL.17 No.10, October 2017

210

5. Identity Selector → ADS: The identity selector
highlights the ADS policy and the remnant
information.

6. User → ADS: The user provides her/his consent
on the selected claims and ADS policy.

7. Identity Selector: The identity selector generates
a Request Security Token (RST) message.

8. Identity Selector ↔ HGX: The RST will not be
forwarded to the RP; instead, the HGX intercepts
it and converts it to an OpenID authentication
request.

9. HGX → OP: The HGX forwards the OpenID
authentication request to the OpenID Provider
(OP).

10. OP: The OP authenticates the user.
11. OP → HGX: If the authentication was successful,

the OP will reply with an authentication response
to the RP.

12. HGX → RP: The HGX verifies the received
OpenID authentication response, and if
successfully verified, it creates a Higgins-like
security token, and forwards it to the RP.

13. RP → user: The RP verifies the received security
token, and if successfully verified, it logs the user
in.

All messages must be SSL/TLS protected. Figure 14
sketches the protocol flow.

Fig. 14 Proposed model's protocol-run.

4.3 Analysis of the Enhancement Method

In the previous section, we have analysed OpenID Connect
and discovered a number of sensitive vulnerability, such as
XSS, RFI, Invalidated forward redirects, hard-coded
passwords, log file exposure, and CSRF. Also, we have
described a newly adopted solution by OpenID that aims to
enhance OpenID Connect's security and efficiency by
introducing a cryptographic hash function and a Token
Binding value to the transferred tokens. In addition, we
have described our novel high-level integration model the

facilitates a systematic integration of OpenID Connect and
Higgins Identity. In this section we provide a brief analysis
of these two enhancements.

4.3.1 Analysis of the Enhanced Authentication Profile

The enhancement, which mandates the presence of a
cryptographic hash function and a Token Binding value
within tokens, can efficiently help mitigating the risk of
MITM, replay and phishing attacks by mandating a good
cryptographic protection of the fresh nonces within the
tokens. Hence, an attacker will not be able to reply a token
or intervene and create fake nonces without the
cryptographic keys. The use of cryptographic hash function
minimises the size of the token; this boosts up efficiency
and practicality in both processing and transforming.

4.3.2 Security Analysis of Our Proposed Integration
Model

The Integration model does not require any changes in the
IdP's configuration and processes. It mandates the use of
SSL/TLS, and this can be easily achieved, given the wide
adoption of this protocol on the web nowadays. By
implementing this model, users of OpenID Connect can log
in to Higgins-enable RPs; this increases the scalability of
the SSO's CoT and provide more security and user-
convenience.

In order to mitigate the risk of a phishing attack, the model
states that the token forward task is performed by a verified
browser extension on the user machine instead of the RP.
The log file vulnerability is still an issue since the model
does not involve an enhanced logging system. However,
The IETF has specified the syslog protocol in RFC 5424.
This standard specifies a reliable logging system that
produces, records, filters, and investigates log messages.
We believe that by adhering to this standard, most of the
OpenID Connect log file issues can be resolved.

An attack cannot produce a Higgins-like security token
since she/he does not have an access to neither the ADS nor
the private key. Similar to the original Higgins process, no
private information of the end user will be leaked to the RP.
However, in the integration model, and although that the
RP is Higgins-enable, it does not even have to know what
user attributes are registered with the Higgins IdP. This is a
good privacy enhancement. The HGX requests and
retrieves the security tokens by itself without any
intervention of the RP; this would dramatically mitigate the
risk of XSS, RFI, Invalidated redirects, and CSRF.

A limitation of the proposed model is that it does not protect
against dishonest IdPs. However, an IdP is a trusted third
party by definition.

IJCSNS International Journal of Computer Science and Network Security, VOL.17 No.10, October 2017

211

5. Concluding Remarks and Future Work

In this paper we have provide an overview of OpendID and
investigated its security. Also, we have conducted a
security analysis of it. The analysis consisted of two parts;
first, an analysis of the static of source code (written in C#
language) using the VCG tool. This discovered four
weaknesses in the code: unsafe code directive, code that
appears to contain a hard-coded password, an application
that appears to log a user password, and .NET debugging-
enabled code. Secondly, an analysis of the HTTP messages'
using OWASP ZAP tools. This discovered two
weaknesses: cross-site scripting (XSS) attacks and remote
file include (RFI).
There are several security issues within OpenID. Some of
these issues have been addressed in OpenID latest version:
OpenID Connect. Although some of these issues remained
in OpenID Connect, like for example the XSS, CSRF and
Invalidated/forward redirect vulnerabilities, an effective
solution has been proposed by OpenID afterwards. This
solution involves the use of a cryptographic hash function
and a Token Binding value within tokens. However, other
security issues (e.g. log files exposure) are still unresolved.
In addition, we have proposed a novel high-level
integration model of OpenID Connect and Higgins. This
integration should result in a number of advantages with
regard to security, privacy, practicality and scalability. A
brief analysis of OpenID proposed enhancements and our
proposed integration model has been given.
In future, we will conduct similar security analysis to one
described in this paper to other IDMSs like for example,
Liberty Alliance by Kantara Initiative1 and/or Shibboleth
by Shibboleth Consortium 2 . Also, we will investige
possible integrations between OpendID Connect and other
IDMSs.

References
[1] Waleed A. Alrodhan. Privacy and Practicality of Identity

Management Systems: Academic Overview. VDM Verlag
Dr. Müller GmbH, Germany. ISBN 978-3639380255. 2011.

[2] San-Tsai Sun. Towards improving the usability and security
of Web single sign-on systems. Ph.D thesis, University of
British Columbia. November 2013.

[3] Hyun-Kyung Oh and Seung-Hun Jin. The Security
Limitations of SSO in OpenID. Proceedings of the 10th
International Conference on Advanced Communication
Technology. 2008.

[4] Abu Shohel Ahmed. A User Friendly and Secure OpenID
Solution for Smart Phone Platforms. M.Sc. thesis, Faculty of
Information and Natural Sciences, School of Science and
Technology, Aalto University. June 2010.

[5] Julian Krautwald. Security Analysis of the OpenID Connect
Standard and its Real-life Implementations. M.Sc. thesis,
RUHR University Bochum. 2014.

1 https://en.wikipedia.org/wiki/Kantara_Initiative

[6] Internet Engineering Task Force (IETF). RFC 6749: The
OAuth 2.0 Authorization Framework. 2012.
https://datatracker.ietf.org/doc/rfc6749/ [last accessed:
November 2017].

[7] The Open Web Application Security Project (OWASP). Top
10 Application Security Risks. 2017.
https://www.owasp.org/index.php/Top_10_2017-Top_10
[last accessed: November 2017].

[8] Lars Kristensen and Stefan Østergaard Pedersen. Multi-step
Scanning in ZAP-handling Sequences in OWASP ZAP.
M.Sc. thesis, Applied Mathematics and Computer Science,
Technical University of Denmark. 2014.

[9] Nick Heijmink. Secure Single Sign-on Comparison of
Protocols. M.Sc. thesis, CCV & Radboud University
Nijmegen. 2015.

[10] Diego Kreutz and Eduardo Feitosa and Hugo Cunha and
Heiko Niedermayer and Holger Kinkelin. Increasing the
Resilience and Trustworthiness of OpenID Identity Providers
for Future Networks and Services. Proceedings of Ninth
International Conference on Availability, Reliability and
Security (ARES), pages 317–324. Switzerland. 2014.

[11] San-Tsai Sun and Kirstie Hawkey and Konstantin Beznosov.
Systematically breaking and fixing OpenID security: Formal
analysis, semi-automated empirical evaluation, and practical
countermeasures. The Computers & Security journal,
Elsevier. Volume 31, Issue 4, Pages 465–483. June 2012.

[12] Christian Mainka. Developing a Security Analysis Tool for
OpenID-based Single Sign-On Systems. Bachelor thesis,
Ruhr-Universität Bochum. November 2013.

[13] Vladislav Mladenov and Christian Mainka and Julian
Krautwald and Florian Feldmann and Jörg Schwenk. On the
Security of Modern Single Sign-On Protocols: Second-Order
Vulnerabilities in OpenID Connect. The Computing
Research Repository journal, volume abs/1508.04324, eprint
1508.04324. 2015.

[14] Daniel Fett and Ralf Küsters and Guido Schmitz. A
Comprehensive Formal Security Analysis of OAuth 2.0. The
Computing Research Repository journal, volume
abs/1601.01229, eprint 1601.01229. June 2016.

[15] Marino Miculan and Caterina Urban. Formal analysis of
Facebook Connect Single Sign-On Authentication Protocol.
In SofSem, Proceedings of Student Research Forum, pages
99–116 2011.

[16] The Open Web Application Security Project (OWASP). The
Ten Most Critical Web Application Security Risks. 2013.
https://www.owasp.org/index.php/Top_10_2013-Top_10
[last accessed: November 2017].

[17] Dieter Gollmann. Computer Security. John Wiley & Sons;
3rd ed. edition. ISBN 0470741155. February 2011.

2 https://www.shibboleth.net/

