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Abstract:  
This paper discusses the parametric model based on partly 
interval censored data, which is occur in many fields including 
engineering, medical, economic and other studies. By Partly 
Interval Censored (PIC) we mean that the exact failure time for 
some subject is observed but for the others are only known to fall 
within an interval [1]. In medical and reliability studies the most 
important function is the survival function. However, the survival 
function will be estimated using a parametric model based on 
imputation techniques in the present of PIC data and simulation 
data. Our proposal model is useful and easily implemented using 
R software. 
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1. Introduction 

The Cox’s regression model is flexible model that can be 
used as a semi-parametric model or parametric methods 
and therefore it is the most practical and well-known 
statistical model to investigate the relationship between 
predictors and the time-to-event through the hazard 
function [2, 3]. In this model, there was no need for the 
researcher to assume a particular survival distribution for 
the data [4]. The only assumption made in the model is 
about the proportional hazards and this is why it is also 
called Cox proportional hazards regression [5]. 
Unlike the Cox’s regression model that does not specify the 
distribution function of hazard function, there are several 
parametric models such as Weibull, exponential, log-
normal, and log-logistic models where hazard function has 
to be specified [6]. Studies have indicated that under certain 
circumstances, such as strong effect or strong time trend in 
covariates or follow-up depending on covariates, 
parametric models are good alternatives to the Cox’s 
regression model [4, 5, 6]. If the parametric models better 
fit the data, a more precise estimation of parameters would 
be achieved [7].  
Parametric model based on Cox model have been proposed 
by many authors such as; [8]; [9]; [10]; [11]; [12]; ([13], 
14]); [15]; etc.  
Maximum likelihood (ML) is used for estimation of 
parameters in survival parametric models, while Cox’s 
regression model is used for partial likelihood. However, 
the model that presented in this paper is the PHE based on 
the EM algorithm.  

2. The Model  

The Cox model is the most widely used model in survival 
analysis area such as filed of clinical trials, engineering, 
economic, etc. This model was introduced by Cox in 1972 
for analysis of survival data with and without events.  
Let T  be continuous random variable, ),...,( 1 ′= pθθθ  

be a vector regression parameters, ),...,( 1 pzzz = be a 
exploratory variable associated with the individual or 
covariates and )(0 th is a baseline hazard, )(0 th . Then the 
model can be written as; 

)exp()()/( 0 θzthzth =  (1) 

2.1The Proportional Hazards Exponential model 
(PHE) 

Other than Cox model in survival analysis we can used 
model such as exponential and Weibull, both of which are 
parametric. In additional to that, the Cox PH model, the 
Weibull model allows more flexibility because the 
associated hazard rate is not constant with respect to time. 
In other words, if we replace the baseline hazard in 
equation (1) by given the exponential distribution. In this 
case, the pdf of the exponential incorporating the regressor 
variables (θ ′ ) is given as; 

 )exp()|( zz eteztf θθ ′′ −=   (2) 
and reliability function as  

 
zeteztR

θ ′−= .),( . (3) 
We can imply that the PH failure rate )|( zth  of the 
exponential distribution as  
 zethzth θ ′= )()|( 0   (4) 
and thus the baseline hazard is given by 
 1)(0 =th .   (5) 
[16] showed the log-likelihood function as follows: 
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If we replace equation (2) and (3) into equation (6). 
Equation (6) become; 
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The first and second derivative of the equation (7) with 
respect to iθ  (i= 1, 2, …, m) are given by: 
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and 
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The values of estimated parameters )ˆ,...,ˆ(ˆ
1 mθθθ =  are 

obtained by letting equation (9) equal to zero
),....,1( mii =θ . An iterative process is used to solve this 

system of equations for .θ  However, with Newton-
Raphson method we may encounter problems such as 
overflow or degeneration especially when the initial values 
chosen are not appropriately close to parameter estimates. 
Convergence may not be achieved. In this paper we shall 
adopt the EM algorithm method to our model since the EM 
algorithm uses the likelihood estimate based on the 
expected values given for initial condition, which then can 
be maximized in the standard way. It’s also preferable to 
the Newton-Raphson method, because the likelihood for 
incomplete data is estimated through the expected values. 

3. The EM algorithm  

The Expectation-Maximization (EM) algorithm is used to 
find the model parameters when the data is incomplete. It 
is an iterative procedure to approximate the maximum 
likelihood function. The EM algorithm for parametric 
model is a useful tool in situations when the observed data 

likelihood function is complicated, while the complete data 
likelihood function is straightforward ([17]; [18]). The 
algorithm contains a sequence of iterations between the E-
step and the M-step.  

3.1. E-step 

The conditional expectation of l  based on failure time ( FT ) 
given the observation ),,( zwy , and the parameter 

estimates at the previous step )(rθ (is the estimate of the 
parameter at the r-th iteration) is computed: 

];,,|);([)|( )()( r
F

r zwyTlEQ θθθθ =   (10) 

3.2. M-step 

)|( )(rQ θθ  obtained from the E-step is maximized using 
the complete data procedure. In this section, we review 
some basic results of the EM algorithm. 
 
The function )|( θθ ′Q  is finite dimensional and a 
differentiable function of θ  and θ′ . If θ  is functional, 
then differentiability condition may not be satisfied. This is 
the reason why we include a parametric step in our 
proposed method. 
 
THEOREM 1.3: [17] Suppose ,...,2,1,0,)( =rrθ  is an 
instant of a generalized EM algorithm (GEM) such that 

0)|( )( =
∂
∂ rQ θθ
θ

.  

THEOREM 1.4: [17] Suppose ,...,2,1,0,)( =rrθ  is an 
instant of a generalized EM algorithm (GEM) such that 

(1) 0)|( )( =
∂
∂ rQ θθ
θ

 

(2) )(rθ  converges to θ ′  

(3) )|( )(
2

rQ θθ
θθ ′∂∂

∂
 is negative definite with 

eigenvalues bounded away from zero. Then  

 ,0)( =′
∂
∂ θ
θ Wl  and )|(

2

θθ
θθ

′′
′∂∂

∂ Q  is 

negative definite. 
These two theorems justify the EM for finite dimensional 
parameter space. Moreover, the log-likelihood for an 
uncensored exponential sample is given by: 

 ∑
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From equation (11) and equation (10). Then, we can write 
equation (10) as: 

http://www.statisticshowto.com/what-is-a-parameter-statisticshowto/
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(12) 
Two steps was used to fit regression parametric models to 
the data (Clayton,1985). First is to calculate the E-step as 
follows: 

θθθ /)1()];,|);([ , iiiiiF wywyTlE −+= . (13) 
From equation (13) and (12). Equation (12) can be written 
as: 

∑
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r dnynQ
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)( /)(log)|( θθθθθ , (14) 

where d is number of failures observed at time ti .  
Now we can updates the parameters by fitting the simple 
model to the transformed observations based on M-step. 
However, in the paper we update estimate for θ  by 

compute the value of 1
ˆ
+iθ  which maximizes equation (14): 

 )|(maxˆ )(1
1

r
i Q θθθ −
+ = .  (15) 

The two steps may be combined to give the following 
formula ([12]): 
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However, M step is equivalent to finding the solution to  

 ,0]];,|);([[ , =
∂
∂ θθ
θ iiiF wyTlE  (17) 

where the maximum likelihood estimate of θ  for which 

solution is ,0)];([ , =
∂
∂

iFTl θ
θ

 can be solved iteratively 

by solving equation (17). 

4. Numerical Examples 

We applied the PHE model mentioned early in this paper 
to the breast cancer data that have been modified by [19]. 
There was 46 patient treated by Radiation (R) and 48 
patients treated by Radiation + adjuvant Chemotherapy 
(R+C). Reader refer to [19] for more detail to this data set.  
Figure 1 show the results obtained based on parametric 
exponential which is look almost similar to the one 
obtained by Turnbull. The hazard rate found to be 0.0292 
and lower and upper bound are 0.0239 0.0356. Also, the 
likelihood ratio test is 14.2 with their P-value 0.000163. In 
additional to that, the result obtained by Turnbull from 
interval data set is found to be similar to the one obtained 
by our model from PIC data sets. However, based on PIC 
data, the midpoint show better results in term of smallest P-
value compared to the one obtained by Turnbull.  

5. Simulation Data  

The simulated data were generated 1000 times (with 819 
uncensored, 181 censored and the total time at risk is 
50819.8) from breast cancer data with two failure times (R, 
R+C) that is mentioned early in last section. The generation 
of data was carried out by using R software. To generate 
the data we used the mean and standard deviation as 
3.5711595, 0.6394705 for R, and 4.0205093, 0.3773525 
for R+C, respectively.  
Figure 2 showed the result of the estimation of survival 
function obtained by exact observation-Cox compared with 
parametric exponential model based on midpoint 
imputation technique. The estimated of the survival 
function from the two type of failures is very similar to the 
one obtained by our model compared with one obtained by 
Cox with exact data. The estimated hazard rate found to be 
0.0161 with lower and upper bound are 0.0150 0.0173, 
respectively. However, this result indicated that our 
method is better in term of likelihood ratio test 42.54 and 
P-value 0.0024.  

 

Figure 1: Survival function estimated by midpoint imputation compared 
with Turnbull based  On exponential model from cancer PIC data 

 

Figure 2: Survival function estimated by exact-observations Cox vs 
exponential model from simulation data 
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6. Conclusion  
The parametric Cox’s PHE has been used successfully to 
investigate the two causes of failures. The parameters in the 
model was estimated based EM algorithm. Our approach 
showed better result compared to the one obtained by 
Turnbull and exact observation Cox in term of P-value and 
likelihood ratio test via the simulation studies. Under 
exponential distribution, it was found that maximum 
likelihood estimate using the EM algorithm is preferable to 
others such as the method of Newton-Raphson, because the 
likelihood for complete data for Cox’s model has a much 
simpler form than the likelihood corresponding to the Cox 
regression hazard model with censored data. Moreover, the 
EM algorithm does not always require the inversion of 
large matrices of large values.  
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