
IJCSNS International Journal of Computer Science and Network Security, VOL.17 No.11, November 2017

108

Manuscript received November 5, 2017
Manuscript revised November 20, 2017

Developing an End-to-End Secure Chat Application

Noor Sabah, Jamal M. Kadhim and Ban N. Dhannoon

Department of Computer Science, Al-Nahrain University, Baghdad, Iraq

Summary
Chat applications have become one of the most important and
popular applications on smartphones. It has the capability of
exchange text messages, images and files which it cost free for
the users to communicate with each other. All messages must be
protected. The aim of the paper is to propose chat application
that provides End-to-End security that let safely exchange
private information with each other without worrying about data.
In addition to the protection of storage. A list of requirements to
make secure chat application is presented in this paper and based
on these requirements, the application was designed. The
proposed chat application was compared with other popular
applications based on those requirements as well as it has been
tested as a proof for providing End-to-End security.
Key words:
Secure chat application, Security, Android, Secure session,
Secure storage

1. Introduction

With the rapid development of mobile phones, mobile
devices have become one of the integral part of daily
activities. In recent years, chat applications have evolved
and made a major change in social media because of their
distinctive features that attract audiences[1]. It provides
real-time messaging and offers different services including,
exchange text messages, images, files and etc. Moreover,
it supports cross platforms such as Android and iOS.
There are currently hundred millions of users smartphone
are using chat applications on monthly basis[2].
There are two types of architecture in those applications,
client-server and peer-to-peer networks. In a peer-to-peer
network, there is no central server and each user has
his/her own data storage. On the contrary, there are
dedicated servers and clients in a client-server network
and the data is stored on a central server[3].
Security and privacy in chat applications have a
paramount importance but few people take it seriously. In
a test done by the Electronic Frontier Foundation, most of
the popular messaging applications failed to meet most
security standards. These applications might be using the
conversations as an information for certain purposes.
Moreover, reading the private conversations is certainly
unacceptable in terms of privacy.
 Most applications only used Transport Layer Security
(TLS) for securing channel, the service provider has full
access to every message exchanged through their

infrastructure [4]. Therefore, these messages can be
accessed by attackers. Therefore to maintain protection
and privacy, messages should be encrypted from sender to
receiver and no one can read messages even the service
provider, in addition to protecting the local storage of the
device [5].
In this paper, we focus on security, privacy and speed by
proposing end-to-end security which ensures only sender
and receiver can read messages without a third party. As
well as storage protection and fast transfer of messages
between the parties.
The main contributions of this paper are the following:
1- Propose client-server mobile chat application which
supports the status of the communicating parties whether
online or offline.
2- Provide a friendship request service.
3. Secure key exchange, then calculate the session key.
4. Secure exchange of end-to-end messages.
5. Analysis and Test the proposed chat.

2. Mobile Chat Applications

In this section, we briefly introduce many of popular chat
applications in the mobile market according to security
and privacy concerns. Unfortunately, some chat
applications are not public or open source makes it
difficult for evaluated by the developer’s community,
security experts or researcher academic.

2.1 Viber

Viber is an instant messaging and Voice over IP (VoIP)
application for smartphones developed by Viber Media. In
addition to instant messaging, users can exchange images,
video and audio media messages. Viber recently supported
the end-to-end encryption to their service, but only for
one-to-one and group conversations in which all
participants are using the latest Viber version 6.0 for
Android, iOS or Windows 10. At this time, in the Viber
iOS application for iPhone and iPad, attachments such as
images and videos which are sent via the iOS Share
Extension does not support end-to-end encryption [6].
Viber has privacy issues such as adding a friend without
his knowledge or adding him to a group without his
permission. Plus that, local storage is not secured. It is not
open source making it difficult to evaluation.

IJCSNS International Journal of Computer Science and Network Security, VOL.17 No.11, November 2017 109

2.2 WhatsApp

WhatsApp is one of the most popular messaging
application, recently enabled end-to-end encryption for its
1 billion users across all platforms. WhatsApp uses part of
a security protocol developed by Open Whisper System,
so provides a security-verification code that can share with
a contact to ensure that the conversation is encrypted [7].
It is difficult to trust in WhatsApp application completely
because the application is not open source, making it
difficult to verify the functioning process and match them
with the work of the encryption protocol which was
announced.

2.3 Telegram

Telegram is an open source instant messaging service
enables users to send messages, photos, videos, stickers
and files [8]. Telegram provides two modes of messaging
is regular chat and secret chat. Regular chat is client-
server based on cloud-based messaging, it does not
provide end-to-end encryption, stores all messages on its
servers and synchronizes with all user devices [9]. More,
local storage is not encrypted by default. Secret chat is
client-client provides end-to-end encryption. Contrary to
regular chat messages, messages that are sent in a secret
chat can only be accessed on the device that has been
initiated a secret chat and the device that has been
accepted a secret chat they cannot be accessed on other
devices. Messages sent within secret chats can be deleted
at any time and can optionally self-destruct [8].
Telegram uses its own cryptographic protocol MTProto,
and has been criticized by a significant part of the
cryptographic community about its security[9].
The registration process of Telegram, Viber and
WhatsApp depend on SMS. SMS is transported via
Signaling System 7 (SS7) protocol. The vulnerability lies
in SS7 [10]. Attackers exploited SS7 protocol to login into
victim's account by intercepting SMS messages [11].
Because of Telegram cloud-based, the attacker exploits it
and makes full control of the victim account and can
prevent him to enter into his account. To make the account
more secure should activate two-factor authentication [12].

2.4 Facebook Messenger

Facebook Messenger is a popular messaging service
available for Android and iOS. It provides two modes of
messaging is regular chat and secret conversations.
Regular chat does not provide end-to-end encryption only
secure communication by using TLS, and it stores all
messages on its servers. Secret conversations have the
same idea of Telegram secret chat [13].

3. Proposed architecture

3.1 Secure Mobile Chat Requirements

In this section, we propose a set of requirements to make
secure chat application:
req1: Password stored on the chat server should be
encrypted.
req2: Providing either secure session or TLS. Secure
session is a unique key for each session. Ensures that
communication is with the right person and no man-in-
the-middle can read the messages.
req3: Messages must be encrypted to maintain security
and privacy.
req4: Local storage must be protected by encryption.
req5: Messages are not stored on the chat server but stored
on the user's device.
req6: It is not allowed to exchange messages if they are
not friends.

3.2 Proposed Architecture

The proposed architecture is designed to be Client-Server
chat application. In client side, when a user sets up the
application, the user either selects registration or log-in. In
server side, the chat server consists of users’ server and a
message server. User's server that manages user’s
credentials. Message server handles messages between
users by using Firebase Cloud Messaging (FCM).If the
recipient is offline, the messages will be stored
temporarily on the FCM queue for a specific period of
time, and when recipient becomes online these messages
are forwarded to him then deleted from the queue. The
generic architecture is shown in Fig. 1

Fig. 1. Generic Architecture of Proposed Chat.

IJCSNS International Journal of Computer Science and Network Security, VOL.17 No.11, November 2017 110

3.3 Registration an account

Before starting the application, there must have a lock
screen to configure the Keystore that provides a secure
container to store the local storage key to make more
difficult for extraction it from the device by unauthorized
persons or other applications [14].
Each account has only one device and it is distinguished
by device id. In addition, Email and username are unique.
Name, email and password are required to register a new
account. After typing the registration information, the
password is encrypted by using XSalsa20 algorithm
[15]then the user credentials are sent to the server. After
verification, the server generates a unique identifier that
acts as the user ID. After that, the acknowledgement
message is received for successful registration to the client
application and the client information is stored in local
storage.
The application generates a set of keys:
(a) Key for encrypting the password.
(b) A public key pair for calculating session key.
(c) Symmetric storage key for encrypting/decrypting local
storage contains contact list, chat history and key store.

3.4 Login

Email and password are required for user authentication.
After typing the authentication information, the password
is encrypted then the user credentials are sent to the server.
The server checks if the email and password are valid.
After validation, JSON Web Token (JWT)[16] is created
and sends to the client to store it. When a client makes a
request at the later time, JWT is passed with the request.
The server verifies of the JWT, if it is valid, the request is
processed (Fig.2).

Fig. 2 Login process.

3.5 Firebase Cloud Messaging

Firebase Cloud Messaging (FCM) is a service that
facilitates messaging between mobile applications and
server applications. It’s built on Google Play Services that
supports cross-platform (iOS, Android & Web). It is a free

service that allows sending lightweight messages from the
server to the devices whenever there is new data
available[17]. This saves a lot of user’s battery by
avoiding requesting to the server for new messages. It
provides TLS for securing channel.
At the beginning of running the application for the first
time gets the following:
(1) The application connects to FCM server and registers
itself.
(2) When successful registration, FCM provides
registration token to the device. This registration token
uniquely identifies each device.
(3) The application sends the registration token to the
server to store it in MongoDB database.
The above steps are shown in Fig. 3.

Fig. 3. Firebase Cloud Messaging.

When the server sends a push notification, it sends a
request to FCM sending the push message along with the
registration token. FCM identifies the target device by
using registration token then starts to push data.

3.6 Session key Setup

To add users to contact list either by username or by email
address.
For sending a request to a friend on the assumption that
the first user knows the username or email of the second
user due to the username and email are a unique for each
user and the second user should have already registered in
the server. Presumably, the first user is called Alice and
the second is called Bob.
When the send request, Bob name is typed by Alice and
her public key is fetched from the local storage then the
request is sent to the server.
When a request is received, it appears as a notification
(Fig. 4). If the friendship request is accepted by Bob, his
private key is fetched with Alice's public key to calculate
the session key by using Elliptic Curve Diffie-Hellman
(ECDH) over the curve Curve25519 [18] and hashes the
result with HSalsa20 [15] then the session key is stored in

IJCSNS International Journal of Computer Science and Network Security, VOL.17 No.11, November 2017 111

local storage (Fig. 5). In the end, the acceptance is sent
with his public key to the server to be delivered to Alice.
Upon receipt of the acceptance of the request, the same
steps on the above are taken. The session key is calculated
by using Alice private key and Bob public key then it is
stored in the local storage for later use.
The session key is the same for both parties and this is the
strength of the Elliptic Curve Diffie-Hellman (ECDH) and
thus it is difficult to attack by the man-in-the-middle. In
addition to, the weakness of the traditional Diffie-Hellman
has been eliminated.

Fig. 4. Friend request notification.

Fig. 5. Session key Setup.

3.7 Exchanging Messages

When a message is typed, the application encrypts the
message using XSalsa20 encryption algorithm to encrypt
the message body and Poly1305 to compute a Message
Authentication Code (MAC) [19]. Each message has its
own separate key and nonce which brings better security
for each single message in such discovering one of the
keys cannot decrypt previous messages. After encrypting
the message, it is encrypted again using the recipient's
session key then it is sent to the server (Fig. 6).
After the message is received from FCM, the MAC of the
encrypted message is calculated and compares it with the
received MAC to verify the integrity of the message. If the
results are not the same, it is rejected and does not show to
the user otherwise it is decrypted by the sender session
key. Next, the message body is verified in the same steps
above. Now the key and nonce to decrypt the message are
known. The message is then decrypted and stored in the
local storage and displayed to the recipient.

If the application is in the background the message will be
displayed as a notification while if the recipient uses the
application it will be displayed in the chat window.

Fig. 6. Procedure to encrypt a message.

3.8 Local Storage

The data is stored locally in the application by using
Realm database. Realm is a lightweight mobile database
that supports cross-platform. It's easy to use and fast.
More, it has lots of modern features such as JavaScript
Object Notation (JSON) support, a fluent API, data
change notifications and encryption support [20].
Encrypted data is protected from unauthorized access and
is accessible only if have been a right encryption key.
Realm uses AES-256+SHA2 algorithm and 64-byte key
for encrypting storage [21]. To prepare Realm storage
passes through several steps that are:
Step 1: The application checks whether the lock screen is
present or not. If it exists, the following steps are
completed.
Step 2: Generate Realm Key that is used for encrypting
storage.
Step 3: Generate key from Keystore.
Step 4: Realm key is encrypted with the key generated in
step 3 by using AES in CBC mode.
Step 5: Save the encrypted key in shared preferences in
private mode so that other applications cannot access this
data directory.
 Three files are stored in the local storage. UserInfo file
that stores all information pertaining to the user. While
Friends file stores all information pertaining to the friends.
Finally, Messages file stores all information pertaining to
messages.
3.9 Server Side Implementation

Server-side has relied on Node JS[22] and MongoDB
database[23]. Node JS is fast, capable of handling a large
number of simultaneous connections with high throughput,
which is equivalent to high scalability. MongoDB and
Node JS have often used together because of their using

IJCSNS International Journal of Computer Science and Network Security, VOL.17 No.11, November 2017 112

JSON so no need to spend time for transforming the data
between them making it easy to deal with each other. In
addition, MongoDB provides TLS that makes a secure
connection (Fig. 7).
To perform a client request passes through several steps
that are:
Step 1: Initially, must run the MongoDB connection then
run the Node JS from Command Prompt. At this stage, the
server is ready to receive the client's request.
Step 2: When the client sends a request, the server
receives the HTTP request in JSON format. The request
then parsed.
Step 3: The HTTP request is compared with the base path
if it is matched, it is handed to Express framework.
Step 4: The Express receives the HTTP request and routes
it to the specific endpoint that matched it. In case of not
matched with any of the routes will display error in
Command Prompt. Otherwise, it will be forwarded to the
controller which handles the required function.
Step 5: Make a request to MongoDB database by
mongoose for processing function.
Step 6: When the data is fetched from MongoDB database
and the required operations are done, Node JS receives the
response then sends to the client.
The above steps are shown in Fig. 8.

Fig. 7. The Specific Architecture of Proposed Chat.

Fig. 8. Implementation of a client request.

4. Analysis the Proposed Chat

In section 3, we listed a set of requirements for securing
chat. To analyze and evaluate proposed chat we have
compared proposed chat with popular applications
discussed in section 2. The comparison is based on the
requirements listed in Table 1.

Table 1. Comparison with Popular Chat Applications
Criteria Whats

App Viber Telegram Facebook
Messenger

Propose
d Chat

Req1 N N N N Y
Req2 Y Y Y Y Y
Req3 Y Y P P Y
Req4 Y N N P Y
Req5 Y Y N N Y
Req6 N N N N Y

Note:”Y” it means that it meets the requirement. ”N“does not
support the requirement. ”P”only the secret part supports it.

5. Conclusion

In this paper, we introduced a specification for preserving
the security and privacy of the chat application. We
described a set of requirements for making secure chat and
implement it by using modern methods and lightweight
for providing speed and good protection to its clients.
XSalsa20 algorithm ideal for mobile devices because of its
high security, high performance and maintains battery life.
Clients can be confident that nobody can read their
messages, even if the mobile phone reaches wrong hands
cannot enter to the application and cannot access the data
stored locally.

References
[1] Ash Read, “How Messaging Apps Are Changing Social

Media,” 2016. [Online]. Available:
https://blog.bufferapp.com/messaging-apps.

[2] Most popular messaging apps 2017 | Statista,” 2017.
[Online]. Available:
https://www.statista.com/statistics/258749/most-popular-
global-mobile-messenger-apps/.

[3] D. Moltchanov, “Client/server and peer-to-peer models:
basic concepts,” 2013.

[4] Martin Kleppmann, “The Investigatory Powers Bill would
increase cybercrime — Martin Kleppmann’s blog,” 2015.
[Online]. Available:
https://martin.kleppmann.com/2015/11/10/investigatory-
powers-bill.html.

[5] D. P. Roel Hartman, Christian Rokitta, Oracle Application
Express for Mobile Web Applications - Roel Hartman,
Christian Rokitta, David Peake - Google Books. 2013.

[6] Viber Encryption Overview.” [Online]. Available:
https://www.viber.com/security-overview/.

[7] WhatsApp inc, “WhatsApp security whitepaper,” p. 10,
2017.

[8] “Telegram F.A.Q.” [Online]. Available:
https://telegram.org/faq.

IJCSNS International Journal of Computer Science and Network Security, VOL.17 No.11, November 2017 113

[9] T. Susanka, “Security Analysis of the Telegram IM,” p. 70,
2016.

[10] B. O. B. Kamwendo, “Vulnerabilities of signaling system
number 7 (ss7) to cyber attacks and how to mitigate against
these vulnerabilities. bob kamwendo,” vol. 7, no. 7, 2015.

[11] John Leyden, “SS7 spookery on the cheap allows hackers to
impersonate mobile chat subscribers • The Register,” 2016.
[Online]. Available:
https://www.theregister.co.uk/2016/05/10/ss7_mobile_chat_
hack/.

[12] “Active Sessions and Two-Step Verification.” [Online].
Available: https://telegram.org/blog/sessions-and-2-step-
verification.

[13] T. Whitepaper, “Messenger Secret Conversations,” 2016.
[14] “Android Keystore System | Android Developers.” [Online].

Available:
https://developer.android.com/training/articles/keystore.htm
l.

[15] D. J. Bernstein, “Extending the Salsa20 nonce,” no. Mc 152,
pp. 1–14, 2011.

[16] M. B. Jones, “The Emerging JSON-Based Identity Protocol
Suite,” 2011.

[17] “Firebase Cloud Messaging | Firebase.” [Online]. Available:
https://firebase.google.com/docs/cloud-messaging/.

[18] D. J. Bernstein, “Curve25519 : new Diffie-Hellman speed
records,” vol. 25519, 2006.

[19] D. J. Bernstein., “Poly1305.” [Online]. Available:
https://en.wikipedia.org/wiki/Poly1305.

[20] “Realm: Create reactive mobile apps in a fraction of the
time.” [Online]. Available: https://realm.io/.

[21] “Realm Swift 2.10.2.” [Online]. Available:
https://realm.io/docs/swift/latest/.

[22] “Node.js.” [Online]. Available: https://nodejs.org/en/.
[23] “NoSQL Databases Explained | MongoDB.” [Online].

Available: https://www.mongodb.com/nosql-explained.

