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Abstract. 
In this paper, we apply the residual power series technique to find 
out the solutions for second-order integro-differential equations 
(IDEs) system of Volterra type subject to given initial conditions. 
The new technique is effective and easy to use for solving linear 
and nonlinear IDEs without linearization, perturbation, or 
discretization. This approach provides the solutions in the form of 
a rapidly convergent series with easily computable components 
using symbolic computation software. The proposed technique 
obtains the Taylor expansions of the solutions and reproduces the 
exact solutions when the solutions are polynomials. The solutions 
obtained using the present method are tested by solving initial 
value problems of IDEs. Graphical results, tabulate data, and 
numerical comparisons are presented and discussed quantitatively 
to illustrate the solutions. Numerical results show the potentiality, 
the generality, and the superiority of our algorithm for solving 
such problems arising in computer science. 
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1. Introduction 

Integro- differential equations of Volterra type for ordinary 
differential equations arise very frequently in many 
branches of applied mathematics and physics such as gas 
dynamics, nuclear physics, chemical reactions, atomic 
structures, atomic calculations, study of positive radial 
solutions of nonlinear elliptic equations, and so forth. In 
most cases, IDEs of Volterra type do not always have 
solutions which can be obtained using analytical methods. 
In fact, many of real physical phenomena encountered, are 
almost impossible to solve analytically, these problems 
must be attacked by various approximate and numerical 
methods. 

The main advantage of the RPS method is the simplicity in 
computing the coefficients of terms of the series solutions 
by using the differential operators only and not as the other 
well-known analytic techniques that need the integration 
operators which is difficult in general [1-7]. Moreover, the 
proposed method can be easily applied in the spaces of 
higher dimension solutions and can be applied without any 
limitation on the nature of the systems and the type of 
classifications. Numerical techniques are widely used by 
scientists and engineers to solve their problems. A major 
advantage for numerical techniques is that a numerical 

answer can be obtained even when a problem has no 
analytical solution. On the other hand, many applications 
for different problems by using other numerical algorithms 
can be found in [8-15]. 

Here, we extend the application of the residual power series 
method to construct the solutions the following general 
form: 

𝑥𝑥𝑗𝑗
(𝑛𝑛)(𝑡𝑡) = 𝑓𝑓𝑗𝑗�𝑡𝑡, 𝑥𝑥1(𝑡𝑡),𝑥𝑥2(𝑡𝑡), … , 𝑥𝑥𝑛𝑛(𝑡𝑡)�+ 
∫ 𝑘𝑘𝑗𝑗(𝑡𝑡, 𝜏𝜏)𝑔𝑔𝑗𝑗�𝑥𝑥1(𝜏𝜏),𝑥𝑥2(𝜏𝜏), … , 𝑥𝑥𝑛𝑛(𝜏𝜏)�𝑑𝑑𝜏𝜏𝑡𝑡
0 , 

subject to the constraints initial conditions 

𝑥𝑥𝑗𝑗(0) = 𝛼𝛼0𝑗𝑗 ,𝑥𝑥𝑗𝑗′(0) = 𝛼𝛼1𝑗𝑗, … ,𝑥𝑥𝑗𝑗
(𝑛𝑛−1)(0) = 𝛼𝛼(𝑛𝑛−1)𝑗𝑗 (2) 

where 0 ≤ 𝜏𝜏 < 𝑡𝑡 ≤ 1, 𝑓𝑓𝑗𝑗: [0,1] × ℝ𝑛𝑛 → ℝ, 𝑔𝑔𝑗𝑗:ℝ𝑛𝑛 → ℝ are 
analytic functions, 𝑘𝑘𝑗𝑗(𝑡𝑡, 𝜏𝜏) are continuous arbitrary kernel 
functions over the square 𝑜𝑜 ≤ 𝜏𝜏 < 𝑡𝑡 ≤ 1, 𝑗𝑗 = 1,2, … ,𝑛𝑛. 

In this paper, we using the residual power series method 
(RPSM) to develop a new numerical method for obtaining 
smooth approximations to solutions and their derivatives 
for systems of IDEs of Volterra type. This paper is 
organized as follows.  In Section 2, a short description for 
the RPS is presented. Also, we discuss the problem of the 
study. In Section 3, we present some numerical results. 
Finally, conclusions are given in Section 4. 

2. The proposed algorithm 

In this section, we construct solutions to such systems by 
substituting their residual power series expansion among 
their truncated residual functions. From the resulting 
equations recursion formulas for the computation of the 
coefficients are derived, while the coefficients in the 
expansions can be computed recursively by recurrent 
differentiating of the truncated residual functions by means 
of the symbolic computation software used [16-23].   
The RPS technique is different from the traditional higher 
order Taylor series approach. The Taylor series approach is 
computationally expensive for large orders. By using 
residual error concept, we get series solutions, in practice 
truncated series solutions as well as other methods [23-38]. 
To apply the residual power series method, set the counter 
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𝑖𝑖 = 1,2, … ,𝑛𝑛 and rewrite the system of IDEs (1) and (2) in 
the form of the following: 

𝑥𝑥𝑖𝑖
(𝑛𝑛)(𝑡𝑡) = 𝑓𝑓𝑖𝑖�𝑡𝑡, 𝑥𝑥1(𝑡𝑡),𝑥𝑥2(𝑡𝑡), … , 𝑥𝑥𝑛𝑛(𝑡𝑡)�, 

+� 𝑘𝑘𝑖𝑖(𝑡𝑡, 𝜏𝜏)𝑔𝑔𝑖𝑖�𝑥𝑥1(𝜏𝜏),𝑥𝑥2(𝜏𝜏), … ,𝑥𝑥𝑛𝑛(𝜏𝜏)�𝑑𝑑𝜏𝜏
𝑡𝑡

𝑡𝑡0
 

(3) 

subject to the constraints initial conditions 

𝑥𝑥𝑗𝑗(0) = 𝛼𝛼0𝑗𝑗 ,𝑥𝑥𝑗𝑗′(0) = 𝛼𝛼1𝑗𝑗 , … ,𝑥𝑥𝑗𝑗
(𝑛𝑛−1)(0) = 𝛼𝛼(𝑛𝑛−1)𝑗𝑗 (4) 

The residual power series technique consists in expressing 
the solutions of IDE (3) and (4) as a power series expansion 
about the initial point 𝑡𝑡 = 𝑡𝑡0 . To achieve our goal, we 
suppose that these solutions take the form 

𝑥𝑥𝑖𝑖(𝑡𝑡) = � 𝑥𝑥𝑖𝑖,𝑚𝑚(𝑡𝑡)
∞

𝑚𝑚=0

, 

where 𝑥𝑥𝑖𝑖,𝑚𝑚  are terms of approximations and are given as 
𝑥𝑥𝑖𝑖,𝑚𝑚(𝑡𝑡) = 𝑐𝑐𝑖𝑖,𝑚𝑚(𝑡𝑡 − 𝑡𝑡0)𝑚𝑚. 

If we choose 𝑥𝑥𝑖𝑖,0(𝑡𝑡) = 𝑥𝑥𝑖𝑖(𝑡𝑡0)  as initial guesses 
approximations of 𝑥𝑥𝑖𝑖(𝑡𝑡), then we can calculate 𝑥𝑥𝑖𝑖,𝑚𝑚(𝑡𝑡) for 
𝑚𝑚 = 1,2, … and approximate the solutions 𝑥𝑥𝑖𝑖(𝑡𝑡) of IDE (3) 
and (4) by the 𝑘𝑘th-truncated series 

𝑥𝑥𝑖𝑖𝑘𝑘(𝑡𝑡) = � 𝑐𝑐𝑖𝑖,𝑚𝑚(𝑡𝑡 − 𝑡𝑡0)𝑚𝑚
𝑘𝑘

𝑚𝑚=0

. (6) 

Prior to applying the residual power series technique, we 
rewrite IDEs (3) and (4) in the form of the following: 

𝑥𝑥𝑖𝑖
(𝑛𝑛)(𝑡𝑡)− 𝑓𝑓𝑖𝑖�𝑡𝑡,𝑥𝑥1(𝑡𝑡),𝑥𝑥2(𝑡𝑡), … , 𝑥𝑥𝑛𝑛(𝑡𝑡)� − � 𝑘𝑘𝑖𝑖(𝑡𝑡, 𝜏𝜏)𝑔𝑔𝑖𝑖�𝑥𝑥1(𝜏𝜏),𝑥𝑥2(𝜏𝜏), … , 𝑥𝑥𝑛𝑛(𝜏𝜏)�𝑑𝑑𝜏𝜏

𝑡𝑡

𝑡𝑡0
= 0. 

(7) 

The subsisting of 𝑘𝑘th-truncated series 𝑥𝑥𝑖𝑖𝑘𝑘(𝑡𝑡) into equation 
(7) will leads to the following definition for the 𝑘𝑘th residual 
functions: 

Res𝑖𝑖𝑘𝑘(𝑡𝑡) = �𝑚𝑚(𝑚𝑚 − 1)𝑐𝑐𝑖𝑖,𝑚𝑚(𝑡𝑡 − 𝑡𝑡0)𝑚𝑚−2

𝑘𝑘

𝑚𝑚=2

 

−𝑓𝑓𝑖𝑖 �𝑡𝑡, � 𝑐𝑐1,𝑚𝑚(𝑡𝑡 − 𝑡𝑡0)𝑚𝑚
𝑘𝑘

𝑚𝑚=0

, � 𝑐𝑐2,𝑚𝑚(𝑡𝑡 − 𝑡𝑡0)𝑚𝑚
𝑘𝑘

𝑚𝑚=0

, … , � 𝑐𝑐𝑛𝑛,𝑚𝑚(𝑡𝑡 − 𝑡𝑡0)𝑚𝑚
𝑘𝑘

𝑚𝑚=0

� 

 −� 𝑘𝑘𝑖𝑖(𝑡𝑡, 𝜏𝜏)𝑔𝑔𝑖𝑖 �� 𝑐𝑐1,𝑚𝑚(𝜏𝜏 − 𝑡𝑡0)𝑚𝑚
𝑘𝑘

𝑚𝑚=0

, �𝑐𝑐2,𝑚𝑚(𝜏𝜏 − 𝑡𝑡0)𝑚𝑚
𝑘𝑘

𝑚𝑚=0

, … , �𝑐𝑐𝑛𝑛,𝑚𝑚(𝜏𝜏 − 𝑡𝑡0)𝑚𝑚
𝑘𝑘

𝑚𝑚=0

� 𝑑𝑑𝜏𝜏
𝑡𝑡

𝑡𝑡0
, 

(8) 

and the following ∞ th residual functions: Res𝑖𝑖∞(𝑡𝑡) =
lim
𝑘𝑘→∞

Res𝑖𝑖𝑘𝑘(𝑡𝑡). 

It easy to see that, Res𝑖𝑖∞(𝑡𝑡) = 0 for each 𝑡𝑡 ∈ [𝑡𝑡0, 𝑡𝑡0 + 𝑎𝑎]. 
This show that Res𝑖𝑖∞(𝑡𝑡)  are infinitely many times 
differentiable at 𝑡𝑡 = 𝑡𝑡0. On the other hand, 𝑑𝑑

𝑠𝑠

𝑑𝑑𝑡𝑡𝑠𝑠
Res𝑖𝑖∞(𝑡𝑡0) =

𝑑𝑑𝑠𝑠

𝑑𝑑𝑡𝑡𝑠𝑠
Res𝑖𝑖𝑘𝑘(𝑡𝑡0) = 0 , for each 𝑠𝑠 = 1,2, … , 𝑘𝑘 . In fact, this 

relation is a fundamental rule in residual power series 
technique and its applications. Now, to obtain the 1 st-
approximate solutions, we put 𝑘𝑘 = 1 and substitute 𝑡𝑡 = 𝑡𝑡0 
into equation (8) and using the fact that Res𝑖𝑖∞(𝑡𝑡0) =
Res𝑖𝑖1(𝑡𝑡0) = 0, to conclude the following value: 

𝑐𝑐𝑖𝑖,1 = 𝑓𝑓𝑖𝑖(𝑡𝑡0, 𝑐𝑐1.0, 𝑐𝑐2.0, … , 𝑐𝑐𝑛𝑛.0) = 𝑓𝑓𝑖𝑖(𝑡𝑡0,𝛼𝛼1,𝛼𝛼2, … ,𝛼𝛼𝑛𝑛). 

Thus, using 1st-truncated series the first approximation for 
IDEs (3) and (4) can be written as 

𝑓𝑓𝑖𝑖(𝑡𝑡0,𝛼𝛼1,𝛼𝛼2, … ,𝛼𝛼𝑛𝑛)(𝑡𝑡 − 𝑡𝑡0). 

𝑥𝑥𝑖𝑖1(𝑡𝑡) = 𝑥𝑥𝑖𝑖(𝑡𝑡0) + (10) 

Similarly, to find the 2nd approximation, we put 𝑘𝑘 = 2 and 
𝑥𝑥𝑖𝑖2(𝑡𝑡) = ∑ 𝑐𝑐𝑖𝑖,𝑚𝑚(𝑡𝑡 − 𝑡𝑡0)𝑚𝑚2

𝑚𝑚=0 . On the other hand, we 
differentiate both sides of equation (8) with respect to 𝑡𝑡 and 
substitute 𝑡𝑡 = 𝑡𝑡0, to get 

𝑑𝑑
𝑑𝑑𝑡𝑡

Res𝑖𝑖2(𝑡𝑡0) = 2𝑐𝑐𝑖𝑖,2 −
𝜕𝜕
𝜕𝜕𝑡𝑡
𝑓𝑓𝑖𝑖(𝑡𝑡0,𝛼𝛼1,𝛼𝛼2, … ,𝛼𝛼𝑛𝑛) 

          −�𝑐𝑐𝑗𝑗,1
𝜕𝜕
𝜕𝜕𝑥𝑥𝑗𝑗2

𝑛𝑛

𝑗𝑗=1

𝑓𝑓𝑖𝑖(𝑡𝑡0,𝛼𝛼1,𝛼𝛼2, … ,𝛼𝛼𝑛𝑛)

− 𝑘𝑘𝑖𝑖(𝑡𝑡0, 𝑡𝑡0)𝑔𝑔𝑖𝑖(𝛼𝛼1,𝛼𝛼2, … ,𝛼𝛼𝑛𝑛). 

(11) 

In fact 𝑑𝑑
𝑑𝑑𝑡𝑡

Res𝑖𝑖2(𝑡𝑡0) = 𝑑𝑑
𝑑𝑑𝑡𝑡

Res𝑖𝑖∞(𝑡𝑡0) = 0. Thus, one can write 

𝑐𝑐𝑖𝑖,2 =
1
2

[
𝜕𝜕
𝜕𝜕𝑡𝑡
𝑓𝑓𝑖𝑖(𝑡𝑡0,𝛼𝛼1,𝛼𝛼2, … ,𝛼𝛼𝑛𝑛) 

       +�𝑐𝑐𝑗𝑗,1
𝜕𝜕
𝜕𝜕𝑥𝑥𝑗𝑗2

𝑛𝑛

𝑗𝑗=1

𝑓𝑓𝑖𝑖(𝑡𝑡0,𝛼𝛼1,𝛼𝛼2, … ,𝛼𝛼𝑛𝑛)

+ 𝑘𝑘𝑖𝑖(𝑡𝑡0, 𝑡𝑡0)𝑔𝑔𝑖𝑖(𝛼𝛼1,𝛼𝛼2, … ,𝛼𝛼𝑛𝑛)]. 

(12) 

Hence, using 2 nd-truncated series the second 
approximation for system of IDEs (3) and (4) can be written 
as 

𝑥𝑥𝑖𝑖2(𝑡𝑡) = 𝑥𝑥𝑖𝑖(𝑡𝑡0) + 𝑓𝑓𝑖𝑖(𝑡𝑡0,𝛼𝛼1,𝛼𝛼2, … ,𝛼𝛼𝑛𝑛)(𝑡𝑡 − 𝑡𝑡0)

+
1
2

[
𝜕𝜕
𝜕𝜕𝑡𝑡
𝑓𝑓𝑖𝑖(𝑡𝑡0,𝛼𝛼1,𝛼𝛼2, … ,𝛼𝛼𝑛𝑛) 

+�𝑐𝑐𝑗𝑗,1
𝜕𝜕
𝜕𝜕𝑥𝑥𝑗𝑗2

𝑛𝑛

𝑗𝑗=1

𝑓𝑓𝑖𝑖(𝑡𝑡0,𝛼𝛼1,𝛼𝛼2, … ,𝛼𝛼𝑛𝑛)

+ 𝑘𝑘𝑖𝑖(𝑡𝑡0, 𝑡𝑡0)𝑔𝑔𝑖𝑖(𝛼𝛼1,𝛼𝛼2, … ,𝛼𝛼𝑛𝑛)](𝑡𝑡 − 𝑡𝑡0)2. 

(13) 

This procedure can be repeated till the arbitrary order 
coefficients of the residual power series solutions of 
equations (3) and (4) are obtained. 

3. Numerical Examples 

In most real-life situations, the differential equation that 
models the problem is too complicated to solve exactly, and 
there is a practical need to approximate the solution. In the 
next two examples, the exact solutions cannot be found 
analytically. 

xample: Consider the following nonlinear system of 
second-order IDEs: 

𝑥𝑥1
(4)(𝑡𝑡) = 𝑓𝑓1(𝑡𝑡) + 𝑥𝑥1(𝑡𝑡)𝑥𝑥2(𝑡𝑡) +� �𝑥𝑥12(𝜏𝜏)𝑥𝑥23(𝜏𝜏)�𝑑𝑑𝜏𝜏

𝑡𝑡

0
,

𝑥𝑥2
(4)(𝑡𝑡) = 𝑓𝑓2(𝑡𝑡) + 𝑒𝑒𝑥𝑥1(𝑡𝑡) + 𝑥𝑥2(𝑡𝑡)−� 𝑥𝑥14(𝜏𝜏) − 𝑥𝑥24(𝜏𝜏)𝑑𝑑𝜏𝜏

𝑡𝑡

0
,
 (14) 

subject to the following initial conditions: 
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 𝑥𝑥1
(0) = 1, 𝑥𝑥1′(0) = 0, 𝑥𝑥1′′(0) = 0, 𝑥𝑥1′′′(0) = 0,

𝑥𝑥2(0) = 0, 𝑥𝑥2′ (0) = 0, 𝑥𝑥2′′(0) = 2, 𝑥𝑥2′′′(0) = 0 . (15) 
where 𝑓𝑓1(𝑡𝑡)  and 𝑓𝑓2(𝑡𝑡)  are chosen such that the exact 
solutions are: 𝑥𝑥1(𝑡𝑡) = cos(𝑡𝑡2) and 𝑥𝑥3(𝑡𝑡) = sin(𝑡𝑡2). 

If we select the initial guesses as 𝑥𝑥1,0(𝑡𝑡) = 1 , 𝑥𝑥1,1(𝑡𝑡) =
0 ,  𝑥𝑥1,2(𝑡𝑡) = 0, 𝑥𝑥1,3(𝑡𝑡) = 0 , 𝑥𝑥2,0(𝑡𝑡) = 0 , and 𝑥𝑥2,1(𝑡𝑡) =
0, 𝑥𝑥2,2(𝑡𝑡) = 2, 𝑥𝑥2,3(𝑡𝑡) = 0 , then the first few terms 
approximations for equations (14) and (15) are 

𝑥𝑥1,2(𝑡𝑡) = 0,𝑥𝑥1,3(𝑡𝑡) = 0, 𝑥𝑥1,4(𝑡𝑡) = −
1
2
𝑡𝑡4,𝑥𝑥1,5(𝑡𝑡) = 0, … ,

𝑥𝑥2,2(𝑡𝑡) = 𝑡𝑡2,𝑥𝑥2,3(𝑡𝑡) = 0,𝑥𝑥2,4(𝑡𝑡) = 0, 𝑥𝑥2,5(𝑡𝑡) = 0, … .
 (16) 

If we collect the above results, then the 20 th-truncated 
series of the residual power series solution for 𝑥𝑥1(𝑡𝑡) and 
𝑥𝑥2(𝑡𝑡) are as follows: 

𝑥𝑥120(𝑡𝑡) = 1−
1
2 𝑡𝑡

4 +
1

24 𝑡𝑡
8 −

1
720 𝑡𝑡

12 +
1

40320 𝑡𝑡
16 −

1
3628800 𝑡𝑡

20 

+
1

479001600 𝑡𝑡
24 −

1
87178291200 𝑡𝑡

28 +
1

20922789888000 𝑡𝑡
32 

−
1

6402373705728000 𝑡𝑡
36 +

1
2432902008176640000 𝑡𝑡

40 

= �(−1)𝑗𝑗
(𝑡𝑡2)2𝑗𝑗

(2𝑗𝑗)!

10

𝑗𝑗=0

 

(17) 

𝑥𝑥220(𝑡𝑡) = 𝑡𝑡2 −
1
6 𝑡𝑡

6 +
1

120 𝑡𝑡
10 −

1
5040 𝑡𝑡

14 +
1

362880 𝑡𝑡
18 −

1
6 𝑡𝑡

22 

+
1

6227020800 𝑡𝑡
26 −

1
1307674368000 𝑡𝑡

30 

+ 
1

355687428096000 𝑡𝑡
34 −

1
121645100408832000 𝑡𝑡

38 = �(−1)𝑗𝑗
(𝑡𝑡2)1+2𝑗𝑗

(1 + 2𝑗𝑗)!

9

𝑗𝑗=0

 

(18) 

Thus, the exact solutions of equations (14) and (15) have 
the general form 

 𝑥𝑥1(𝑡𝑡)= cos(𝑡𝑡2) , 𝑥𝑥2(𝑡𝑡)= sin(𝑡𝑡2).   (19) 
In Figure 1, we plot Ext1𝑘𝑘(𝑡𝑡)  and Ext2𝑘𝑘(𝑡𝑡)  for  𝑘𝑘 =
5,10,15,20  which are approaching the axis 𝑦𝑦 = 0  as the 
number of iterations increase. Figure 2 shows Res1𝑘𝑘(𝑡𝑡) and 
Res2𝑘𝑘(𝑡𝑡) for 𝑘𝑘 = 5,10,15,20. 

(a)  (b)   

Fig. 1 Plots of exact error functions for equations (14) and (15). 

 

(a)  (b)   

Fig. 2 Plots of residual error functions for equations (14) and (15) 

4. Conclusion 

Here, we can conclude that the RPS method is powerful and efficient 
technique in finding approximate solution for higher-order nonlinear 
systems of IDEs. There is an important point to make here, the results 
obtained by the RPS technique are very effective and convenient in 
nonlinear cases with less computational work and time. This confirms our 
belief that the efficiency of our technique gives it much wider applicability 
for general classes of nonlinear problems. 
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