
IJCSNS International Journal of Computer Science and Network Security, VOL.17 No.12, December 2017

49

Manuscript received December 5, 2017
Manuscript revised December 20, 2017

Smart highways sensor network modeling: Real-time sensor fault
detection

Abdelaziz Daaif † , Omar Bouattane†, Mohamed Youssfi† and Sidi Mohamed Snineh†,

SSDIA Laboratory ENSET Mohammedia, Hassan II University of Casablanca, Morocco

Summary
Smart highways use a variety of sensors to capture the passage of
vehicles and send events to the remote processing center in real
time. The failure of a sensor can lead to processing errors and
unfortunate decisions. This paper proposes a fault-tolerant
architectural model, which facilitates the reasoning on large
networks of highway sensors. This model is based on the
aggregation of a set of physical sensors into a single logical sensor.
The proposed approach allows to map a logical sensor to each
node of the highways network graph. It also allows to implement
real-time fault detection and correction procedures at the level of
the logical sensors. To validate the proposed approach, some
simulation results of a failure detection in the "input / output"
component of a highway are presented to show the effectiveness
of this model.
Key words:
Realtime event processing; Smart highways; Distributed
processing; Sensors network; Sensors fault detection.

1. Introduction

Nowadays, surveillance, control and management of traffic
in highways has become vital [1][2][3]. Mismanagement
leads to considerable losses in travel time and energy and
increases the risk of accidents and air pollution [4]. In recent
years, there has been considerable development in the field
of road traffic sensors. In [5][6] the authors present a road
traffic sensor that integrates advanced embedded
components, managed by distinctive algorithms for the
implementation of various traffic monitoring applications.
The sensor can detect, count, accurately estimate speed and
length, and classify vehicles in real time. In [7], authors
present an instrumentation model of smart highways by
breaking down highways into hierarchical cells. However,
their approach is based on the determination of sensor
locations and does not show the instrumentation of the
various components of a highway network.
Highways are increasingly instrumented and generate huge
data from a multitude of sensors. Several fusion techniques
use multi-source data to estimate the state of the traffic. In
[8], the authors combine the location data of the users’
mobile phones and the data captured by the loop detectors
to accurately assess the state of the road. In [9], authors
mixed data coming from connected vehicles and on-site
sensors to estimate traffic state. Most research studies
assume that the sensors are perfect and do not consider in

their models the case of failure of one or more sensors. The
highway networks are modeled by oriented graphs and the
events generated by the sensors are associated with one or
more nodes of the graph. When a sensor fails, the traffic
state computational models must detect the failure and
adapt the graph to the new situation.
The present work is closely based on the highway networks
model used in [10]. Thus, we propose an architectural
approach that maps each node of the highway network
graph to a logical sensor. In this model, a logical sensor is a
processing unit associated with a set of physical sensors. It
is equipped with a processing capacity to manage all of its
components and a communication channel connecting it to
the remote processing center. This approach reveals several
advantages as:
• It facilitates the reasoning on the global topology of the

logical sensors, since this topology corresponds exactly
to the graph of the highways network,

• The synchronization of the events is done only at the
logical sensors level,

• The detection of the physical sensors failures is done at
the logical sensor level,

• It reduces the communication costs with the remote
processing center by collecting multiple events in a
single message,

• The logical sensors can implement algorithms for
vehicle counting, classification and keep a history on
which they can relay in case of failure of one or several
sensors since they are equipped with storage,
processing and communication capabilities.

In the following section, we will define the components of
a highways network and the model of composition of their
logical sensors. Section 3 is dedicated to the study of failure
cases and the approach used for its detection. The last
section gives some concluding remarks.

2. Architectural model of smart highways

2.1 Highways network components

A highway is described by a sequence of components that
always starts with an entry, followed by several
intermediate nodes, and ends with an exit. Intermediate

IJCSNS International Journal of Computer Science and Network Security, VOL.17 No.12, December 2017 50

nodes may be entrance / exit, service areas, tolls or
exchangers. The exchangers make it possible to
interconnect two or more highways. See Figure 1. All these
components are instrumented by vehicle passage sensors.
To increase the accuracy of traffic monitoring processes,
sensors are interposed between the components according
to the distances separating them and the intended accuracy.

Fig. 1 Smart highways components

Components and sensors are modeled as logical sensors.
Each sensor has a unique identifier. The highways network
is modeled by an oriented graph whose vertices are
represented by logical sensors and edges by highway
segments. See Figure 2.

Fig. 2 Highways sensors graph

2.2 Logical sensor model

The highway network is broken down into a set of segments
that are interconnected by sensors. The goal is to count in
real time the number of vehicles in each segment using the
conservation law. The composition of a logical sensor is
realized so that a physical sensor must not connect more
than two segments.
To be able to identify a vehicle passing, the sensor must
generate an event that uniquely identifies the direction taken
by the vehicle. As can be seen in Figure 2, a vehicle

traveling from S-A1-35 sensor to SA-1-33 must pass
through the S-A1-34 sensor. The latter will generate an
event that will be identified by the triplet (S-A1-35, S-A1-
34, S-A1-33). More generally, the passage of a vehicle
through a logical sensor having the sidi identifier generates
an event identified by (sidi-1, sidi, sidi+1).

For each component type of a highway, the logical sensor
must be decomposable into a set of physical sensors to
distinguish the different possible paths. See Table I .

Table 1: Physical sensors

Component Logical
sensor Physical sensors

Entrance

Entrance/Exit

Exchanger

Srvice Area

Sensor / Toll

Exit

Fig. 3 Generated events during a given route

Each event generated by a physical sensor contains:
• The event identifier (sidi-1, sidi, sidi+1)
• The speed of vehicle

IJCSNS International Journal of Computer Science and Network Security, VOL.17 No.12, December 2017 51

• The passage date (Timestamp)
• Other information depending on the sensor

characteristics.
Figure 3 shows the example of a route starting with an
Entrance / Exit (step 1 - logical sensor Si-1), stopping in a
service area (steps 2 and 3 - logical sensor Si) and then
going through an exchanger (step 4 - logical sensor Si+1).
Table 2 presents for each step, the event identifier.

Table 2: Event identifier

Step Logical sensor Event identifier
1 Si-1 (Null, Si-1, Si)
2 Si (Si-1, Si, Si)
3 Si (Si, Si, Si+1)
4 Si+1 (Si, Si+1, Si+2)

For logical sensor architecture, each logical sensor type
consists of a set of physical sensors and a communication
unit (CU) that sends the generated events to the processing
center (PC). See Figure 3. To facilitate the synchronization
and implementation of the sensors, the events are
timestamped in the CU.

Fig. 4 Logical sensor architecture

3. Detection of faulty sensors

3.1 Failure scenarios

Failures can occur at multiple levels of distributed sensor
architecture. We list below the various possible fault
locations:
1. Failure of communication between CU and PC,
2. Failure of CU,
3. Failure of some physical sensors or their communication

link with the CU.

The first two cases represent the failure of the entire logical
sensor (global failure). The third case represents the failure
of some of the physical sensors (partial failure).
During an overall sensor failure, the entire sensor is
disabled and the graph is updated to reflect the new situation.
The adjacent logical sensors to the defective sensor are not

aware of this fact, they continue to generate events referring
to this sensor.

At any time, a logical sensor can only be in one of these
three states (Figure 5):
• Functional (FS)
• Global failure (GF)
• Partial failure (PF)

Fig.5 The three states of logical sensors

Transitions 1 and 2 of Figure 5 are detected locally by the
sensor itself while transitions 3, 4 and 5 are detected by a
remote procedure that runs in the processing center.

3.2 Failure detection

3.2.1 Local detection

For each type of logic sensor, we use the conservation law
to determine the defective physical sensors. See Eq. 1 and
Figure 6.

Fig. 6. Conservation law

∑ oj - ∑ ij = q (1)
With:

q: number of vehicles inside the sensor
oj: number of vehicles left
ij: number of vehicles entered

To be able to use the conservation law, additional physical
sensors must be added to each type of logical sensor. Table
3 summarizes the modifications made to the different
logical sensors.

IJCSNS International Journal of Computer Science and Network Security, VOL.17 No.12, December 2017 52

Table 3: Modifications made to logical sensors

Component Logical
sensor Physical sensors

Entrance

Entrance/ Exit

Exchanger

Service area

Sensor

Exit

The addition of further sensors makes it possible to
implement failure detection routines, but also makes the
component more efficient and fault-tolerant.
UC uses a streaming-oriented approach (See Figure 7).
When an event arrives from a physical sensor, it is first
timestamped and then used on the one hand to reset the
heartbeat timer, on the other hand to feed the failure
detection procedure (FDP). The latter performs its
procedure and in case of failure, requests a health check at
the faulty sensor. The Event Filtering and Correction (EFC)
procedure filters events according to the state of the
physical sensors. In the case of a failure, this procedure
attempts to correct the events based on the sensors state and
counter values provided by FDP. Finally, the selected event
is enriched with status information and sent to the PC.

Fig. 7 Communication unit (CU)

In what follows, we propose the detection approach used for
the detection of failures in the logical sensors "Entrance"
and "Entrance / Exit". The other sensors use the same
approach.
a) Logical sensor: Entrance
We assume that the distance between the physical sensors
in each direction is negligible (See Figure 8). The number
of vehicles entering is equal to the number of vehicles
leaving (i1 = o1 and i2 = o2). For each direction, we
associate a variable (respectively d1 and d2). When a
vehicle enters, we increment the corresponding variable and
decrement it when it comes out.

Fig. 8 Logical sensor « Entrance »

If all the sensors are working correctly, both variables must
have one of the values (-1, 0 or 1). For any other value, the
sign of the variable determines which of the two sensors is
defective.
 In the real case, the distance between the physical sensors
is not null and at the time of putting into operation of the
detection procedure, it is not known the number of vehicles
present between the two sensors (d1 = i1 - o1 = q1 and d2 =
i2 - o2 = q2). The quantities q1 and q2 will fluctuate and
remain within the range [-qmax, qmax]. The value qmax
represents the maximum number of vehicles that can be
intercalated between the two sensors.

b) Logical sensor: Entrance / Exit
The same reasoning applies to both directions. The
conservation law is used for “direction 1”:

IJCSNS International Journal of Computer Science and Network Security, VOL.17 No.12, December 2017 53

q1, q11 and q12 represent the number of vehicles
respectively in the meshes (i11, o12, m1) (Eq. 2.1), (i11, o12,
m1) (Eq. 2.2) and (i11, i12, o12, o11) (Eq. 2.3).

A sensor si is either functional and noted Si or faulty and
noted ¬Si.

Fig. 9 Logical sensor “Entrance / Exit”

If we associate variables to the quantities q1, q11 and q12 by
incrementing them in the case of an input and decrementing
them in the case of an output, these three variables should
fluctuate in a range depending on the distances between the
sensors. In this case, the variable is said stable. If at least
one of these values diverges continuously, this means that
one or more sensors are failing. In this case the variable will
become unstable and will diverge to -∞ or +∞.
As long as there is vehicular traffic in the node and the
variables q1, q11 and q12 remain stable, we can say with
certainty that all physical sensors are operational. But if
some or all of these variables become unstable, then one or
more sensors fail. We assume that physical sensors can
perform a health test and say whether they are operational
or not. If there is no traffic for a long time or when the logic
sensor detects a failure, the sensor requests the physical
sensors to perform this test to inform the remote center of
the state of the sensors.
In the situation where a single sensor breaks down, we
detect it without having recourse to the health test. In the
following, we present the case where a single sensor breaks
down.
Variables q1, q11 and q12 can be in one of three states: stable,
unstable positive or unstable negative. We represent these
three states with a two-bit binary variable qb1, qb11 and qb12.
(unstable negative: 00, unstable positive: 01 and stable: 10
and 11. The most significant bit expresses stability 1X =
stable, 0X = unstable, where X=0/1. When the variable is
unstable, the least significant bit expresses the type of
instability; positive 01 or negative 00)

Several cases are possible, Table 4 gives a summary of
these cases (x means not applicable).

Table 4: Failure cases
 00 1X 01

qb11 ¬I11 I11, O12, M1 ¬O12 or ¬M1
qb12 ¬M1 or ¬I12 M1, I12, I11 ¬O11
qb1 See Table 5 See Table 6 See Table 7

Table 5: Case where q1 is unstable negative

qb1=00 qb12
00 1X 01

qb11
00 ¬I11 or ¬I12 ¬I11 x
1X ¬I12 x x
01 x x x

Table 6: Case where q1 is stable

qb1 = 1X qb12
00 1X 01

qb11
00 x x ¬M1
1X x ok x
01 x x x

Table 7: Case where q1 is unstable positive

qb1 = 01 qb12
00 1X 01

qb11
00 x x x
1X x x ¬O11
01 x ¬O12 ¬O11 or ¬O12

Table 8: Physical sensors failure conditions
Sensors Failure conditions
¬I11 (qb11 == 00)
¬I12 (qb12 == 00) and (qb11 == 1X)
¬O11 (qb12 == 01)
¬O12 (qb11 == 01) and (qb12 == 1X)
¬M1 (qb1 == 1X) and ((qb11 == 00) and (qb12 == 01)

Table 8 gives the failure conditions for each logical sensor.
For each message received, the FDP calculates the new state
of the variables qb1, qb11 and qb12, performs the tests and
updates the sensor state vector. (“==” and “and” are logical
operators)
We have tested the case of direction 1 of Figure 10.
Vehicles arrive randomly at inputs I11 and I12 with random
speeds between two limit values. From I11, the vehicle
decides to exit with a probability of 0.3 or to continue with
a probability of 0.7. Depending on the physical sensor, we
increment or decrement the variables q1, q11 and q12. At a
given time, several vehicles pass through the logical sensor
in a concurrent manner, which makes it necessary to
synchronize these variables. We use Javascript to develop
this test, since its engine uses a single event loop based on
a single thread.
We simulated the consecutive failures of the sensors in the
order {I11, O12, M1, I12, O11}. All failures are separated by
a stability period.

Fig. 10 Sensors in the direction 1 of the entrance/exit component

Figure 11 shows the passing case of 1840 vehicles
generating 3343 events. The sensors I11, O12, M1, I12 and

IJCSNS International Journal of Computer Science and Network Security, VOL.17 No.12, December 2017 54

O11 are shown during their period of failure. When I11
breaks down, we can see that the variables q1 and q12
diverge negatively and that the variable q12 remains stable.
This is exactly to the given value of Table 5. The other cases
of failure also satisfy the values given in Tables 5, 6 and 7.

Fig. 11 Succession of failures of physical sensors without resetting
variables q1, q11 and q12

Figure 12 shows the same simulation as that of Figure 11,
with the difference that the variables are reset at the
beginning of each stability period.

Fig. 12 Succession of physical sensor failures, with reset of variables q1,
q11 and q12

In many cases of physical sensor failures, the logical sensor
remains operational. Indeed, the EFC procedure (Figure 7)
uses the captured values of variables q1, q11 and q12 to
derive the missing event. In the case of I11 sensor failure,
the number of missed events can be determined from the
relation q11 = i11 - o12 - m1 (Eq.2.1).
If we consider that the distances between the sensors are
null (the initial quantities of q1, q11 and q12 are null).

Variable q11 represents only the event count of the M1 and
O12 sensors. The missed value of i11 is -q11.
Table 9 shows the recovery values in the event of a single
sensor failure.

Table 9: Recovering missing values in the case of a single faulty sensor
Sensors Failure conditions
¬I11 i11 = -q11 = -q1
¬I12 i12 = -q12 = -q1
¬O11 O11 = q12 = q1
¬O12 O12 = q11 = q1
¬M1 M1 = q11 = -q12

In case of failure of two sensors, it is always possible to
recover the missing values of the sensors. Figure 13 shows
the simultaneous failure cases of two sensors. Table 10
summarizes these cases and shows how to recover the
missed values. (X values not recovered)

Table 10: Recovery of missing values in the case of two faulty sensors
 ¬I12 ¬O11 ¬O12 ¬M1

¬I11 i11 = -q11
i12 = -q12

i11 = -q11

O11 = q12 X m1 = – q12
i11 = – q1

¬I12 X i12 = -q12

O11 = q12
m1 = q11

i12 = – q1

¬O11
O11 = q12

O12 = q11

m1 = q11

O11 = q1

¬O12
m1 = – q12
o12 = q1

In case of failure of the pairs (I11, O12) and (I12, O11), the
missed values are not recoverable. In these cases, either we
consider that the sensor fails globally, or we rely on the
historical data of the sensor to estimate the missing values.

Fig. 13 Dual failure of sensors

IJCSNS International Journal of Computer Science and Network Security, VOL.17 No.12, December 2017 55

3.2.2 Remote detection

The remote processing center receives the messages and
ingests them into the streaming platform. See Figure 14.
The detection procedure retrieves a copy of each message
and checks its status. If it detects a partial failure, it reports
it by generating an alert message and updates the highway
network graph. Depending on the changes made to the
graph, it may be necessary to correct the events before
pushing them into the traffic estimation topology in the
network segments.

Fig. 14 Remote processing center architecture

When a logical sensor does not detect a vehicle for a given
time period (Figure 7), the CU sends a heartbeat message
containing the last state of the physical sensors. To detect
global sensor failures, the detection procedure in Figure 14
records the last date of the last sensor message in each node
of the graph. Since each event is identified by the triplet
containing the predecessor sensor, the current sensor and
the next sensor. The dates of the last message coming from
the predecessor and the successor are compared to the
current date. If this comparison exceeds a certain threshold,
it means that the sensor has failed. In the case of detection
of a fault, the adjacent sensor is also checked and so on.

4. Conclusion

Highway networks are increasingly instrumented by adding
different types of sensors at different locations. This
generates a flow of huge and disparate events that must be
processed in real time to provide an estimate of the state of
the highways. In the case of a sensor failure, calculations
can lead to erroneous decisions. In this article, we have
proposed an approach that allows to map a node of the
highway network graph to a logical sensor. Depending on
the highway components, abstractions of logical sensors are
defined using the composition. Each logical sensor has a
processing and communication capability that allows it to
manage its physical constituents and perform fault detection
routines. Using the conservation law, we have determined
the failure conditions of physical sensors and we have

shown that the use of a streaming-oriented approach is
appropriate in this case. We believe that adopting this
approach will facilitate management and reasoning in major
highway networks. We plan in future works to propose a
detailed model of the remote processing platform by
showing the incidences of failures on the graph of the
highway network.

References
[1] M. Pucher et al., "Multimodal highway monitoring for robust

incident detection," 13th International IEEE Conference on
Intelligent Transportation Systems, Funchal, 2010, pp. 837-
842.

[2] F. J. Villanueva, J. Albusac, L. Jiménez, D. Villa and J. C.
López, "Architecture for Smart Highway Real Time
Monitoring," 2013 27th International Conference on
Advanced Information Networking and Applications
Workshops, Barcelona, 2013, pp. 1277-1282.

[3] M. Fountoulakis, N. Bekiaris-Liberis, C. Roncoli, I.
Papamichail and M. Papageorgiou, "Highway traffic state
estimation with mixed connected and conventional vehicles:
Microscopic simulation-based testing," 2016 IEEE 19th
International Conference on Intelligent Transportation
Systems (ITSC), Rio de Janeiro, 2016, pp. 1761-1766.

[4] Csikós, Alfréd & Varga, István. (2012). Real-time Modeling
and Control Objective Analysis of Motorway Emissions.
Procedia - Social and Behavioral Sciences. 54. 1027-1036.
10.1016/j.sbspro.2012.09.818. doi: 10.1109/ITSC.2015.265

[5] W. Balid, H. Tafish and H. H. Refai, "Development of
Portable Wireless Sensor Network System for Real-Time
Traffic Surveillance," 2015 IEEE 18th International
Conference on Intelligent Transportation Systems, Las
Palmas, 2015, pp. 1630-1637.

[6] W. Balid, H. Tafish and H. H. Refai, "Intelligent Vehicle
Counting and Classification Sensor for Real-Time Traffic
Surveillance," in IEEE Transactions on Intelligent
Transportation Systems, vol. PP, no. 99, pp. 1-11. doi:
10.1109/TITS.2017.2741507

[7] S. Ghosh, S. Rao and B. Venkiteswaran, "Sensor Network
Design for Smart Highways," in IEEE Transactions on
Systems, Man, and Cybernetics - Part A: Systems and
Humans, vol. 42, no. 5, pp. 1291-1300, Sept. 2012. doi:
10.1109/TSMCA.2012.2187185

[8] B. Jin, Y. Cui and F. Zhang, "Fusing Static and Roving
Sensor Data for Detecting Highway Traffic Conditions in
Real Time," 2016 IEEE 40th Annual Computer Software and
Applications Conference (COMPSAC), Atlanta, GA, 2016,
pp. 807-816. doi: 10.1109/COMPSAC.2016.120

[9] M. Fountoulakis, N. Bekiaris-Liberis, C. Roncoli, I.
Papamichail and M. Papageorgiou, "Highway traffic state
estimation with mixed connected and conventional vehicles:
Microscopic simulation-based testing," 2016 IEEE 19th
International Conference on Intelligent Transportation
Systems (ITSC), Rio de Janeiro, 2016, pp. 1761-1766. doi:
10.1109/ITSC.2016.7795796

[10] Abdelaziz Daaif, Omar Bouattane, Mohamed Youssfi and
Oum El Kheir Abra, “An Efficient Distributed Traffic Events
Generator for Smart Highways” International Journal of
Advanced Computer Science and Applications(ijacsa), 8(7),
2017. http://dx.doi.org/10.14569/IJACSA.2017.080717

IJCSNS International Journal of Computer Science and Network Security, VOL.17 No.12, December 2017 56

Abdelaziz Daaif was born in 1965 in
Ouaouizerth, Morocco. He is an
associate professor in the Department
of Mathematics and Computer Science,
ENSET, Hassan II University in
Casablanca since 1994. He received
his master's degree in "Distributed
information systems." in 2014. Currently,

he is a Phd student. His research focuses on parallel and
distributed systems, multi-agent systems, Semantic Web,
High Performance Computing and Software Engineering.

Omar Bouattane received his PhD
from the University Hassan II of
Casablanca, Morocco in 2001 in
Parallel Computing and Image
processing. He currently serves as a full
Professor in the Department of
Electrical Engineering at ENSET of

Mohammedia. He has more than 100 scientific publications
in various domains of Computational Intelligence, high
performance computing, image processing parallel
computing and renewable energy. He has registered 6
national and PCT international Patents regarding to the
networking technology and signal synthesis. He was
awarded as the owner of the best PCT patent in Morocco on
2011. Since 2012, He was the head of the laboratory of
Signals Distributed Systems and Artificial Intelligence. He
involved his laboratory in several partnership activities and
developed many funded projects in Morocco and in his
university.

Mohamed Youssfi was born in 1970 at
Ouarzazate, in Morocco. He serves as
Professor Researcher in Department of
Mathematics and Computer Science,
ENSET, Hassan II University of
Casablanca since 1996. He received
his PhD (Doctorat de 3ème cycle) from

The Mohammed V University of Rabat, Morocco, 1996 in
Computer Science and his PhD (Doctorat d’Etat) from The
Mohammed V University of Rabat, Morocco, 2015 in Parallel
and Distributed Systems. His research is focused on various
domains of Computational Intelligence as Parallel and
Distributed Systems, Parallel Architectures, Multi Agent
Systems, Web Semantic, High Performance Computing and
Software Engineering.

Sidi Mohamed Snineh was born in 1968
in Casablanca, Morocco. He is a professor
in the Department of Mathematics and
Computer Science, CRMEF in Marrakech
since 1998. He obtained two masters, one
in "Engineering and Management of
Information Systems" from the University

Toulouse I Social Sciences in 2006 and the other in
"Distributed Information Systems" in 2016. Currently, he is a
PhD student in the second year. His research focuses on
parallel and distributed systems, multi-agent systems,
semantic Web, high performance computing.

