
IJCSNS International Journal of Computer Science and Network Security, VOL.17 No.12, December 2017

91

Manuscript received December 5, 2017
Manuscript revised December 20, 2017

Intelligent Method for Software Requirement Conflicts
Identification and Removal: Proposed Framework and Analysis

Maysoon Aldekhail and Djamal Ziani,

King Saud University, Riyadh, Saudi Arabia

Summary
Requirement engineering has recently assumed a significant role
in software engineering. In software development, requirements
should be correct, complete and consistent. Consistency refers to
requirements without any conflicts or contradictions. Requirement
consistency is a critical factor in project success as any conflict
may waste cost, time and effort. This paper will propose a novel
intelligent approach in finding and solving conflicts in functional
requirements. The approach works at two levels; a rule-based
system to detect the conflicts in functional requirements; and the
application of genetic algorithm to resolve conflicts and optimize
the set of function requirements to produce minimum conflicts
Key words:
Requirement conflicts, genetic algorithm, rule-based system

1. Introduction

Conflicts among requirements are a serious concern for
project success. In requirement engineering, the term
conflict involves inference, interdependency, and
inconsistency between requirements [20]. In a recent
research study [21], a very high number of conflicting
requirements was identified among software projects. It was
reported to have discovered n2 conflicts in n requirements.
Another research study [19] has reported 40% to 60% of
requirements in conflict. Previous studies have stated that
one of the main reason for high project cost and time is the
failure in managing requirement conflicts [6]. To prevent
repetition of all the phases, it is important to detect and
resolve conflicts in early phases of the project’s lifecycle
[15]. Many research studies have shown the risks of
working with requirements that are in conflicts with other
requirements. These risks include overtime or over budget
which can lead to project failure. At the very least, it would
result in extra effort being expended. The requirement phase
is the most critical phase of the software development cycle
because the quality of the requirements phase affects the
overall quality of the software. Wrong or incomplete
requirements may cause incomplete or incorrect project [3].

The literature review [2] demonstrated that most techniques
proposed to decrease the risks and detect requirements
conflicts are manual. Thus, this takes a lot of time and effort
for the software engineering techniques whereas the

automated approaches are tools based on human analysis.
However, these may incur costs to the project due to human
error and wrong decision making. Moreover, most of the
proposed approaches have not been evaluated to measure
their rate of efficiency. No previous works have used
Artificial Intelligence (AI) techniques to find or resolve
conflicts. The application of AI techniques in Requirement
Engineering (RE) is an emerging area of research that
includes the development of ideas across two domains.

By applying an artificial intelligence technique to detect and
resolve conflicts in requirements, it would replace human
beings and thus, save a lot of time and effort for engineers.
Additionally, this increases the quality of analysing the
requirements, which in turn provides more accurate results
in detecting and resolving conflicts. Moreover, using
artificial intelligence technique would lack the human side
that uses rational thinking and thus, reduce costs the project
would have incurred due to human error and incorrect
decisions. Artificial intelligence techniques are self-
learning and evolving; these will provide better solutions
and make reusing them easier. In addition, it would reduce
the cost for hiring experts in requirement management.

The structure of the rest of the paper is as follows: Section
2 provides a description of requirements conflicts and the
current research in detecting them while Section 3 presents
the current requirements conflict resolution and their
critique. Section 4 offers a review on rule-based systems
and its application in requirements engineering. An
overview of genetic algorithms and its different application
in software engineering is provided in Section 5. The
following section expands on the new approach and the
potential benefits of applying this method. Finally, we
conclude with recommendations for the future in Section 7.

2. Requirement Conflict Identification

Successful development of software systems requires
complete, consistent and clear-cut requirements.
Conflicting requirements is a problem that occurs when a
requirement is inconsistent with another requirement [28].
Kim, Park, Sugumaran and Yang provide a useful definition

IJCSNS International Journal of Computer Science and Network Security, VOL.17 No.12, December 2017 92

of requirements conflict, “The interactions and
dependencies between requirements that can lead to
negative or undesired operation of the system.” [18].
Aldekhail, Chikh and Ziani provided general classifications
for requirements conflicts based on types of requirements,
functional requirements and non-functional requirements
[2]. An example of conflicts in non-functional requirements
is security (privacy metric) with usability (ease of function
learning metric), so there is a compromise. However, the
developer must choose an acceptable solution to find the
right balance of attributes that work.

Many research studies are trying to find a new method to
define and detect conflicts between requirements. In [2], the
paper provides an overview on the previous research
conducted in this area. It has analysed and classified twenty-
two different techniques into different categories. The
categorization is based as follows:

• The first classification is based on the method that
is used to identify the conflicts, either manually by
the requirement engineers or automatically using
software tools.

• The second classification is focused on the type of
requirements that the technique will be applied to:
functional or non-functional requirements.

• The third classification is to determine the scope
of the proposed approach to study if it covers the
detection problem, to review detection and
analysis of the conflicts requirements into different
conflict types, and confirm if the proposed
approach offers a resolving technique.

• The fourth classification is based on the
representation type used for requirements. If the
technique uses a particular formalization form, it
structures the requirements in a particular model,
or it uses an ontology.

The literature review [2] has established that most
techniques that are proposed to detect requirements
conflicts are manual techniques that take extensive time as
well as effort and may cause delays in the project. In
addition, these are considered fallible since there is human
effort involved. Some conflict techniques have built in some
tools trying to automate the detection process. Thus, this
would decrease the human effort and time. However, all the
automation approaches are still based on human analysis to
detect and resolve conflicts.

3. Requirement Conflict Resolution

In order to provide a complete picture about how conflicts
are solved practically, different techniques are proposed by
experts and software engineers. Described below are some
techniques that are used to solve conflicts between
requirements.

Sameer Abufardeh from University of Minnesota
Crookston offered a few techniques from his experience and
from the literature [1]:

• Using a process called rethinking the requirements:
By going back to the sources of the conflicting
requirements and trying to understand it and
thereafter, addressing it differently.

• Getting all the stakeholders in one place and
making them discuss and analyze the trade-offs
amongst the conflicting requirements, and coming
up with prioritization process with regards to the
value to the project, cost, time, etc.

• Trying to replace two or more conflicting
requirements with a single one that addresses the
goals of the conflicting requirements

On the other hand, Samuel Sepúlveda from Universidad de
La Frontera had other options as follows [1]:

• Using group-techniques such as focus group,
brainstorming, KJ method, workshops, etc.

• Using a win-win model.

• Using GORE and i* diagrams to share goals and
objectives with the stakeholders.

David Espina proposed deploying a prioritization method
that scored each requirement with regards to the value, cost,
and risk for the organization [10].

Jeff Grigg claims that one should prioritize their business
goals, and then trace the requirements back to the business
goals that they are trying to achieve. The next step would be
to assign a higher priority to the requirement that traces
back to a higher-priority business goal [12]. When conflicts
are detected, negotiation for conflicts resolution can be
conducted either by selecting alternatives or re-evaluating
priorities.

Papa, Daniels, and Spiker presented some management
methods that are used for negation and conflict resolution
like theory x, where the managers are responsible for
resolving conflicts between employees and decision making
about what to follow up with to the management [22].

IJCSNS International Journal of Computer Science and Network Security, VOL.17 No.12, December 2017 93

However, this method is not very popular due to its negative
point of view from the employees.

Another theory called ‘theory y’ was introduced where the
whole responsibility for resolving conflicts was given to the
employees. Theory z was added as a point to theory y where
goals were set for employees before they started working
and how they should always work on achieving them.
Finally, theory w worked through mutual consideration and
as such, it makes everyone a winner due to its nature.

Pair wise comparison method (PCM) was mentioned in [14]
to be used in requirements conflict resolution. It used a
matrix where the requirements are listed with their priorities
for each stakeholder.

Another technique used was the Win-win model, which
used ‘theory’ and was based on the idea that everyone is a
winner. It has four steps: identify conflict issues, exploring
options in architectural strategies, reaching agreements and
eliciting win-win conditions.

Finally, we can see that conflict resolution is based on two
main techniques: negotiation between stakeholders, and
application of prioritization in requirements based on
business goals and objectives. However, there is a lack in
resolving techniques; all the existing ones are manual
techniques and usually mere guidelines to help software
engineers fix problems. No works exist that resolve the
conflicts automatically. Also, most of them are proposed
techniques that are not evaluated for their efficiency in
detecting and resolving conflicts.

By studying the limitations in previous works, this research
proposes applying artificial intelligence techniques to fix
this gap in the area of requirements conflicts.

4. Rule-Based Systems

The rule-based system is the simplest form of artificial
intelligence that uses rules as a way of representing the
knowledge that is saved in the knowledge base [13]. A rule-
based system depends on the expert system idea that mimics
the reasoning behind the human expert’s decisions in
problem solving and decision making.

The research on applying rule-based systems in
requirements engineering have mostly used rule-based
systems for verification purposes. Wang, Bai, Cai, and Yan
presented a rule-based expert system to help evaluate
software quality, and their evaluation results showed an
improvement in design efficiency [32]. Chan et al. proposed
a new requirement modelling approach called rule-based
behaviour engineering to formally model requirements and
provided a tool for communication among stakeholders [6].
Dzung and Ohnishi proposed a method for using rule-based

system to verify the correctness of requirement ontology [7].
By increasing the size of ontology, it becomes difficult to
check the accuracy of information stored in it.

5. Computational Intelligence and Genetic
Algorithm

Computational Intelligence (CI) is a sub-branch of artificial
intelligence, which is also known as soft computing. It
refers to the ability of a computer to learn a specific task
from data or experimental observation [23]. Computational
intelligent has many paradigms, neural networks,
evolutionary algorithms, swarm intelligent, and fuzzy
systems [9]. Figure 1 displays the CI paradigms and the
evolutionary algorithms (evolution computing) as a
subdivision of soft computing:

Fig .1 Computational intelligent techniques.

The objective of the evaluation algorithms is to mimic the
process from natural evolution, where the main idea is the
survival of the fittest and how the weak will eventually die
[8]. Evolution is an optimization process where the goal is
to improve the ability of a system to survive in a
dynamically changing and competitive environment [16].

In the domain of search techniques, evolutionary algorithm
is a family of stochastic search techniques that mimic the
natural evolution proposed by Charles Darwin in 1858. The
following classification (Figure 2) indicates the position of
evolutionary algorithms in the area of search techniques:

https://en.wikipedia.org/wiki/Computer

IJCSNS International Journal of Computer Science and Network Security, VOL.17 No.12, December 2017 94

Fig. 2 Search techniques.

Genetic algorithm is a search-based optimization technique
based on the principle of genetics and natural selection. It is
usually used in optimization problems where there is a need
to maximize or minimize a given objective function value
under a given set of constraints [17]. Genetic algorithms
start with guesses and attempts to improve these guesses by
evolution. It is one of the most powerful methods with
which high quality solutions are quickly created in response
to a problem [27].

There are some basic terminologies that will be used while
working with genetic algorithm [5] as follows:

• Search space – All possible solutions to
the specific problem

• Population – It is a subset of all the
possible solutions to the given problem.

• Chromosome is one such solution to the
given problem.

• Gene is one element position of a
chromosome.

• Allele is the value a gene takes for a
particular chromosome.

According to Goodman, GA essentially includes the
following [11]:

1. Representation of a solution called a chromosome;
this should be represented in specific data structure
or in binary.

2. An initial set of solutions; an initial population is
usually build randomly

3. The fitness function; measures the fitness of any

proposed solution to meet the objective.

4. The selection function; selects which chromosome
will participate in the next evolution phase.

5. The crossover operator; used in reproduction new
chromosome by exchanging genes from two
chromosomes.

6. The mutation operation; changes a gene in a
chromosome and in turn, creates new chromosome.

7. The termination condition; determines when a
genetic algorithm run will stop running.

A pseudo-code for a basic algorithm for a genetic algorithm
is as follows [30]:

GA()

Initialize population

Find fitness of population

While (termination criteria is reached) do

 Parent selection

 Crossover with probability pc

 Mutation with probability pm

 Decode and fitness calculation

 Survivor selection

 Find best

Return best

Figure 3 below presents the flowchart of the basic genetic
algorithm.

Fig. 3 Flowchart of basic GA.

IJCSNS International Journal of Computer Science and Network Security, VOL.17 No.12, December 2017 95

Genetic algorithm has mostly been applied to the
scheduling and optimization of problems and for searching
problems like TSP [24]. In [25], genetic algorithm
technique has been used for conflict identification and
resolution for project activities.

[26] and [27] have both presented a list of some applications
of GAs in software engineering and the benefits of applying
them. Many research studies have used GA in project effort
and time estimation which is one of the most challenging
aspects in software development, and the results were very
positive. Also, different research studies using GA to help
measure the performance of the system by applying GA in
software metric in design, coding, quality, reliability and
maintenance are presented. GA has had very good results in
software testing.

Sharma, Sabharwal and Sibal demonstrated that GA has
been used in all types of software tests, functional tests,
model-based test case generation, regression testing, object-
oriented unit testing as well as in black box testing [29].
Software testing is laborious and time-consuming work; it
spends almost 50% of software system development
resources [31]. Research has shown how this percentage
generally decreases by applying AI techniques and
especially when using GA.

6. Proposed Intelligent Conflict Identification
and Removal Framework

As sections have shown, there are limitations in the
previous works in requirements conflicts identification and
resolutions, and that there is a need for applying AI
technique in this area and its benefits. Thus, we will work
on function requirements. The proposed solution is divided
into two parts:

1. Defining requirements conflicts: The proposed
solution is to build a rule-based system in if-then
form based on discussion with experts in
requirements engineering regarding the definition
of conflicts between two function requirements. A
set of rules will be defined, and these rules will
determine when requirements are in conflict.

2. Resolving requirements conflicts: We are
searching for optimum solution via alternative
solutions, and what these optimization techniques
do. Optimization algorithm searches for an
optimal solution by an iterative process. We will
use a genetic algorithm to solve the conflicts in
requirements intelligently.

Figure 4 below shows the basic structure of the proposed
model for detecting and resolving requirements conflict:

Fig. 4 Basic structure of proposed approach.

6.1 Algorithm for Proposed Approach

The main steps in the proposed approach are as follows:

Part A:

1. Develop the rule-based system (if-then-else) to
detect conflicts between function requirements.

2. Read the input (function requirements set) from
the excel file

3. Calculate the number of conflicts in the original
function requirements set, and list the function
requirements that have conflicts and the rule
number that detects the conflicts

Part B:

1. Build Initial population randomly by generating
attributes within the domain.

2. Find Fitness

3. Apply genetic algorithm until least one conflict
solution is found.

The algorithm for proposed model is as follows:

 Start

 Get Input from Excel

 Calculate conflict

 Initial population is built randomly by generating
values for attributes within domain.

 Run Fitness (Conflict on each solution)

 Select Solutions for GA

 Apply Crossover between FRs

 Apply Mutation between FRs

 Repeat Fitness to Mutation until Stopping Criteria

 Stop

IJCSNS International Journal of Computer Science and Network Security, VOL.17 No.12, December 2017 96

Figures 5 and 6 below show the flowchart for each

part of the proposed model:

Fig. 5 Flowchart of part (A), Rule-based system.

Fig. 6 Flowchart of part (B), Intelligent system.

6.2 Theoretical Analysis of Proposed Approach

By applying the proposed approach of using Rule-based
system and genetic algorithm, we expect that we would
receive the benefits of an automated process of finding the
conflicts between requirements with a simulation to expert
work completed intelligently. This will reduce human error,
time, and effort of the software engineers.

Also, we expect positive results by applying genetic
algorithm in reducing the number of conflicts as much as
possible to reach an optimal solution, and to resolve any
conflicts. Furthermore, all previous research studies that
have applied AI techniques in solving requirement
problems in requirement engineering field reported positive
results.

Using a genetic algorithm in resolving requirement
conflicts will automate the task intelligently and increase
the quality of the software development because it will
remove human input, which would then provide accurate
results in defining and solving conflicts. Also, it will
eliminate the emotional side in solving the conflicts
between different stakeholders and save costs due to human
errors and inefficient decisions. Artificial intelligent
techniques are self-learning and improving which allows us
to keep reusing them and would thereby, reduce the cost of
hiring experts.

7. Conclusion and Future Works

Working with inconsistence requirements will cost the
project a lot; from time and effort expended which
eventually leads to project failure. This novel approach
proposes using an artificial intelligence technique in
defining and resolving functional requirements technique.
A rule-based system can be used to identify the conflicts
and a genetic algorithm can be employed to resolve
conflicts and produce a set of functional requirements with
a minimum number of conflicts. Applying artificial
intelligent technique would increase project efficiency,
quality and reduce human effort and errors. In future works,
the proposed approach will test and check the results on
different sets of functional requirements within different
projects.

Acknowledgements

The authors would like to thank the College of Computer
and Information Sciences and the Research Center at King
Saud University for their sponsorship.

References
[1] S. Abufardeh and S. Sepúlveda. “How to Deal with

Stakeholders Conflicts in Requirements Gathering?”
https://www.researchgate.net/post/How_to_deal_with_stake
holders_conflicts_in_requirements_gathering2, accessed
Sept. 2. 2016

[2] M. Aldekhail, A. Chikh and D. Ziani, D. “Software
Requirements Conflict Identification: Review and
Recommendations.” IJACSA, 7(10), pp. 336 – 335, 2017.

IJCSNS International Journal of Computer Science and Network Security, VOL.17 No.12, December 2017 97

[3] A.A. Alshazly, A.M. Elfatatry and M.S. Abougabal.
“Detecting defects in software requirements
specification.” AEJ, 53, pp. 513 – 527, 2014.

[4] W. H. Butt, S. Amjad and F. Azam. Requirement conflicts
resolution: using requirement filtering and analysis. New
York, U.S.A.: Springer. 383 – 397, 2011.

[5] J. Carr, “An introduction to genetic algorithms.” Senior
Project, pp. 1 – 40.
https://www.whitman.edu/Documents/Academics/Mathemat
ics/2014/carrjk.pdf, accessed Aug. 21. 2015

[6] L.W. Chan, R. Hexel and L. Wen. “Rule-based behaviour
engineering: Integrated, intuitive formal rule modelling.”
Proc. 22nd Australian Software Engineering Conf. (ASWEC),
Hawthorne, Victoria, Australia, pp. 20 – 29, June 2013.

[7] D.V. Dzung, and A. Ohnishi, “Customizable rule-based
verification of requirements ontology.” Proc. IEEE 1st Int.
Workshop on AIRE. Karlskrona, Sweden. pp. 19 – 26,
August 2014.

[8] A.A. El-Sawy, M.A. Hussein, E.S.M. Zaki and A.A. Mousa.
“An Introduction to Genetic Algorithms: A Survey A
Practical Issues.” Int. Journal of SER, 5, pp. 252 – 262, 2014.

[9] A.P. Engelbrecht. Computational intelligence: An
Introduction. John Wiley & Sons, 2007.

[10] D. Espina. Scope. “How Do You Manage Conflicting
Stakeholder Demands?”
http://pm.stackexchange.com/questions/1399/how-do-you-
manage-conflicting-stakeholder-demands, accessed Nov. 26.
2016

[11] E.D. Goodman. “Introduction to Genetic Algorithms.” Proc.
Companion Publication of the 2014 Annu. Conf. on Genetic
and Evolutionary Computation. Vancouver, BC, Canada:
ACM. pp. 205 – 226, July 2014.

[12] J. Grigg,. “Conflicting Requirements.”
http://c2.com/cgi/wiki?ConflictingRequirements, accessed
Nov. 10. 2016

[13] C. Grosan and A. Abraham. “Rule-Based Expert Systems.”
Intelligent Systems. Intelligent Systems Reference Library,
(17). Springer, Berlin, Heidelberg, pp. 149 – 185, 2011.

[14] F. Hameed and M. Ejaz. “Model for conflict resolution in
aspects within Aspect Oriented Requirement engineering”
(Master’s thesis).
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.4
76.4292&rep=rep1&type=pdf, accessed Aug. 6. 2016

[15] M. Heisel and J.A. Souquières. “Heuristic Algorithm to
Detect Feature Interactions in Requirements.” In: S. Gilmore
and M. Ryan, eds., Language Constructs for Describing
Features. Springer, London, pp. 143 – 162, 2001.

[16] M.A. Iqbal, N.K., Khan, M.A. Jaffar, M. Ramazan and A.R.
Baig. “Opposition Based Genetic Algorithm with Cauchy
Mutation for Function Optimization. Proc. 2010 Int. Conf. on
Information Science and Applications. Hotel Rivera, Seoul,
South Korea, pp. 1 – 7, April 2001.

[17] H. Jiang. Can the Genetic Algorithm Be a Good Tool for
Software Engineering Searching Problems? Proc. 30th Annu.
Int. COMPAC. Chicago, USA, 2, pp. 362 – 366, September
2006.

[18] M. Kim, S. Park, V. Sugumaran and H. Yang. “Managing
requirements conflicts in software product lines: A goal and
scenario based approach.” Data & Knowledge Engineering,
61, pp. 417 – 432, 2007.

[19] D. Mairiza and D. Zowghi. “An ontological framework to
manage the relative conflicts between security and usability
requirements.” Proc. 3rd Int. Workshop on MARK, Sydney,
Australia, pp. 1 – 6, September 2010.

[20] D. Mairiza, D. Zowghi and N. Nurmuliani. “Managing
conflicts among non-functional requirements.” In L. Ngyen,
D. Randall and D. Zowgi, eds., ARWE 2009 Proc. 12th
AWRE, Sydney, Australia: University of Technology,
Sydney, October 2009.

[21] T. Moser, D. Winkler, M. Heindl and S. Biffl. “Requirements
Management with Semantic Technology: An Empirical
Study on Automated Requirements Categorization and
Conflict Analysis.” Proc. from 23rd Int. Conf. AISE, Berlin,
Springer-Verlag, Berlin, Heidelberg, pp. 3 – 17, June 2011.

[22] M.J. Papa, T.D. Daniels and B.K. Spiker. Organizational
communication perspectives and trends. SAGE Publications,
Inc, 2008.

[23] H.M. Pandey. “Solving lecture time tabling problem using
GA.” Proc. 6th Int. Conf. – Cloud System and Big Data
Engineering, Noida, India, Amity University, Department of
Computer Science & Engineering, pp. 45 – 50, January 2016.

[24] R. Raghavjee and N. Pillay. (2008, October). “An
Application of Genetic Algorithms to the School Timetabling
Problem.” Proceedings of the 2008 Annual Research
Conference of the South African Institute of Computer
Scientists and Information Technologists on IT Research in
Developing Countries: Riding the Wave of Technology.
Wilderness, South Africa. New York, U.S.A.: ACM. pp. 193
– 199, October 2008.

[25] M. Ramazan, M.A. Iqbal, M.A. Jaffar, A. Rauf, S. Anwar and
A.A. Shahid. “Project Scheduling Conflict Identification and
Resolution Using Genetic Algorithms.” Proc. Int. Conf. on
Information Science and Applications. Hotel Rivera, Seoul,
South Korea, pp. 1 – 6, April 2010.

[26] P. Reena, K. Bhatia. “Application of Genetic Algorithm in
Software Engineering: A Review.” IRJES, 6, pp. 63–69,
2017.

[27] Samriti. “Applications of Genetic Algorithm in Software
Engineering, Distributed Computing and Machine
Learning.” IJCAIT, vol. 9, no. 2, 2016.

[28] B. Schär. “Requirements Engineering Process HERMES 5
and SCRUM.” (Master’s thesis). University of Applied
Sciences and Arts, Northwestern Switzerland, 2015.

[29] C. Sharma, S. Sabharwal and R. Sibal. “Applying genetic
algorithm for prioritization of test case scenarios derived
from UML diagrams.” IJCSI, vol. 8, no. 3, pp. 433 – 444,
2011

[30] S.N. Sivanandam and S.N. Deepa. Introduction to genetic
algorithms. Berlin: Springer-Verlag Berlin Heidelberg, 2007.

[31] P.R. Srivastava and T. Kim. “Application of genetic
algorithm in software testing.” IJSEA, vol. 3, no. 4, pp. 87 –
96, 2009.

[32] X. Wang, Y. Bai, C. Cai, and X. Yan. “A production rule-
based knowledge system for software quality evaluation.”
Proc. 2nd Int. Conf. ICCET, Chengdu, China., 6, pp. 208 –
211, April 2010.

IJCSNS International Journal of Computer Science and Network Security, VOL.17 No.12, December 2017 98

Maysoon Aldekhail has been a PhD candidate at King Saud
University in the Computer Sciences and Information Systems
College since 2013. She received her Master’s degree in
Information Systems from King Saud University, Saudi Arabia in
2009. Her current professional occupation is Lecturer at the
Information System Department at the College of Computer and
Information Sciences in Al-Imam University in Riyadh, Saudi
Arabia. Her research interests include Requirements Engineering
and ERP.

Djamal Ziani has been an associate professor at King Saud
University in the Computer Sciences and Information Systems
College since 2009. He is also a researcher in ERP and in the data
management group of CCIS, King Saud University. He received a
Master’s degree in Computer Sciences from the University of
Valenciennes, France in 1992, and a Ph.D. in Computer Science
from the University of Paris Dauphine, France in 1996. He has
been a consultant and project manager in various companies in
Canada, such as SAP, Bombardier Aerospace, and Montreal Stock
Exchange from 1998 to 2009.

