
IJCSNS International Journal of Computer Science and Network Security, VOL.17 No.10, October 2017

231

Manuscript received October 5, 2017
Manuscript revised October 20, 2017

Accelerated GPU Based Protein Sequence Alignment – An
optimized database sequences approach

Muhammad Sadiq Amin1, Laiq Hassan1, Awais Aziz Shah2, Usman Akbar2, Hafiz Adnan Niaz3
1Dept of Computer Systems Engineering University of Engineering & Technology Peshawar,Pakistan

2Dept. of Computer Science Superior University Lahore,Pakistan
3Dept. of Computer Engineering National University of Sciences & Technology, Islamabad ,Pakistan

Abstract
Smith-Waterman (S-W) algorithm is the perfect sequence
alignment method for the biological database but practically this
algorithm lacks pace due to high computational complexity.
FASTA, BLAST and other heuristics approaches are faster in
computations but less accurate. Volume and length variation of
sequences require restructuring the database. Acceleration of
Smith-Waterman algorithm on proper modern hardware brings
perfection and accuracy. This paper presents a high-performance
sequence alignment algorithm implemented on Kepler’s
architecture graphic processor unit. This new implementation is
improved version having reduced memory accesses to eliminate
bandwidth congestion. The implementation is performed on
Kepler’s architecture graphics processing unit on which the
performance was raised to 51 Giga Cells updates per second
GCPUS which is 138.3% increase than the previous
implementation on GTX275 GPU. In this implementation protein
database is converted into equal length sequence sets on
advanced GPU. By this workload is distributed among GPU
microprocessor threads. This results in improved implementation
than previous implementations.
Keywords
Smith Waterman, SwissProt, Proteins, Sequencing, Alignment,
GCPUS, FASTA

1. Introduction

Sequence alignment is used to find out the area of likeness
in Protein and DNA sequences. Likeness comes in the
different sequence is due to evolution, functional, or
structural similarities between sequences. Sequence
alignment can be global and local [20]. Other approaches
are heuristics sequence alignment like FASTA, BLAST,
HMMR [15] that are speedy but lack accuracy. Smith-
Waterman Algorithm [21] that is based on dynamic
programming [22] is however slow for long sequences but
results in accurate outcomes for two DNA or protein
sequences, for example, a query sequence and database
sequence. Normally S-W algorithm is applied on DNA
protein strands using CPU clusters but it lacks speed up
due to improper distribution of workload [23]. Cell BEs,
FPGAs, and GPUs these are the platforms on which S-W
algorithm is implemented to get optimal and accelerated
solutions [9]. This paper consists of an optimal

performance GPU based approach using the database and
optimized memory access where we chose Kepler K40
GPU architecture for this purpose. This implementation
first converts reference protein into GPU compatible
format. Time taking matrix fill step of the Smith-
Waterman algorithm is implemented and accelerated on
GPU. Optimization and reconstruction of the database on
advance GPU do the acceleration job. Memory accesses
are also optimized to diminish bandwidth bottleneck. On
LMAR having NVIDIA Kepler k40 GPU which contained
2880 cores the performance of GPU accelerated
implementation assessed finding were 50 GCPUS (Giga
cell updates) for searching October 2015 SWISS-PROT
database. This implementation achieved a faster result for
protein sequence alignment than the previous
implementations.

Before the existence of CUDA, it is the first known SW
based implementation using OpenGL to search protein
database. There were two implementations one [17] and
other was [18]. These approaches were similar to systolic
array based on FPGAs [16]. First, the query and database
were copied to the device in the form of textures. In an
anti-diagonal way, the score matrix is being calculated. A
pixel is sketched for every anti-diagonal element. A
shader executes for this drawn pixel calculates a score for
the cell. The input of next cell is the value that is kept in
texture. This technique is similar to systolic array pass
values. The implementation [16] shown result of 650
MCPUS for Swiss-Prot database search. Second
implementation [18] had two modes one with trace back
and another without a trace back.

The result was 241 MCPUS for no trace back and 178
MCPUS with trace back. GPU used for implementation
was GeForce 7800GTX. SW-CUDA [19] is first CUDA
based SW implantation which is different from systolic
array fashion. Each processing element of the device does
alignment task. No need for communication between
processing elements is an edge that’s reducing memory
reading and writing tasks. In global memory, the database
is stored in such a way that the length is equal, so the
threads in a wrap have equal execution time. Query profile

IJCSNS International Journal of Computer Science and Network Security, VOL.17 No.10, October 2017

232

is produced where substitution matrix is expanded as the
columns of the matrix have query sequence symbols and
the rows have protein symbols. A number of alignment
score accompanied with query sequence can be perfected
when operating on a database symbol. Memory’s
capability to read and write vectors every kernel operates
on four cells.

CUDA (Compute unified device architecture) is a tool
used to work with in parallel computing environment
using C syntax to launch kernel of GPU. CUDA is
designed to support many languages like Fortran, JAVA
PYTHON Wrapper, Direct compute, Open ACC. CPU
program calls CUDA kernel that is a C like a function with
some restriction that invokes device code. Actually, data
parallel portion of an algorithm is executed on the device
as Kernel. Conventionally only one kernel could be
executed at a time but for Kepler architecture this
restriction is relaxed. Each kernel is executed by threads.
On concept level, CUDA threads are close to data-parallel
tasks. CUDA threads are different from CPU threads in the
sense these threads are easy to create and extremely light
weight.

 The designing of CUDA is such a way that it can execute
1000s of threads. These threads form a group that is called
Block and these thread blocks are grouped in a grid.
Threads block and the grid can be 1D, 2D or 3D in
dimensionality depends upon the data structure acts upon.
The thread is basic programming unit having its own per
thread local memory and has access to registers. Each
thread has a unique index in a block and more over each
block has a unique index in the following grid. These
unique indexes help in the computation of array indices for
a particular instance. A thread in a block executes on a
single multiprocessor synchronize and share data with the
threads in that particular block. The wrap is a combination
of threads executed in a multiprocessor which will be a
subset of threads from a block. Threads belong to different
blocks can be assigned to multiple multiprocessors at the
same time or to a particular multiprocessor at the same
time that is multithreading or they can be assigned to the
same multiprocessor. For Kepler, there can be 32 wraps
which are 1024 threads in a thread block.2048 threads or
64 wraps can be active simultaneously on a Kepler
multiprocessor. These threads may belong to 2 threads
blocks of 32 wraps or 3 thread block of 21 wraps or can be
4 thread blocks of 16 wraps up to 16 blocks of 4 wraps so
it means 16 thread blocks can be simultaneously active on
a multiprocessor.

The result of this implementation was 1.9 GCPUS
compared with software implementation that was 0.12
GCPUS and it was benchmarked on GeForce 8800GTX
GPU. Many enhancement and improvements have been
suggested to [19] in CUDASW++ [10] ‘inter-task

parallelization’ method are presented for more than 3,075
amino acids that need little memory and slower. This
approach is benchmarked on GeForce 280GTX device
achieves 9.5 GCPUS speed while searching Swiss-Prot.
An advanced version CUDASW++2.0 [9] has been
coming forth to publish. This approach achieved 17
GCPUS that was benchmarked on GTX280. A recent
approach is DOPA [14] which was benchmarked on
GTX275 GPU achieved 21 GCPUS. In this
implementation, data is kept in registers and the
conversion of the database in an interlaced manner to fit in
GPU. Accessing global memory is slow so avoid access to
global memory is avoided for unnecessary usage. The
improvement was measured 138.3% increase in GCPUS
when implemented on aforementioned GPU. The
execution time was 0.0086 seconds in average for a query
sequence that is very less than previously implemented
DOPA.

Fig.1. Programming model. CUDA hierarchy of threads, blocks.

2. METHODOLOGY

The method used in the implementation for high
performance and optimized TelsaK40 GPU based protein
sequence alignment are presented as follows. NAVDIA
CUDA a mature GPU programing language toolkit for
device coding with conjugation of C++ for host PC having
GENTO installed. Most of the previous implementations
were done using CUDA. Protein searches will be in main
focus despite DNA and Swiss-Prot database will be used.
Searching for proteins in the database is complex due to
substitution matrix. In this implementation, we are
interested to return maximum Smith-Waterman score
rather than actual alignment. So reducing the trace back
step in SW greatly simplifies the implementation. Pointers

IJCSNS International Journal of Computer Science and Network Security, VOL.17 No.10, October 2017

233

are stored to reduce memory consumption. Additionally to
generate complete alignment those sequence having
highest score a new database will be filled with. The new
database will be searched by some CPU based FASTA suit
SS search program.

This technique may lead to some redundancy because
some sequence may align twice but the count is shallow.
Swiss-Prot contains 550,000 sequences while we will
return top 20 sequences. There are various approaches to
achieve sequence parallelism like systolic array manner in
which data is kept passing between processing elements to
search particular sequence. Secondly, the approach is
processing element do alignment task in a parallel manner
by multiple elements. Both approaches can be mingled
where many processing elements are combinable to
perform alignment task for large sequences. Another
approach that is each processing element performs
complete alignment task was considered. This approach
greatly helps in getting rid of communication among
processing elements. It simplifies the implementation and
best way to utilize resources. GPU used in our
implementation contains 2880 cores While Swiss-Prot
contains 550,000 sequences up till this writing so it is the
best way to keep all processing element well occupied by
this approach.

Fig.2. The figure presents a block diagram description of the GPU
implementation.

a. Database Conversion

FASTA format, sequence consists of sequence description
and the biological information about them. The database is
priory converted by GPU implementation to a GPU
compatible format to reflect good match for GPU
capabilities. The need for conversion of the database is just
once it is then stored in new format locally. The database

conversion time is less than a second. The conversion
process is shown in figure 5. Contains steps below.

Fig.3. The figure presents represents database conversion process

b. Description separation and sorting

To reduce the wastage of processing time by waiting of
half-wraps threads by waiting for each other for
completion of processing time instead of carrying on
independently database sequences are divided by lengths
to reduce the difference in lengths between adjacent
threads. Another file is made for sequence description to
be kept there; the description is not loaded to device
resulting conserved memory ultimately reduced loading
time.

c. Sequence grouping

After description separation and sorting by lengths
distributed equal workload in every sequence set but some
sequence set remained unequal in lengths. To avoid this
inequality sequences in sequence set are linked up with
relic sequence to make sequence groups in such a way that
the total length in sequence group in a sequence set is
almost same as the lengthy sequence in the set. Tasks
under process are equalized for half wrap’s threads for
sequence set. To assure device Kernel to start next
alignment sequence terminators are introduced among
linked up sequences. Linked up sequences ending points
are indicated by terminators of sequence groups. At this
stage, the thread within half wrap will wait for each other
to halt the execution.

IJCSNS International Journal of Computer Science and Network Security, VOL.17 No.10, October 2017

234

d. Interlaced sub grouping

A new file is written in an interlaced manner that contains
16 sets of sequence groups from database sequences.
Every subgroup contains 8 characters from every sequence
in a way that 8 characters are taken from set’s group first
then 8 characters from next group and so forth. Each
sequence set contains sixteen sequence groups in a
particular sequence set and every half-wrap thread is made
able to load eight-byte sequence data from adjacent
addresses achieving coalesced loading of 128-bytes

Fig.4. The figure shows sequence storing as interlaced subsets.

e. Temporary read and writes

During GPU implementation Memory bandwidth that is
represented was a critical logjam. To accelerate and
optimize to achieve enhanced performance many steps
were taken. S-W matrix values are of no need to be kept
and can be overwritten when there is no trace back step is
taken in place on GPU.

 (1)
Where

 (2)

 (3)

 A single column that keeps value to left of column f (i, j-
1) that is under operation presently. For reduced memory
usage column size is set to a sequence of the query rather
than DB sequence. Upon starting of every new database
sequence this column can be reset to zero. Other variables
are used to store values of top, top left cells as stated in the

algorithm. The query sequence is approached in the
interior loop rather than database sequence. It is good for
keeping in the fast memory innermost sequence is
approached for each individual outermost sequence’s
alphabet.

 A single query sequence is best applicant for this instead
of a database having bulk number sequences. A new
temporary column is introduced to store Ix values and
upper Iy value is stored in the case of affine gap penalties.
To read and write score and Ix temporary values four
accesses took place in each S-W iteration. For every
access 32 bytes read/write is granted when both are in non-
coalesced form. That meant 2048 bytes per half-wrap
bandwidth was in use.

2 read/write*2 value * 32 byte*16 thread/ half-wrap =
2048 bytes.

That result in a serious memory logjam. To squeeze this to
one 128 reads/write for each 2nd repetition some moves
were made. First, a 16-bit unsigned short data type was
used for temporary values that theoretically decrease
needed bandwidth to half and allows good coalescing
afterward. Coalescing was a 2nd move which was making
every thread to keep single temp score. A pointer was
started into temporary storage despite direct array accesses
at the Thread id and increased by all threads to pass over
to next cell. Every thread per half-wrap reads a 16-bit
coalesced value now despite two 256-bit accesses two
accesses happen in a half-wrap which improves 16x
bandwidth and caused 10x acceleration. Thirdly by
definition, a Temp data structure that contains 2 unsigned
short data types to access score and Ix in a single iteration
half the memory accesses. At this stage, half-wrap would
access 2 values in a read for 64-byte bandwidth that causes
512-bit coalesced accesses. Finally, 2 temporary values are
interleaved to go to 1024-bit accesses.

These steps improved 16xbandwidth and need 1 access
instead of sixty-four. Maximum allowed coalesced access
size is 1024-bits that is efficient than many smaller
accesses in coalesced manner.

f. Substitution matrix accesses

In the case of protein alignment, substitution matrix is
critical due to its access time because of the alignment of
two symbols every time. It accesses are random for
example BLOSUM 62 making the selection of memory
usage complicated. Substitution matrix is based on
database sequence. Global memory has much access time
making it a worse candidate to use. Coalescing is also
become misery due to the randomness of substitution
matrix accesses. Texture memory is the right candidate to
store substitution matrix due to its low latency .

IJCSNS International Journal of Computer Science and Network Security, VOL.17 No.10, October 2017

235

Fig.5. the figure describes memory accesses to fetch values from a query
profile

Texture memory can be used in such a way that it can
fetch 4 values of substitution matrix from query profile. To
eliminate the random nature of substitution matrix for a
given database the query sequence used on the top row
despite protein symbols. For query alignment with a
database character, many substitution scores can be loaded.
Query profile is produced one time for each query
sequence so query sequence retrieval is eliminated the
only present position in a query is required for profile
indexing. Every query profile keeps value for twenty-three
characters. So the columns and memory needed for query
profile are dependent on query sequence length. Kepler
110b used for this implementation has 48KB texture cache.

3. Results

Increase cache miss rate for query sequence more than will
be [48 * 1024/23] = 20137 characters. Performance
elevated about 25% on Kepler k40 architecture by using
query profile with Swiss-Prot.

The performance of protein sequence alignment based on
Smith-Waterman implemented on advanced GPU (Kepler
K40) is evaluated and the result is compared with previous
implemented approaches are discussed below.

It was decided to perform implementation on LMAR. The
system had Gentoo (Linux) operating system installed.
The GPU on board was NVIDIA Kepler K40 device that
has s 2880 cores while having 12 GB GDDR5 memory
with a clock speed of 875MH. Programming for the device
is done using CUDA toolkit version 6. While for host
programming is done using visual studio with C++ as
language chosen. The database used was Swiss-Prot
October 2015. Substitution matrix was set to BLOSUM64
and GAP penalty was set as -10 while Gap extended
penalty was set to -2 though this doesn't affect program

execution. C clock () instruction was used to determine run
time which was later verified by CUDA profiling
application. The measured time doesn't include database
loading time the reason is the size of the database. Often
loading time of data set exceeds due to its bulk size as
compared to alignment time. The database is loaded only
one time eliminating the overhead making easy to search
query sequences. The measured results were benchmarked
in GCPUS which was about average of 51 in 8
milliseconds. Swiss-Prot performance comparisons with
different previous implementation on various GPU are
described in this section. With NVIDIA Kepler K40 GPU
50 GCPU were benchmarked in our implementation.

• Comparison with BLAST based on heuristic
method was benchmarked on Q6600 processor
manufactured by Intel obtain 15.3 GCPUS [17].

• Comparison with CUDASW++ has first known
GPU implementation based on smith-Waterman
implemented using GeForce GTX 280 GPU and
GeForce GTX 295 achieved 9.66 and 16.08
GCPUS [10].

• Comparison with CUDASW++2.0 was
implemented on GeForce GTX 280 GPU released
in 2010. It was improved by 1.74 times then
CUDASW++ by using SIMT algorithm described
in [9].

• Comparison with DOPA was implemented on
GeForce GTX 275.It was 1.75 times faster than
CUDASW++2.0 and achieved 21.4 GCPUS [14].

Fig.6 graph shows comparison Previous mentioned implementation vs
ours

The performance of our implementation on NVIDIA
Kepler K40 GPU achieved higher GCPUS and attend less
execution time as compare to all aforementioned

IJCSNS International Journal of Computer Science and Network Security, VOL.17 No.10, October 2017

236

implementations that 51 GCPUS. Furthermore, our
implementation due to hardware advancement is faster
than previous implementations.

 Fig.7. Graph shows query sequence length and execution time

Fig.8. the graph shows query sequence length and performance in
GCPUS.

Table 1: Performance results with Swiss-Prot

4. conclusion

The improvement was measured 138.3% increase in
GCPUS when implemented on aforementioned GPU. The
execution time was 0.0086 seconds in average for a query
sequence that is very less than previously implemented
DOPA. Furthermore, the performance of our
implementation on aforementioned GPU resulted in 428%
increase in GCPUS as compared to CUDASW++ and
200% increased than CUDASW++2.0.Besides
performance, it is good to buy a GPU for high computing
and better task processing when one comes across to pay
for CPU. On the other side, the power consumption of a
GPU is higher than CPU which makes the
performance/Watt nearly equal. CPU is very flexible
rather than GPU but when Parallel (device accelerated)
tasks are about to perform an ordinary CPU with a GPU is
enough. Another thing is GPU based solution
development is a cumbersome job than development for a
CPU. Additional communication over the bus to GPU and
low memory makes it less flexible.

Lastly, in conclusion, GPU based solutions are time-
consuming during development stage have more power
consumption and additional price expenditure for GPU
than CPU. However if one offers a better protein searching
performance than CPU while don’t want to stick with
dedicated FPGA based solution GPU is a better option in
hand.

References
[1] Zhang, J., Misra, S., Wang, H. and Feng, W. (2016). M

blast: database-indexed protein sequence search on
multicore CPUs. BMC Bioinformatics, 17(1).

IJCSNS International Journal of Computer Science and Network Security, VOL.17 No.10, October 2017

237

[2] Shah, H., Hasan, L. and Koo, I. (2016). Optimized and
Portable FPGA-Based Systolic Cell Architecture for Smith-
Waterman-Based DNA Sequence Alignment. Journal of
information and communication convergence engineering,
14(1), pp.26-34.

[3] Okada, D., Ino, F. and Hagihara, K. (2015). Accelerating the
Smith-Waterman algorithm with interpair pruning and band
optimization for the all-pairs comparison of base
sequences. BMC Bioinformatics, 16(1).

[4] Liu, Y., Hong, Y., Lin, C. and Hung, C. (2015).
Accelerating Smith-Waterman Alignment for Protein
Database Search Using Frequency Distance Filtration
Scheme Based on CPU-GPU Collaborative
System. International Journal of Genomics, 2015, pp.1-12.

[5] Lan, H., Chan, Y., Xu, K., Schmidt, B., Peng, S. and Liu, W.
(2016). Parallel algorithms for large-scale biological
sequence alignment on Xeon-Phi based clusters. BMC
Bioinformatics, 17(S9).R. Nicole, “Title of paper with only
first word capitalized,” J. Name Stand. Abbrev., in the press.

[6] Jiang, H. and Ganesan, N. (2016). CUDAMPF: a multi-
tiered parallel framework for accelerating protein sequence
search in HMMER on CUDA-enabled GPU. BMC
Bioinformatics, 17(1).

[7] Huang, L., Wu, C., Lai, L. and Li, Y. (2015). Improving the
Mapping of Smith-Waterman Sequence Database Searches
onto CUDA-Enabled GPUs. BioMed Research International,
2015, pp.1-10.

[8]
[9] Chen, X., Wang, C., Tang, S., Yu, C. and Zou, Q. (2017).

CMSA: a heterogeneous CPU/GPU computing system for
multiple similar RNA/DNA sequence alignment. BMC
Bioinformatics, 18(1).

[10] Y. Liu, B. Schmidt and D. Maskell, "CUDASW++2.0:
enhanced Smith-Waterman protein database search on
CUDA-enabled GPUs based on SIMT and virtualized SIMD
abstractions", BMC Research Notes, vol. 3, no. 1, p. 93,
2010.

[11] Y. Liu, D. Maskell and B. Schmidt, "CUDASW++:
optimizing Smith-Waterman sequence database searches for
CUDA-enabled graphics processing units", BMC Research
Notes, vol. 2, no. 1, p. 73, 2009.

[12] A. Akoglu and G. Striemer, "Scalable and highly parallel
implementation of Smith-Waterman on graphics processing
unit using CUDA", Cluster Computing, vol. 12, no. 3, pp.
341-352, 2009.

[13] Liu Weiguo, B. Schmidt, G. Voss and W. Muller-Wittig,
"Streaming Algorithms for Biological Sequence Alignment
on GPUs", IEEE Trans. Parallel Distrib. Syst., vol. 18, no. 9,
pp. 1270-1281, 2007.

[14] T. Oliver, B. Schmidt, and D. Maskell, "Reconfigurable
architectures for bio-sequence database scanning on
FPGAs", IEEE Transactions on Circuits and Systems II:
Express Briefs, vol. 52, no. 12, pp. 851-855, 2005.

[15] L. Hasan, M. Kentie, and Z. Al-Ars, "GPU-accelerated
protein sequence alignment", 2011 Annual International
Conference of the IEEE Engineering in Medicine and
Biology Society, 2011.

[16] Finn, Robert D., Jody Clements, and Sean R. Eddy.
"HMMER web server: interactive sequence similarity
searching." Nucleic acids research 39.suppl 2 (2011): W29-
W37.

[17] Chow, E., Peterson, J., Waterman, M., Hunkapiller, T. and
Zimmermann, B. (1991). A systolic array processor for
biological information signal processing. Proceedings of the
5th international conference on Supercomputing - ICS '91.

[18] Weiguo Liu, Schmidt, B., Voss, G., Schroder, A. and
Muller-Wittig, W. (2006). Bio-sequence database scanning
on a GPU. Proceedings 20th IEEE International Parallel &
Distributed Processing Symposium.

[19] Liu, Y., Huang, W., Johnson, J. and Vaidya, S. (2006). GPU
Accelerated Smith-Waterman. Computational Science –
ICCS 2006, pp.188-195.

[20] Manavski, S. and Valle, G. (2008). CUDA compatible GPU
cards as efficient hardware accelerators for Smith-Waterman
sequence alignment. BMC Bioinformatics, 9(Suppl 2),
p.S10.

[21] Hasan, L., Al-Ars, Z. and Vassiliadis, S. (2007). Hardware
acceleration of sequence alignment algorithms-an
overview. 2007 International Conference on Design &
Technology of Integrated Systems in Nanoscale Era.

[22] Smith, T.F., and Waterman, M.S. (1981) Identification of
Common Molecular Subsequences. Journal of Molecular
Biology, 147, 195-197

[23] Giegerich, R. (2000). A systematic approach to dynamic
programming in bioinformatics. Bioinformatics, 16(8),
pp.665-677.

[24] Ebedes, J. and Datta, A. (2004). Multiple sequence
alignment in parallel on a workstation
cluster. Bioinformatics, 20(7), pp.1193-1195.

