
IJCSNS International Journal of Computer Science and Network Security, VOL.17 No.12, December 2017 

 

145 

Manuscript received December 5, 2017 
Manuscript revised December 20, 2017 

The Study of Support Vector Machine to Classify the Medical 
Data 

Ghasem Farjamnia*,1,Mehdi Zekriyapanah Gashti2 ,Hamed Barangi2, Yusif S. Gasimov3,4 
1Institute of Applied Mathematics Baku State University, Baku, Republic of Azerbaijan 

 2Faculty of Engineering, Department of Computer Engineering, Payame Noor University, Tehran, I.R.IRAN 
3Institute of Mathematics and Mechanics ANAS, Baku, Republic of Azerbaijan 

4Azerbaijan University, Baku, Republic of Azerbaijan 
 

 
Summary 
Abstract In this article, we are going to study the linear support 
vectors and their performance in the related classification issues. 
Using the linear support vectors (SVM's) in the classification 
issues is a new approach that in recent years is considered by 
many scientists. It was used in a wide range of applications 
including OCR, Handwriting recognition, guidance signs 
diagnosis and etc. SVM approach is in a way that in the training 
phase, it is tried to choose the limit of decision-making (Decision 
Boundary) is such a way that its minimum distance to each of the 
considered categories stays maximum. This kind of choice helps 
our decision in practice to tolerate the noisy condition very well 
and has a good response. This way of selecting the boundary is 
based on the points that are named as support vectors. At first we 
study the concepts such as generalization of a pattern recognition 
machine and then the VC dimension that has a great application 
in the concept of classification machines. And then we describe 
the linear and non-linear support vectors and Kernel functions. 
And eventually, we will study the VC dimension for some of 
these functions. 
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Nonlinear SVM RBF Kernel, Medical Data 

1. Introduction 

There is a large family of borders that specify the extent 
and generalizability and application of a learning machine. 
Now we will specify some of these measures. 
Assume that we have l number of samples that each of 
them is linked as a pair of one vector and one category. 
These elements in every issue can represent something. 
For example, in the issue of tree recognition the vector can 
represent a pixel vector and the category 1 for (the cases 
that the picture includes the tree) the category -1 for (the 
cases that the picture does not include the tree), we use -1 
instead of zero so we can perform easier in the calculations 
of the formulas [1, 2]. Assume that there is function of 
unknown probability distribution P(x,y) and the data are 
distributed according to this function. Our assumption is 
that the data are independent and evenly distributed. Now 
suppose that we have a machine that its task is to learn the 
Xi⟼yi mapping.  This machine in fact is defined by a 

complex of X⟼f(x,a) maps that the functions of f (x,a) are 
set by the parameter a . This machine is assumed as certain 
machine [3, 4]. For the input x and a clear choice of a it 
will always give the same output. A choice of special a , 
gives us a machine that we call it the taught machine [5]. 
For example, a neural network with a fixed architecture 
and structure, when a in it is correspond with the weights 
and biased values this is a learning machine. Therefore, the 
mean error for a trained machine is: 
 
𝑅𝑅(𝑎𝑎) = ∫ 1

2
 |𝑦𝑦 − 𝑓𝑓(𝑿𝑿, 𝑎𝑎)|𝑑𝑑𝑑𝑑(𝑿𝑿, 𝑦𝑦)  (0) 

2. VC Dimension 

VC dimension is a feature of series of functions of {f(a)} 
that ( in this function we have defined a as a general 
parameter that choosing it, will specify a special function) 
and can be defined for different classes of f function. Here 
we consider only the functions that are associated with the 
two-class pattern recognition f(x,a)∈{-1 ,1} ∀ x,a so 
that now a set of l points can be labeled as 2l  and for 
every per of labeling a member of the {f(a)} category can  
to be found that identifies the labels correctly. So we that 
set of points are made crushed by the set of functions [5]. 
The VC dimension for the set of functions of {f(a)} is 
defined as the maximum number of points which are 
crushed by these set of functions. Note that if the VC is 
equal to h, this means that there is at least one set of h 
points which can be crushed. But generally we cannot be 
sure that any set of h points can be crushed [6]. 

2.1. Friable points with the planes in the Rn 
environment 

Assume that the studying environment is the R2 
environment and the set of {f(a)} functions include 
straight lines in this space [5]. That is for a straight line, all 
the located points on one side of the line belong to the 
class 1 of the opening and on the other side the points 
belong to the class  -1. The direction of this attachment is 
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also showed by an arrow on the line. However, three 
points that can be crushed by the set of lines will be found, 
but we cannot find four points with this feature. So the VC 
dimension of the straight line series in the R2 environment 
equals to three (Figure 1). 
Now consider the hyper planes that are located in the R2 
environment. The following theorem about that is true: 
 

 

Fig. 1 A sample of studying the VC dimension in the Rn environment 

Theorem1: Consider a set of m points in the Rn 
environment. Consider every arbitrary point as a source. In 
this case m points can be crushed by the hyper planes. If 
and only if the vector of remaining points is linearly 
independent. 
From the above theorem we can conclude that the VC 
dimension in the Rn environment equals to n+1, because 
we can select n+1 point and put one of them as a source, 
and the remaining n points can be linearly independent 
from each other. But can never find n+2 points with this 
characteristic because on n+1 point is linearly independent 
in the Rn environment [6, 7]. 

2.2. VC Dimension and the Number of Parameters 

VC dimension in fact shows the capacity of a set of 
functions [7]. You may expect a learning machine with a 
large number of parameters to have a high VC dimension 
and also a learning machine with a few numbers of 
parameters to have a low VC dimension but here for this 
issue we will show you a counterexample. We introduce a 
function that have infinite  VC dimension (a set of 
classified functions with infinite VC  dimension if for any 
l even very large one, could be able to crush the l point) 
θ(x) ,x ϵ R∶{θ(x)=1 ∀ x >0; θ(x)= -1 ∀ x ≤0} The step 
function is defined. Consider the class of the following 
one-parameter functions: 
 
𝑓𝑓(𝑥𝑥, 𝑎𝑎) ≡  𝜃𝜃(sin(𝑎𝑎𝑥𝑥)), 𝑥𝑥, 𝑎𝑎 ∈ 𝑹𝑹  (1) 

 
Now if we are asked to choose l points that can be crushed, 
we can choose them as follows: 
 

X i=10-i , i=1,…,l.' 
 
And we can pick the tags in any way that we want: 
 

y1,y2,…,yi,   yi ∈ {-1,1} 
 
Then, by choosing a as follows, f(a) will give us the way 
of labeling: 

𝑎𝑎 =  𝜋𝜋 �1 + ∑ (1−𝑦𝑦𝑖𝑖)10𝑖𝑖

2
𝑙𝑙
𝑖𝑖=1 �   (2) 

 
The VC dimension of this machine is indefinite.  
Interestingly, although we can make the points that can be 
crushed very large, but there are four points that cannot be 
crushed [6, 7]. It is enough that these four points have 
equal distances and are in one line as shown in the figure 2. 

 

Fig. 2 The points with equal distance on a line. 

3. Linear Support Vectors Machines 

Begin with the simplest issue [8]: The linear machines that 
are trained on the separable data [9]. Again we label the 
training data in this way: {Xi,yi},i=1,…,l ,yi ∈  {-
1,1} ,Xi ∈ Rd . Assume that we have hyper plane, which 
separates the positive samples from the negative samples. 
The x points that are located on this hyper plane satisfy the 
w.x+b=0 condition in which w is the normal vector of the 
hyper plane, |b| / ||w|| is the vertical distance from the 
hyper plane and ||w|| is the Euclidean normal w. suppose 
that d+(d-) is the least distance of the positive (negative) 
points from the hyper plane. The margin of a separator 
hyper plane is defined in this way. For the separable linear 
case, algorithm of the support vector will find the hyper 
plane with the largest margin. This issue can easily be 
formulated as follows: Suppose that all the training data 
satisfy the following constraints: 
 
xi.w+b ≥ +1 for yi = +1   (3) 
 
xi.w+b ≤ -1 for yi = -1   (4) 
 
And the equations (3) and (4) can be summarized in the 
equation (5): 
 
yi(xi.w+b)-1 ≥ 0 ∀ I   (5) 
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Now consider the points that apply in the unequal equation 
(3). These points are on the H1: xi . w+b=1 hyper plane 
with the normal vector w and |1 – b| / ||w|| vertical distance 
from the source. Similarly the points that apply in the 
unequal equation (4), are on the H2: xi . w+b= -1 with the 
normal vector w and |-1 – b| / ||w|| distance from the source. 
So we have d+ = d- = 1 / ||w|| and the margin value equals 
to 2/||w||. Note that H1 and H2 are parallel (have equal 
norms) and no training point will stay between them. So 
we can find the paired hyper plane that gives us the biggest 
margin value that will be done by minimizing ||w||^2 
according to the limits. 
So we expect that usual two-dimensional solution case to 
have shape like the figure3. Those training points that 
apply in the equation (5) (It means that they are located on 
the H1 and H2 hyper planes) and removing them will 
change the founded solution, they are called the support 
vectors. These points are identified in Figure 3 with 
additional circles. 
Now we go to formulate the LAGRANGE of the issue. We 
have two reasons for this. First, the limits shown in the 
equation (5) will be replaced with Lagrange multipliers 
that this will make our job so much easier; second, in such 
formulation of the issue the training data will be appeared 
only as a pointy multiplication of the vectors. This is a 
vital feature that allows us to extend the problem solution 
process to a non-linear state. 
So we introduce the Lagrange coefficients، i = 1, …, l , ai 
that each are for one of the limitations in the unequal 
equation (5). Recall that rule in this case is for the 
limitations in the form of Ci >= 0, the constraint equations 
are multiplied to the positive coefficients of Lagrange and 
will be subtracted from the objective function. For equality 
constraints the Lagrange multipliers will not be limited. 
This will give us the following equation: 
 
𝐿𝐿𝑃𝑃 ≡  1

2
 ‖𝒘𝒘‖2 −  ∑ 𝑎𝑎𝑖𝑖𝑦𝑦𝑖𝑖(𝑥𝑥𝑖𝑖𝑙𝑙

𝑖𝑖=1 .𝑤𝑤 + 𝑏𝑏) + ∑ 𝑎𝑎𝑖𝑖𝑙𝑙
𝑖𝑖=1    (6) 

 
Now we should minimize the LP according to the w, b and 
simultaneously it is needed that the LP derivatives 
disappear due to the (according to the limitations: ai >= 0 ). 
This set of constraints is called C1. Now this is a quadratic 
convex problem because the objective function is convex 
itself. And the points that satisfy the restrictions will form 
a convex set (each linear limitation define a convex set, 
and a set of simultaneous N linear limitation define N 
convex set that the impact of this N convex set is a convex 
set itself). This means that we can deal with these two 
issues at the same time: 
Maximum out the LP, according to the limitations that the 
gradient of LP with respect to w and b should be removed 
and also according to this limitation ai >= 0 (this complex 
is called the C2 limitation set). This dual formulation of a 
problem is called Wolf Dual. This issue has a feature that 

the LP maximum, according to the C2 limitation will 
happen in the same values of w, b and a, and LP minimum 
happens according to the C1 limitation. 
The need to remove the gradient of LP according to the w 
and b will give us the following condition: 
 
𝑤𝑤 = ∑ 𝑎𝑎𝑖𝑖𝑦𝑦𝑖𝑖𝒙𝒙𝑖𝑖𝑖𝑖     (7) 
 
∑ 𝑎𝑎𝑖𝑖𝑦𝑦𝑖𝑖𝑖𝑖 = 0    (8) 
 
Because of the fact that these limitations are the same in 
the dual formulation, we can substitute them in equation 
(6) so have the following equation: 
 
𝐿𝐿𝐷𝐷 =  ∑ 𝑎𝑎𝑖𝑖 −  1

2𝑖𝑖  ∑ 𝑎𝑎𝑖𝑖𝑎𝑎𝑗𝑗𝑦𝑦𝑖𝑖𝑦𝑦𝑗𝑗𝑖𝑖,𝑗𝑗 𝒙𝒙𝑖𝑖 .𝒙𝒙𝑗𝑗  (9) 
 
LP and LD of an objective function, but with different 
limitations are resulted. And solutions will be obtained by 
minimizing the LP or maximizing the LD. Note that if we 
formulate our issue with b = 0, which means that all the 
hyper planes will pass the source, the limitation (5) won’t 
appear. This is a mild limitation for the high-dimensional 
spaces; this is because it will reduce the degree of freedom 
of the unit. 

 

Fig. 3 Support Vector 

So training the support vector (for the separable linear 
cases) with maximizing the LD according to the ai that 
have positive values and limitations and according to the 
above solution will be performed. In the solution, the parts 
that we have ai > 0 for them are called support vector. 
They are located on one of the H1 or H2 hyper planes. The 
rest of the training parts have the ai = 0 value. The support 
vectors are the key elements of training complex for these 
machines. They are the closest to the decision border and 
if all the rest of the training points remove and the training 
repeats again still that mentioned separable hyper plane 
will be obtained. 

4. Nonlinear Support Vector Machines 

How the above methods can be extended for the case
s that decision’s functions is not a linear function of 
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the data and we could get the answer? We can show
 that an old trick can help us to do this easily. Firstl
y [10, 11], note that the only problem of the data tha
t appears in the training issue is only as a point mult
iplication of Xi.Xj. Now suppose that we put the data
 in another environment named H (in some cases wit
h infinite dimensions). As following: 

Φ ∶ 𝑹𝑹𝑑𝑑   ↦ 𝐻𝐻 
 
Now the training algorithm by the point multiplication of 
the written data in the H, only depends on the data of the 
issue (as a P(xi).P(xj)). Now if we have kernel function 
under condition of K�Xi , Xj� =  Φ (Xi).Φ(Xj)so it is only 
necessary that the kernel function to be used instead of the 
point multiplication in the learning algorithm. Now we do 
not even need to know exactly that our written function 
was what kind of function. A sample is as follows: 
 

𝐾𝐾�𝒙𝒙𝑖𝑖 ,𝒙𝒙𝑗𝑗� = 𝑒𝑒−�𝒙𝒙𝑖𝑖− 𝒙𝒙𝑗𝑗�
2

/2𝜎𝜎2 . 

In this example, H has infinite dimensions, therefore, 
working with the written function directly is not that much 
easy. But if we substitute the point multiplication of the 
written parts in the training algorithm with their kernel 
function (like the above equation) then we will have the 
support vector that is located in an environment with 
infinite dimensions. And to train that function, the same 
amount that was used to train the primary data (not 
written) is needed. All the rules and conditions of the last 
parts are still infeasible, because we are still performing a 
linear separation in a different environment. 
But how can we apply this machine? We need w. but in 
the testing phase, SVM is applied by calculating the point 
multiplication of a part of x test with w, or more precisely, 
by calculating the sign of the following function: 
 
𝑓𝑓(𝑥𝑥) = ∑ 𝑎𝑎𝑖𝑖𝑦𝑦𝑖𝑖Φ(𝒔𝒔𝑖𝑖).Φ(𝒙𝒙) + 𝑏𝑏 = ∑ 𝑎𝑎𝑖𝑖𝑦𝑦𝑖𝑖𝐾𝐾(𝒔𝒔𝑖𝑖 ,𝒙𝒙) + 𝑏𝑏𝑁𝑁𝑠𝑠

𝑖𝑖=1
𝑁𝑁𝑠𝑠
𝑖𝑖=1  (10) 

 
That the Si are the support vectors. Therefore, we can 
avoid calculating the written function directly, and instead 
we can use the kernel function. 
Suppose that the environment that our data are located in 
is called L, note that in addition to the fact that w is in H, 
totally there is no vector in the L that through our written 
function is written on the w. the important point is that we 
can find some Kernels that (For example, Kernels which 
are the function of point multiplication of the Xi s in the L), 
so the training algorithm and issue solution are depended 
from the L and H dimensions. 

4.1. Conditions of Mercer 

For which of the Kernels the { H ,Φ }  pair exists that has 
the mentioned conditions in the previous parts and for 
which does not exist? The answer to this question is given 
by the Mercer condition [12]. A writing Φ and a 
development of: 
 
𝐾𝐾(𝑥𝑥,𝑦𝑦) = ∑ Φ(𝑥𝑥)𝑖𝑖Φ(𝑦𝑦)𝑖𝑖   𝑖𝑖    (11) 
 
Exists, if and only if for every g(x) that 
 

�𝑔𝑔(𝒙𝒙)2𝑑𝑑𝒙𝒙 

 
Is finite, so 
 
∫𝐾𝐾(𝒙𝒙,𝒚𝒚)𝑔𝑔(𝒙𝒙)𝑔𝑔(𝒚𝒚)𝑑𝑑𝒙𝒙𝑑𝑑𝒚𝒚 ≥ 0.  (12) 
 
Note that for some specified cases, maybe studying the 
fact that the Mercer conditions are satisfied or not is not 
easy that much. But we can easily prove that this condition 
for the integral of the positive abilities of the point 
multiplication is infeasible. We should show that the: 
 
∫�∑ 𝑥𝑥𝑖𝑖 ,𝑦𝑦𝑖𝑖𝑑𝑑

𝑖𝑖=1 �𝑝𝑝𝑔𝑔(𝒙𝒙)𝑔𝑔(𝒚𝒚)𝑑𝑑𝒙𝒙𝑑𝑑𝒚𝒚 ≥ 0.  (13) 
 
Is a phrase that through the development of �∑ 𝒙𝒙𝒊𝒊𝒚𝒚𝒊𝒊𝒅𝒅

𝒊𝒊=𝟏𝟏 �𝒑𝒑 
will be obtained, and it is in the following form: 
 

𝑝𝑝!
𝑟𝑟1! 𝑟𝑟2! … (𝑝𝑝 − 𝑟𝑟1 − 𝑟𝑟2 … . )!

 �𝑥𝑥1𝑟𝑟1 𝑥𝑥2𝑟𝑟2 … .𝑦𝑦1𝑟𝑟1𝑦𝑦2𝑟𝑟2 …  𝑔𝑔(𝒙𝒙)𝑔𝑔(𝒚𝒚)𝑑𝑑𝒙𝒙𝑑𝑑𝒚𝒚 

 
The above equation (12) is going to be as follows: 
 

=
𝑝𝑝!

𝑟𝑟1! 𝑟𝑟2! … (𝑝𝑝 − 𝑟𝑟1 − 𝑟𝑟2 … . )! � �𝑥𝑥1𝑟𝑟1 𝑥𝑥2𝑟𝑟2 …  𝑔𝑔(𝒙𝒙)𝑑𝑑𝒙𝒙�
2
≥ 0. 

 
A simple conclusion is that every kernel function can be 
written in this way: 𝐾𝐾(𝑥𝑥, 𝑦𝑦) = ∑ 𝑐𝑐𝑝𝑝(𝑥𝑥. 𝑦𝑦)∞

𝑝𝑝=0
𝑝𝑝 

In which the CP s are the positive coefficients and also the 
Seri is convergent. So the Mercer condition is satisfied. 
If someone use the Kernel function that does not satisfy 
the Mercer condition what will happen? The answer is that 
in this condition we may deal with a second-degree issue 
of planning that cannot be solved. However, even for the 
kernel functions that does not meet the Mercer conditions, 
there is possibility that the trainings algorithms gets 
converge and we could achieve the answer. But there is no 
guarantee for this condition. 
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5. VC Dimension of the Support Vector 
Machines 

Now we show you that the VC dimension of the support 
vector machines can be very large (even infinite). Then 
this discussion arises that, despite these features why SVM 
has good generalization ability? It should be noted that 
currently there is no guarantee to show that a set of SVM 
for specific categories of issues have a very high accuracy 
[13, 14]. Here any Kernel function that satisfies the Mercer 
conditions is positive Kernel and the linked H environment 
of that is called improviser embedding space. Also, the 
embedded space with minimum dimensions for the Kernel 
function is called minimal embedding space.  Now we 
introduce the following theorem: 
Theorem: Suppose that K is a positive kernel function that 
is corresponding to the minimum space improviser of H. in 
this case, the VC dimension of the support vector machine 
corresponding with that equals to dim(H) + 1. 
Proof: if the minimal space improviser has the d 
dimension, then d points in picture L can be found under 
the written function of L to H that the positive vectors in H 
are linearly independent. These vectors can be crushed in 
the hyper planes in H space. Therefore, by limiting the 
SMV to the separable issue situation, or for the case where 
the penalty parameter C can get any values, the support 
vector machines family with K Kernel can crush these 
points so its VC dimension is d + 1. 

5.1. VC Dimensions Linked to the RBF Kernels 

In this case, we only talk about the related theorem to the 
VC dimension in the RBF (Radial Basis Function) Kernels 
and we won’t discuss its proof. 
Theorem: if we have the Mercer Kernels class and instead 
of ||x1 – x2||→ inf  we have K(x1,x2)→0 and also we 
have K(x,x) of the order of 1, assume that the data are 
randomly chosen from the Rd   environment. In this case, 
the classifier families including the support vector 
machines that use these Kernels, and they can get the C 
penalty amount that gets any value, they have the infinite 
VC dimension. 

6. Conclusion 

When the solution of a problem is the comprehensive 
support vector training and when it is unique? 
When we say comprehensive, we mean that there is no 
points in our decision-making area. In which our objective 
function can take a smaller amount. We will show you two 
ways in which you may not get a unique answer: Solutions 
that {w,b} are unique in it, but w is not unique for their 
development. And solutions in which {w,b} are different 
(not unique). Both of these cases are interesting. Even if 

the pairs {w,b} were unique and ai s are not unique, it is 
possible that there will be a equational developments of 
the w which requires less support vectors. And therefore it 
will require a smaller number of operations in the testing 
phase. This means that any local solution can be a 
comprehensive solution. This feature is one of the 
characteristics of any convex programming problem. 
Moreover, if the objective function is clearly convex the 
solution also will be definitely unique. Finding the 
solutions that because of the lack of uniqueness of ai in the 
development of w, are not unique is very easy [6]. For 
example, consider the issue about the 4 inseparable points 
on four vertices of a square in a two-imensional space. 
Assume that these points respectively are  x1=[1,1], x2=[-
1,1] , x3=[-1,-1] , x4=[1,-1] and with polarity of [+,-,-,+]. 
A solution to this is that; w=[1,0] , b=0 ,  
a=[0.25,0.25,0.25,0.25]. Another solution can have the 
same w and b, but we have a=[0.5,0.5,0,0]. 
The problem of optimization the support vectors can be 
solved only through analytical methods if the number of 
the data is too small or for the separable cases, we should 
already know that which data are support vectors. We 
should note that, this issue only happens when the problem 
has the symmetry. For the case of separate analysis, 
computational complexity in the worst case is proportional 
to Ns to the power of 3 in which Ns is the number of 
support vectors. 
In many real problems of the previous equations (Where 
the point coefficients have been replaced with kernel 
functions) must be solved using numerical methods. For 
the small problems, any optimization method that can 
solve the quadratic convex planning issues with linear 
limitation is suitable. 
Now we show you that the VC dimension of the support 
vector machines can be very large (even infinite). Then 
this discussion arises that, despite these features why SVM 
has good generalization 
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