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Abstract 
Smith-Waterman (S-W) algorithm is the perfect sequence 
alignment method for the biological database but practically this 
algorithm lacks pace due to high computational complexity. 
FASTA, BLAST and other heuristics approaches are faster in 
computations but less accurate. Volume and length variation of 
sequences require restructuring the database. Acceleration of 
Smith-Waterman algorithm on proper modern hardware brings 
perfection and accuracy. This paper presents a high-performance 
sequence alignment algorithm implemented on Kepler’s 
architecture graphic processor unit. This new implementation is 
improved version having reduced memory accesses to eliminate 
bandwidth congestion. The implementation is performed on 
Kepler’s architecture graphics processing unit on which the 
performance was raised to 51 Giga Cells updates per second 
GCPUS which is 138.3% increase than the previous 
implementation on GTX275 GPU. In this implementation protein 
database is converted into equal length sequence sets on 
advanced GPU. By this workload is distributed among GPU 
microprocessor threads. This results in improved implementation 
than previous implementations. 
Keywords 
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1. Introduction  

Sequence alignment is used to find out the area of likeness 
in Protein and DNA sequences. Likeness comes in the 
different sequence is due to evolution, functional, or 
structural similarities between sequences. Sequence 
alignment can be global and local [20]. Other approaches 
are heuristics sequence alignment like FASTA, BLAST, 
HMMR [15] that are speedy but lack accuracy. Smith-
Waterman Algorithm [21] that is based on dynamic 
programming [22] is however slow for long sequences but 
results in accurate outcomes for two DNA or protein 
sequences, for example, a query sequence and database 
sequence. Normally S-W algorithm is applied on DNA 
protein strands using CPU clusters but it lacks speed up 
due to improper distribution of workload [23]. Cell BEs, 
FPGAs, and GPUs these are the platforms on which S-W 
algorithm is implemented to get optimal and accelerated 
solutions [9]. This paper consists of an optimal 

performance GPU based  approach using the database and 
optimized memory access where we chose Kepler K40 
GPU architecture for this purpose. This implementation 
first converts reference protein into GPU compatible 
format. Time taking matrix fill step of the Smith-
Waterman algorithm is implemented and accelerated on 
GPU.  Optimization and reconstruction of the database on 
advance GPU do the acceleration job. Memory accesses 
are also optimized to diminish bandwidth bottleneck.  On 
LMAR having NVIDIA Kepler k40 GPU which contained 
2880 cores the performance of GPU accelerated 
implementation assessed finding were 50 GCPUS (Giga 
cell updates)  for searching October 2015 SWISS-PROT 
database. This implementation achieved a faster result for 
protein sequence alignment than the previous 
implementations.  

Before the existence of CUDA, it is the first known SW 
based implementation using OpenGL to search protein 
database. There were two implementations one [17] and 
other was [18]. These approaches were similar to systolic 
array based on FPGAs [16]. First, the query and database 
were copied to the device in the form of textures. In an 
anti-diagonal way, the score matrix is being calculated. A 
pixel is sketched for every anti-diagonal element.  A 
shader executes for this drawn pixel calculates a score for 
the cell. The input of next cell is the value that is kept in 
texture. This technique is similar to systolic array pass 
values. The implementation [16] shown result of 650 
MCPUS for Swiss-Prot database search. Second 
implementation [18] had two modes one with trace back 
and another without a trace back. 

The result was 241 MCPUS for no trace back and 178 
MCPUS with trace back. GPU used for implementation 
was GeForce 7800GTX. SW-CUDA [19] is first CUDA 
based SW implantation which is different from systolic 
array fashion. Each processing element of the device does 
alignment task. No need for communication between 
processing elements is an edge that’s reducing memory 
reading and writing tasks. In global memory, the database 
is stored in such a way that the length is equal, so the 
threads in a wrap have equal execution time. Query profile 
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is produced where substitution matrix is expanded as the 
columns of the matrix have query sequence symbols and 
the rows have protein symbols. A number of alignment 
score accompanied with query sequence can be perfected 
when operating on a database symbol. Memory’s 
capability to read and write vectors every kernel operates 
on four cells. 

CUDA (Compute unified device architecture) is a tool 
used to work with in parallel computing environment 
using C syntax to launch kernel of GPU. CUDA is 
designed to support many languages like  Fortran, JAVA 
PYTHON Wrapper, Direct compute, Open ACC. CPU 
program calls CUDA kernel that is a C like a function with 
some restriction that invokes device code. Actually, data 
parallel portion of an algorithm is executed on the device 
as Kernel. Conventionally only one kernel could be 
executed at a time but for Kepler architecture this 
restriction is relaxed. Each kernel is executed by threads. 
On concept level, CUDA threads are close to data-parallel 
tasks. CUDA threads are different from CPU threads in the 
sense these threads are easy to create and extremely light 
weight. 

 The designing of CUDA is such a way that it can execute 
1000s of threads. These threads form a group that is called 
Block and these thread blocks are grouped in a grid. 
Threads block and the grid can be 1D, 2D or 3D in 
dimensionality depends upon the data structure acts upon. 
The thread is basic programming unit having its own per 
thread local memory and has access to registers. Each 
thread has a unique index in a block and more over each 
block has a unique index in the following grid. These 
unique indexes help in the computation of array indices for 
a particular instance. A thread in a block executes on a 
single multiprocessor synchronize and share data with the 
threads in that particular block. The wrap is a combination 
of threads executed in a multiprocessor which will be a 
subset of threads from a block. Threads belong to different 
blocks can be assigned to multiple multiprocessors at the 
same time or to a particular multiprocessor at the same 
time that is multithreading or they can be assigned to the 
same multiprocessor. For Kepler, there can be 32 wraps 
which are 1024 threads in a thread block.2048 threads or 
64 wraps can be active simultaneously on a Kepler 
multiprocessor. These threads may belong to 2 threads 
blocks of 32 wraps or 3 thread block of 21 wraps or can be 
4 thread blocks of 16 wraps up to 16 blocks of 4 wraps so 
it means 16 thread blocks can be simultaneously active on 
a multiprocessor.  

The result of this implementation was 1.9 GCPUS 
compared with software implementation that was 0.12 
GCPUS and it was benchmarked on GeForce 8800GTX 
GPU. Many enhancement and improvements have been 
suggested to [19] in CUDASW++ [10] ‘inter-task 

parallelization’ method are presented for more than 3,075 
amino acids that need little memory and slower. This 
approach is benchmarked on GeForce 280GTX device 
achieves 9.5 GCPUS speed while searching Swiss-Prot.  
An advanced version CUDASW++2.0 [9] has been 
coming forth to publish. This approach achieved 17 
GCPUS that was benchmarked on GTX280. A recent 
approach is DOPA [14] which was benchmarked on 
GTX275 GPU achieved 21 GCPUS. In this 
implementation, data is kept in registers and the 
conversion of the database in an interlaced manner to fit in 
GPU. Accessing global memory is slow so avoid access to 
global memory is avoided for unnecessary usage. The 
improvement was measured 138.3% increase in GCPUS 
when implemented on aforementioned GPU. The 
execution time was 0.0086 seconds in average for a query 
sequence that is very less than previously implemented 
DOPA. 

 

Fig.1. Programming model. CUDA hierarchy of threads, blocks. 

2. METHODOLOGY 

The method used in the implementation for high 
performance and optimized TelsaK40 GPU based protein 
sequence alignment are presented as follows. NAVDIA 
CUDA a mature GPU programing language toolkit for 
device coding with conjugation of C++ for host PC having 
GENTO installed. Most of the previous implementations 
were done using CUDA.  Protein searches will be in main 
focus despite DNA and Swiss-Prot database will be used. 
Searching for proteins in the database is complex due to 
substitution matrix. In this implementation, we are 
interested to return maximum Smith-Waterman score 
rather than actual alignment. So reducing the trace back 
step in SW greatly simplifies the implementation. Pointers 
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are stored to reduce memory consumption. Additionally to 
generate complete alignment those sequence having 
highest score a new database will be filled with. The new 
database will be searched by some CPU based FASTA suit 
SS search program.  

This technique may lead to some redundancy because 
some sequence may align twice but the count is shallow. 
Swiss-Prot contains 550,000 sequences while we will 
return top 20 sequences. There are various approaches to 
achieve sequence parallelism like systolic array manner in 
which data is kept passing between processing elements to 
search particular sequence. Secondly, the approach is 
processing element do alignment task in a parallel manner 
by multiple elements. Both approaches can be mingled  
where many processing elements are combinable to 
perform alignment task for large sequences. Another 
approach that is each processing element performs 
complete alignment task was considered. This approach 
greatly helps in getting rid of communication among 
processing elements. It simplifies the implementation and 
best way to utilize resources. GPU used in our 
implementation contains 2880 cores While Swiss-Prot 
contains 550,000 sequences up till this writing so it is the 
best way to keep all processing element well occupied by 
this approach. 

 

Fig.2. The figure presents a block diagram description of the GPU 
implementation. 

a. Database Conversion  

FASTA format, sequence consists of sequence description 
and the biological information about them. The database is 
priory converted by GPU implementation to a GPU 
compatible format to reflect good match for GPU 
capabilities. The need for conversion of the database is just 
once it is then stored in new format locally. The database 

conversion time is less than a second. The conversion 
process is shown in figure 5. Contains steps below. 

 

Fig.3. The figure presents represents database conversion process 

b. Description separation and sorting  

To reduce the wastage of processing time by waiting of 
half-wraps threads by waiting for each other for 
completion of processing time instead of carrying on 
independently database sequences are divided by lengths 
to reduce the difference in lengths between adjacent 
threads. Another file is made for sequence description to 
be kept there; the description is not loaded to device 
resulting conserved memory ultimately reduced loading 
time.  

c. Sequence grouping 

After description separation and sorting by lengths 
distributed equal workload in every sequence set but some 
sequence set remained unequal in lengths. To avoid this 
inequality sequences in sequence set are linked up with 
relic sequence to make sequence groups in such a way that 
the total length in sequence group in a sequence set  is 
almost same as the lengthy sequence in the set. Tasks 
under process are equalized for half wrap’s threads for 
sequence set. To assure device Kernel to start next 
alignment sequence terminators are introduced among 
linked up sequences. Linked up sequences ending points 
are indicated by terminators of sequence groups. At this 
stage, the thread within half wrap will wait for each other 
to halt the execution. 
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d. Interlaced sub grouping  

A new file is written in an interlaced manner that contains 
16 sets of sequence groups from database sequences. 
Every subgroup contains 8 characters from every sequence 
in a way that 8 characters are taken from set’s group first 
then 8 characters from next group and so forth. Each 
sequence set contains sixteen sequence groups in a 
particular sequence set and every half-wrap thread is made 
able to load eight-byte sequence data from adjacent 
addresses achieving coalesced loading of 128-bytes 

 

Fig.4. The figure shows sequence storing as interlaced subsets. 

e. Temporary read and writes 

During GPU implementation Memory bandwidth that is 
represented was a critical logjam. To accelerate and 
optimize to achieve enhanced performance many steps 
were taken. S-W matrix values are of no need to be kept 
and can be overwritten when there is no trace back step is 
taken in place on GPU. 

   (1) 
Where   

    (2) 
 

    (3) 
 
 A single column that keeps value to left of column f (i, j-
1) that is under operation presently.  For reduced memory 
usage column size is set to a sequence of the query rather 
than DB sequence. Upon starting of every new database 
sequence this column can be reset to zero. Other variables 
are used to store values of top, top left cells as stated in the 

algorithm. The query sequence is approached in the 
interior loop rather than database sequence. It is good for 
keeping in the fast memory innermost sequence is 
approached for each individual outermost sequence’s 
alphabet. 

 A single query sequence is best applicant for this instead 
of a database having bulk number sequences. A new 
temporary column is introduced to store Ix values and 
upper Iy value is stored in the case of affine gap penalties. 
To read and write score and Ix temporary values four 
accesses took place in each S-W iteration. For every 
access 32 bytes read/write is granted when both are in non-
coalesced form. That meant 2048 bytes per half-wrap 
bandwidth was in use.  

2 read/write*2 value * 32 byte*16 thread/ half-wrap = 
2048 bytes. 

That result in a serious memory logjam. To squeeze this to 
one 128 reads/write for each 2nd repetition some moves 
were made.  First, a 16-bit unsigned short data type was 
used for temporary values that theoretically decrease 
needed bandwidth to half and allows good coalescing 
afterward. Coalescing was a 2nd move which was making 
every thread to keep single temp score. A pointer was 
started into temporary storage despite direct array accesses 
at the Thread id and increased by all threads to pass over 
to next cell. Every thread per half-wrap reads a 16-bit 
coalesced value now despite two 256-bit accesses two 
accesses happen in a half-wrap which improves 16x 
bandwidth and caused 10x acceleration.  Thirdly by 
definition, a Temp data structure that contains 2 unsigned 
short data types to access score and Ix in a single iteration 
half the memory accesses. At this stage, half-wrap would 
access 2 values in a read for 64-byte bandwidth that causes 
512-bit coalesced accesses. Finally, 2 temporary values are 
interleaved to go to 1024-bit accesses.   

These steps improved 16xbandwidth and need 1 access 
instead of sixty-four. Maximum allowed coalesced access 
size is 1024-bits that is efficient than many smaller 
accesses in coalesced manner. 

f. Substitution matrix accesses  

In the case of protein alignment, substitution matrix is 
critical due to its access time because of the alignment of 
two symbols every time. It accesses are random for 
example BLOSUM 62 making the selection of memory 
usage complicated. Substitution matrix is based on 
database sequence. Global memory has much access time 
making it a worse candidate to use. Coalescing is also 
become misery due to the randomness of substitution 
matrix accesses. Texture memory is the right candidate to 
store substitution matrix due to its low latency . 
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Fig.5. the figure describes memory accesses to fetch values from a query 
profile 

Texture memory can be used in such a way that it can 
fetch 4 values of substitution matrix from query profile. To 
eliminate the random nature of substitution matrix for a 
given database the query sequence used on the top row 
despite protein symbols. For query alignment with a 
database character, many substitution scores can be loaded. 
Query profile is produced one time for each query 
sequence so query sequence retrieval is eliminated the 
only present position in a query is required for profile 
indexing. Every query profile keeps value for twenty-three 
characters. So the columns and memory needed for query 
profile are dependent on query sequence length. Kepler 
110b used for this implementation has 48KB texture cache. 

3. Results 

Increase cache miss rate for query sequence more than will 
be [48 * 1024/23] = 20137 characters. Performance 
elevated about 25% on Kepler k40 architecture by using 
query profile with Swiss-Prot. 

The performance of protein sequence alignment based on 
Smith-Waterman implemented on advanced GPU (Kepler 
K40) is evaluated and the result is compared with previous 
implemented approaches are discussed below. 

It was decided to perform implementation on LMAR. The 
system had Gentoo (Linux) operating system installed. 
The GPU on board was NVIDIA Kepler K40 device that 
has s 2880 cores while having 12 GB GDDR5 memory 
with a clock speed of 875MH. Programming for the device 
is done using CUDA toolkit version 6. While for host 
programming is done using visual studio with C++ as 
language chosen. The database used was Swiss-Prot 
October 2015. Substitution matrix was set to BLOSUM64 
and GAP penalty was set as -10 while Gap extended 
penalty was set to -2 though this doesn't affect program 

execution. C clock () instruction was used to determine run 
time which was later verified by CUDA profiling 
application. The measured time doesn't include database 
loading time the reason is the size of the database. Often 
loading time of data set exceeds due to its bulk size as 
compared to alignment time. The database is loaded only 
one time eliminating the overhead making easy to search 
query sequences. The measured results were benchmarked 
in GCPUS which was about average of 51 in 8 
milliseconds. Swiss-Prot performance comparisons with 
different previous implementation on various GPU are 
described in this section. With NVIDIA Kepler K40 GPU 
50 GCPU were benchmarked in our implementation. 

• Comparison with BLAST based on heuristic 
method was benchmarked on Q6600 processor 
manufactured by Intel obtain 15.3 GCPUS [17]. 

• Comparison with CUDASW++ has first known 
GPU implementation based on smith-Waterman 
implemented using GeForce GTX 280 GPU and 
GeForce GTX 295 achieved 9.66 and 16.08 
GCPUS [10]. 

• Comparison with CUDASW++2.0 was 
implemented on GeForce GTX 280 GPU released 
in 2010.  It was improved by 1.74 times then 
CUDASW++ by using SIMT algorithm described 
in [9]. 

• Comparison with DOPA was implemented on 
GeForce GTX 275.It was 1.75 times faster than 
CUDASW++2.0 and achieved 21.4 GCPUS [14]. 

 

 

Fig.6 graph shows comparison Previous mentioned implementation vs 
ours 

The performance of our implementation on NVIDIA 
Kepler K40 GPU achieved higher GCPUS and attend less 
execution time as compare to all aforementioned 
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implementations that 51 GCPUS. Furthermore, our 
implementation due to hardware advancement is faster 
than previous implementations. 

 

 Fig.7. Graph shows query sequence length and execution time 

 

Fig.8. the graph shows query sequence length and performance in 
GCPUS. 

 

 

 

Table 1: Performance results with Swiss-Prot 

 

4. conclusion 

The improvement was measured 138.3% increase in 
GCPUS when implemented on aforementioned GPU. The 
execution time was 0.0086 seconds in average for a query 
sequence that is very less than previously implemented 
DOPA. Furthermore, the performance of our 
implementation on aforementioned GPU resulted in  428% 
increase in GCPUS as compared to CUDASW++ and 
200% increased than CUDASW++2.0.Besides 
performance, it is good to buy a GPU for  high computing 
and better task processing when one comes across to pay 
for CPU. On the other side, the power consumption of a 
GPU is higher than CPU which makes the 
performance/Watt nearly equal. CPU is very flexible 
rather than GPU but when Parallel (device accelerated) 
tasks are about to perform an ordinary CPU with a GPU is 
enough.  Another thing is GPU based solution 
development is a cumbersome job than development for a 
CPU. Additional communication over the bus to GPU and 
low memory makes it less flexible.  

Lastly, in conclusion, GPU based solutions are time-
consuming during development stage have more power 
consumption and additional price expenditure for GPU 
than CPU. However if one offers a better protein searching 
performance than CPU while don’t want to stick with 
dedicated FPGA based solution GPU is a better option in 
hand.  
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