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Summary 
Smart highways use a variety of sensors to capture the passage of 
vehicles and send events to the remote processing center in real 
time. The failure of a sensor can lead to processing errors and 
unfortunate decisions. This paper proposes a fault-tolerant 
architectural model, which facilitates the reasoning on large 
networks of highway sensors. This model is based on the 
aggregation of a set of physical sensors into a single logical sensor. 
The proposed approach allows to map a logical sensor to each 
node of the highways network graph. It also allows to implement 
real-time fault detection and correction procedures at the level of 
the logical sensors. To validate the proposed approach, some 
simulation results of a failure detection in the "input / output" 
component of a highway are presented to show the effectiveness 
of this model. 
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1. Introduction 

Nowadays, surveillance, control and management of traffic 
in highways has become vital [1][2][3]. Mismanagement 
leads to considerable losses in travel time and energy and 
increases the risk of accidents and air pollution [4]. In recent 
years, there has been considerable development in the field 
of road traffic sensors. In [5][6] the authors present a road 
traffic sensor that integrates advanced embedded 
components, managed by distinctive algorithms for the 
implementation of various traffic monitoring applications. 
The sensor can detect, count, accurately estimate speed and 
length, and classify vehicles in real time. In [7], authors 
present an instrumentation model of smart highways by 
breaking down highways into hierarchical cells. However, 
their approach is based on the determination of sensor 
locations and does not show the instrumentation of the 
various components of a highway network. 
Highways are increasingly instrumented and generate huge 
data from a multitude of sensors. Several fusion techniques 
use multi-source data to estimate the state of the traffic. In 
[8], the authors combine the location data of the users’ 
mobile phones and the data captured by the loop detectors 
to accurately assess the state of the road. In [9], authors 
mixed data coming from connected vehicles and on-site 
sensors to estimate traffic state. Most research studies 
assume that the sensors are perfect and do not consider in 

their models the case of failure of one or more sensors. The 
highway networks are modeled by oriented graphs and the 
events generated by the sensors are associated with one or 
more nodes of the graph. When a sensor fails, the traffic 
state computational models must detect the failure and 
adapt the graph to the new situation. 
The present work is closely based on the highway networks 
model used in [10]. Thus, we propose an architectural 
approach that maps each node of the highway network 
graph to a logical sensor. In this model, a logical sensor is a 
processing unit associated with a set of physical sensors. It 
is equipped with a processing capacity to manage all of its 
components and a communication channel connecting it to 
the remote processing center. This approach reveals several 
advantages as: 
• It facilitates the reasoning on the global topology of the 

logical sensors, since this topology corresponds exactly 
to the graph of the highways network, 

• The synchronization of the events is done only at the 
logical sensors level, 

• The detection of the physical sensors failures is done at 
the logical sensor level, 

• It reduces the communication costs with the remote 
processing center by collecting multiple events in a 
single message, 

• The logical sensors can implement algorithms for 
vehicle counting, classification and keep a history on 
which they can relay in case of failure of one or several 
sensors since they are equipped with storage, 
processing and communication capabilities. 

In the following section, we will define the components of 
a highways network and the model of composition of their 
logical sensors. Section 3 is dedicated to the study of failure 
cases and the approach used for its detection. The last 
section gives some concluding remarks. 

2. Architectural model of smart highways 

2.1 Highways network components 

A highway is described by a sequence of components that 
always starts with an entry, followed by several 
intermediate nodes, and ends with an exit. Intermediate 
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nodes may be entrance / exit, service areas, tolls or 
exchangers. The exchangers make it possible to 
interconnect two or more highways. See Figure 1. All these 
components are instrumented by vehicle passage sensors. 
To increase the accuracy of traffic monitoring processes, 
sensors are interposed between the components according 
to the distances separating them and the intended accuracy. 

 

Fig. 1 Smart highways components 

Components and sensors are modeled as logical sensors. 
Each sensor has a unique identifier. The highways network 
is modeled by an oriented graph whose vertices are 
represented by logical sensors and edges by highway 
segments. See Figure 2. 

 

Fig. 2 Highways sensors graph 

2.2 Logical sensor model 

The highway network is broken down into a set of segments 
that are interconnected by sensors. The goal is to count in 
real time the number of vehicles in each segment using the 
conservation law. The composition of a logical sensor is 
realized so that a physical sensor must not connect more 
than two segments. 
To be able to identify a vehicle passing, the sensor must 
generate an event that uniquely identifies the direction taken 
by the vehicle. As can be seen in Figure 2, a vehicle 

traveling from S-A1-35 sensor to SA-1-33 must pass 
through the S-A1-34 sensor. The latter will generate an 
event that will be identified by the triplet (S-A1-35, S-A1-
34, S-A1-33). More generally, the passage of a vehicle 
through a logical sensor having the sidi identifier generates 
an event identified by (sidi-1, sidi, sidi+1). 
 
For each component type of a highway, the logical sensor 
must be decomposable into a set of physical sensors to 
distinguish the different possible paths. See Table I . 

Table 1:  Physical sensors 

Component Logical 
sensor Physical sensors 

Entrance 
  

Entrance/Exit 

 
 

Exchanger 
 

 

Srvice Area 

 
 

Sensor / Toll 

  

Exit 
  

 

 

Fig. 3 Generated events during a given route 

Each event generated by a physical sensor contains: 
• The event identifier (sidi-1, sidi, sidi+1) 
• The speed of vehicle  
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• The passage date (Timestamp) 
• Other information depending on the sensor 

characteristics. 
Figure 3 shows the example of a route starting with an 
Entrance / Exit (step 1 - logical sensor Si-1), stopping in a 
service area (steps 2 and 3 - logical sensor Si) and then 
going through an exchanger (step 4 - logical sensor Si+1). 
Table 2 presents for each step, the event identifier. 

Table 2: Event identifier 

Step Logical sensor Event identifier 
1 Si-1 (Null, Si-1, Si) 
2 Si (Si-1, Si, Si) 
3 Si (Si, Si, Si+1) 
4 Si+1 (Si, Si+1, Si+2) 

 
For logical sensor architecture, each logical sensor type 
consists of a set of physical sensors and a communication 
unit (CU) that sends the generated events to the processing 
center (PC). See Figure 3. To facilitate the synchronization 
and implementation of the sensors, the events are 
timestamped in the CU. 

 

Fig. 4 Logical sensor architecture  

3. Detection of faulty sensors 

3.1 Failure scenarios  

Failures can occur at multiple levels of distributed sensor 
architecture. We list below the various possible fault 
locations: 
1. Failure of communication between CU and PC, 
2. Failure of CU, 
3. Failure of some physical sensors or their communication 

link with the CU. 
 
The first two cases represent the failure of the entire logical 
sensor (global failure). The third case represents the failure 
of some of the physical sensors (partial failure).  
During an overall sensor failure, the entire sensor is 
disabled and the graph is updated to reflect the new situation. 
The adjacent logical sensors to the defective sensor are not 

aware of this fact, they continue to generate events referring 
to this sensor. 
 
At any time, a logical sensor can only be in one of these 
three states (Figure 5): 
• Functional (FS) 
• Global failure (GF) 
• Partial failure (PF) 

 

Fig.5 The three states of logical sensors 

Transitions 1 and 2 of Figure 5 are detected locally by the 
sensor itself while transitions 3, 4 and 5 are detected by a 
remote procedure that runs in the processing center. 

3.2 Failure detection  

3.2.1 Local detection 

For each type of logic sensor, we use the conservation law 
to determine the defective physical sensors. See Eq. 1 and 
Figure 6. 

 

Fig. 6. Conservation law 

∑ oj - ∑ ij = q (1) 
With:  

q: number of vehicles inside the sensor 
oj: number of vehicles left 
ij: number of vehicles entered 
 

To be able to use the conservation law, additional physical 
sensors must be added to each type of logical sensor. Table 
3 summarizes the modifications made to the different 
logical sensors. 
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Table 3: Modifications made to logical sensors 

Component Logical 
sensor Physical sensors 

Entrance 
  

Entrance/ Exit 
 

 

Exchanger 
 

 

Service area 

 

 

Sensor 

  

Exit 
  

 
The addition of further sensors makes it possible to 
implement failure detection routines, but also makes the 
component more efficient and fault-tolerant. 
UC uses a streaming-oriented approach (See Figure 7). 
When an event arrives from a physical sensor, it is first 
timestamped and then used on the one hand to reset the 
heartbeat timer, on the other hand to feed the failure 
detection procedure (FDP). The latter performs its 
procedure and in case of failure, requests a health check at 
the faulty sensor. The Event  Filtering and Correction (EFC) 
procedure filters events according to the state of the 
physical sensors. In the case of a failure, this procedure 
attempts to correct the events based on the sensors state and 
counter values provided by FDP. Finally, the selected event 
is enriched with status information and sent to the PC. 

 

Fig. 7 Communication unit (CU) 

In what follows, we propose the detection approach used for 
the detection of failures in the logical sensors "Entrance" 
and "Entrance / Exit". The other sensors use the same 
approach. 
a) Logical sensor: Entrance 
We assume that the distance between the physical sensors 
in each direction is negligible (See Figure 8). The number 
of vehicles entering is equal to the number of vehicles 
leaving (i1 = o1 and i2 = o2). For each direction, we 
associate a variable (respectively d1 and d2). When a 
vehicle enters, we increment the corresponding variable and 
decrement it when it comes out. 

 

Fig. 8 Logical sensor « Entrance » 

If all the sensors are working correctly, both variables must 
have one of the values (-1, 0 or 1). For any other value, the 
sign of the variable determines which of the two sensors is 
defective. 
 In the real case, the distance between the physical sensors 
is not null and at the time of putting into operation of the 
detection procedure, it is not known the number of vehicles 
present between the two sensors (d1 = i1 - o1 = q1 and d2 = 
i2 - o2 = q2). The quantities q1 and q2 will fluctuate and 
remain within the range [-qmax, qmax]. The value qmax 
represents the maximum number of vehicles that can be 
intercalated between the two sensors. 
 
b) Logical sensor: Entrance / Exit 
The same reasoning applies to both directions. The 
conservation law is used for “direction 1”: 
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q1, q11 and q12 represent the number of vehicles 
respectively in the meshes (i11, o12, m1) (Eq. 2.1), (i11, o12, 
m1) (Eq. 2.2) and (i11, i12, o12, o11) (Eq. 2.3). 

A sensor si is either functional and noted Si or faulty and 
noted ¬Si.  

 

Fig. 9  Logical sensor “Entrance / Exit” 

If we associate variables to the quantities q1, q11 and q12 by 
incrementing them in the case of an input and decrementing 
them in the case of an output, these three variables should 
fluctuate in a range depending on the distances between the 
sensors. In this case, the variable is said stable. If at least 
one of these values diverges continuously, this means that 
one or more sensors are failing. In this case the variable will 
become unstable and will diverge to -∞ or +∞.  
As long as there is vehicular traffic in the node and the 
variables q1, q11 and q12 remain stable, we can say with 
certainty that all physical sensors are operational. But if 
some or all of these variables become unstable, then one or 
more sensors fail. We assume that physical sensors can 
perform a health test and say whether they are operational 
or not. If there is no traffic for a long time or when the logic 
sensor detects a failure, the sensor requests the physical 
sensors to perform this test to inform the remote center of 
the state of the sensors. 
In the situation where a single sensor breaks down, we 
detect it without having recourse to the health test. In the 
following, we present the case where a single sensor breaks 
down. 
Variables q1, q11 and q12 can be in one of three states: stable, 
unstable positive or unstable negative. We represent these 
three states with a two-bit binary variable qb1, qb11 and qb12. 
(unstable negative: 00, unstable positive: 01 and stable: 10 
and 11. The most significant bit expresses stability 1X = 
stable, 0X = unstable, where X=0/1. When the variable is 
unstable, the least significant bit expresses the type of 
instability; positive 01 or negative 00) 

Several cases are possible, Table 4 gives a summary of 
these cases (x means not applicable).  

Table 4: Failure cases 
 00 1X 01 

qb11 ¬I11 I11, O12, M1 ¬O12 or ¬M1 
qb12 ¬M1 or ¬I12 M1, I12, I11 ¬O11 
qb1 See Table 5 See Table 6 See Table 7 

 

Table 5: Case where q1 is unstable negative 

qb1=00 qb12 
00 1X 01 

qb11 
00 ¬I11 or ¬I12 ¬I11 x 
1X ¬I12 x x 
01 x x x 

Table 6: Case where q1 is stable  

qb1 = 1X qb12 
00 1X 01 

qb11 
00 x x ¬M1 
1X x ok x 
01 x x x 

Table 7: Case where q1 is unstable positive 

qb1 = 01 qb12 
00 1X 01 

qb11 
00 x x x 
1X x x ¬O11 
01 x ¬O12 ¬O11 or ¬O12 

Table 8: Physical sensors failure conditions 
Sensors  Failure conditions 
¬I11 (qb11 == 00)  
¬I12 (qb12 == 00) and (qb11 == 1X) 
¬O11 (qb12 == 01) 
¬O12 (qb11 == 01) and (qb12 == 1X) 
¬M1 (qb1 == 1X) and ((qb11 == 00) and (qb12 == 01) 

 
Table 8 gives the failure conditions for each logical sensor. 
For each message received, the FDP calculates the new state 
of the variables qb1, qb11 and qb12, performs the tests and 
updates the sensor state vector. (“==” and “and” are logical 
operators) 
We have tested the case of direction 1 of Figure 10. 
Vehicles arrive randomly at inputs I11 and I12 with random 
speeds between two limit values. From I11, the vehicle 
decides to exit with a probability of 0.3 or to continue with 
a probability of 0.7. Depending on the physical sensor, we 
increment or decrement the variables q1, q11 and q12. At a 
given time, several vehicles pass through the logical sensor 
in a concurrent manner, which makes it necessary to 
synchronize these variables. We use Javascript to develop 
this test, since its engine uses a single event loop based on 
a single thread. 
We simulated the consecutive failures of the sensors in the 
order {I11, O12, M1, I12, O11}. All failures are separated by 
a stability period. 

 

Fig. 10 Sensors in the direction 1 of the entrance/exit component 

Figure 11 shows the passing case of 1840 vehicles 
generating 3343 events. The sensors I11, O12, M1, I12 and 
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O11 are shown during their period of failure. When I11 
breaks down, we can see that the variables q1 and q12 
diverge negatively and that the variable q12 remains stable. 
This is exactly to the given value of Table 5. The other cases 
of failure also satisfy the values given in Tables 5, 6 and 7. 

 

Fig. 11 Succession of failures of physical sensors without resetting 
variables q1, q11 and q12 

Figure 12 shows the same simulation as that of Figure 11, 
with the difference that the variables are reset at the 
beginning of each stability period. 

 

Fig. 12 Succession of physical sensor failures, with reset of variables q1, 
q11 and q12 

In many cases of physical sensor failures, the logical sensor 
remains operational. Indeed, the EFC procedure (Figure 7) 
uses the captured values of variables q1, q11 and q12 to 
derive the missing event. In the case of I11 sensor failure, 
the number of missed events can be determined from the 
relation q11 = i11 - o12 - m1 (Eq.2.1).  
If we consider that the distances between the sensors are 
null (the initial quantities of q1, q11 and q12 are null). 

Variable q11 represents only the event count of the M1 and 
O12 sensors. The missed value of i11 is -q11.  
Table 9 shows the recovery values in the event of a single 
sensor failure. 

Table 9: Recovering missing values in the case of a single faulty sensor 
Sensors  Failure conditions 
¬I11 i11 = -q11 = -q1 
¬I12 i12 = -q12 = -q1 
¬O11 O11 = q12 = q1 
¬O12 O12 = q11 = q1 
¬M1 M1 = q11 = -q12 

 
In case of failure of two sensors, it is always possible to 
recover the missing values of the sensors. Figure 13 shows 
the simultaneous failure cases of two sensors. Table 10 
summarizes these cases and shows how to recover the 
missed values. (X values not recovered) 

Table 10: Recovery of missing values in the case of two faulty sensors 
 ¬I12 ¬O11 ¬O12 ¬M1 

¬I11 i11 = -q11 
i12 = -q12 

i11 = -q11 

O11 = q12 X m1 = – q12 
i11 =  – q1 

¬I12  X i12 = -q12 

O11 = q12 
m1 = q11 

i12 = – q1 

¬O11   
O11 = q12 

O12 = q11 

m1 = q11 

O11 = q1 

¬O12    
m1 = – q12 
o12 = q1 

 
In case of failure of the pairs (I11, O12) and (I12, O11), the 
missed values are not recoverable. In these cases, either we 
consider that the sensor fails globally, or we rely on the 
historical data of the sensor to estimate the missing values. 

 

Fig. 13 Dual failure of sensors 
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3.2.2 Remote detection  

The remote processing center receives the messages and 
ingests them into the streaming platform. See Figure 14. 
The detection procedure retrieves a copy of each message 
and checks its status. If it detects a partial failure, it reports 
it by generating an alert message and updates the highway 
network graph. Depending on the changes made to the 
graph, it may be necessary to correct the events before 
pushing them into the traffic estimation topology in the 
network segments. 

 

Fig. 14 Remote processing center architecture  

When a logical sensor does not detect a vehicle for a given 
time period (Figure 7), the CU sends a heartbeat message 
containing the last state of the physical sensors. To detect 
global sensor failures, the detection procedure in Figure 14 
records the last date of the last sensor message in each node 
of the graph. Since each event is identified by the triplet 
containing the predecessor sensor, the current sensor and 
the next sensor. The dates of the last message coming from 
the predecessor and the successor are compared to the 
current date. If this comparison exceeds a certain threshold, 
it means that the sensor has failed. In the case of detection 
of a fault, the adjacent sensor is also checked and so on. 

4. Conclusion 

Highway networks are increasingly instrumented by adding 
different types of sensors at different locations. This 
generates a flow of huge and disparate events that must be 
processed in real time to provide an estimate of the state of 
the highways. In the case of a sensor failure, calculations 
can lead to erroneous decisions. In this article, we have 
proposed an approach that allows to map a node of the 
highway network graph to a logical sensor. Depending on 
the highway components, abstractions of logical sensors are 
defined using the composition. Each logical sensor has a 
processing and communication capability that allows it to 
manage its physical constituents and perform fault detection 
routines. Using the conservation law, we have determined 
the failure conditions of physical sensors and we have 

shown that the use of a streaming-oriented approach is 
appropriate in this case. We believe that adopting this 
approach will facilitate management and reasoning in major 
highway networks. We plan in future works to propose a 
detailed model of the remote processing platform by 
showing the incidences of failures on the graph of the 
highway network. 
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