
IJCSNS International Journal of Computer Science and Network Security, VOL.17 No.12, December 2017

158

Manuscript received December 5, 2017
Manuscript revised December 20, 2017

Modeling and Analysis of MAPE-K loop in Self Adaptive Systems
using Petri Nets

Natash Ali Mian1,2, Farooq Ahmad

School of Computer Science, National College of Business Administration and Economics, Lahore1
School of Computer and Information Technology, Beaconhouse National University, Lahore2

Department of Computer Sciences, Comsats Institute of Information Technology, Lahore3

Abstract
Feedback loop plays a pivotal role in modeling of systems that
have capability to adapt to new requirements during execution.
These systems are categorized as self-adaptive systems (SAS)
which can alter their working according to the inputs received
from the environment. At present, we are surrounded by software
systems that are either adaptive or self-adaptive. In both cases
feedback loop has a major role in the adaptation process. Hence,
reliable and efficient working of this loop is critical towards
successful development of software systems that have ability to
work with requirements that were not known at the time of
development. Formal methods are mathematics of software and
hardware systems, these methods include modeling languages
and tools to model and analyze systems with use of concrete
mathematical principles. Petri-Nets is a formal specification
language that is used for analysis, modeling and testing of
complex systems. In this paper we have presented an initial
model of feedback loop using Petri-Nets. It has been observed
that modeling and analysis of feedback loop using Petri-nets has
been useful in verification of system at an abstract level and the
generated model is free from deadlock and has capability to
expand in future. This is an abstract model with limited inputs,
invariants and constraints, this model will be enhanced for a
complete SAS in future research.
Keywords
Feedback loop, Formal Methods, MAPE-K, Petri nets, Self-
adaptive systems

1. Introduction

Self-Adaptive Systems are much more complex than
conventional systems, hence modeling of these system
using existing approaches of software development is
either extremely difficult or not possible. One of major
problems in modeling of SAS is managing uncertainty. In
case of conventional systems we have to be sure about the
requirements of the software before its development and
all efforts are put in to minimize uncertainty during the
requirement engineering phase [1]. In contract, we
actually plan, model and develop SAS for handling
uncertainty, which means that we are developing the
software to handle uncertain situations during execution
[2]. This aspect motivates the practitioners and researchers
to use multiple existing approaches or develop new
approaches to handle uncertainties of the system [2].

SAS is one of the emerging areas of computer science and
there is an increasing trend in research outcomes in
software engineering, software architectures, middleware,
component-based development, requirements engineering
and programming languages [3]. Additionally a lot of
work been done in other areas including fault-tolerant
computing, biologically inspired computing, multi-agent
systems, distributed AI and robotics[4].

Control engineering methodology enables the integration
of Control Management system and Feedback loop system
to gain operational goals and reducing cost [5]. Run-time
performance objectives are used to liaison unpredictable
demand and prompt change with control engineering
methodology. External environment of system is also
considered for the development of software which is an
integral part of systems that can adapt [6]. In [7] rainbow
model is used to design SAS. According to their point of
view this approach based on control and utility theories,
and main advantages are cost effectiveness and self-
adaptation [8].

It has been observed that formal methods has mostly been
used in modeling of SAS [9] and not in model checking
and theorem proving which are major strengths of formal
methods. Hence, the need to apply formal methods for
these aspects is positively required to make the overall
process of designing the SAS more reliable [10]. A
combination of formal and semi-formal methods is also
used in modeling of SAS [11] and the results have been
very encouraging [4]. There have been a few studies
where formal methods are used successfully in model
checking [12]. A few domain specific languages [13] and
design patterns [14] are also proposed for development of
SAS.

This paper presents a formal model of MAPE-K loop; we
have used Petri nets to model, analyze and verify the
working of feedback loop. In this model the inputs,
constraints, invariants and process is kept simple for easy
of understanding and analysis. This model will serve as
the basis of complete adaptive system for a real life
scenario. It has been observed that use of Petri nets has
been useful in understanding, analyzing and verifying the

IJCSNS International Journal of Computer Science and Network Security, VOL.17 No.12, December 2017 159

feedback loop and the results can be used for further
development of a complete system. The paper is organized
in to 6 sections; first section gives an introduction of this
work, followed by an overview of self-adaptive systems
and formal methods in section 2 and 3 respectively.
Section 4 gives a detailed description of feedback loop
and section 5 presents a formal Petri net model of MAPE-
K loop with the description of complete process, analysis
and findings. Finally the paper is concluded and pointers
to future work are given in section 6.

2. Self-Adaptive systems

Systems that have the capability to alter their behavior
during execution are classified as self-adaptive systems
[15]. Another classification of these systems is that they
fall under the umbrella of context aware systems [16].
Strength of these systems is that they can adjust to the
external inputs and work as per the needs of the user [17].
The interesting aspect of these systems is that they are
able to perform adaptations for which they were not
initially developed [18]. Though, this is one of the major
strengths of these types of systems, but this makes it
extremely hard for the software engineering professionals
to develop systems for incomplete or uncertain
requirements [19][20]. System ‘shall’ statements are
converted in to ‘may’ statements while engineering
requirements for these systems. This means that part of
requirement engineering has to be conducted at run time
[21]. In addition to requirement engineering, testing is also
conducted at run time. This process of adaptation is
generally carried out using feedback loops [22]. To make
these systems efficient all these steps have to be
performed autonomously [23] and reliably.

Today, we are surrounded by systems that have capability
to adapt or to self-adapt, the difference is that adaptive
systems only change their behavior according to the pre-
defined requirements; however, the systems that can self-
adapt create, test and execute their new requirements at
run time. The level of adaptation completely depends on
the type of system, i.e. for a mobile interface the
adaptation will be shown by screen, for a robot, the
adaptation will be executed by the output limbs/channels.
The output of these systems varies a lot but generally the
output is produced through effectors.

3. Formal Methods

Formal methods are well defined, rigorous and reliable
mathematical techniques that can be effectively used to
reason and specify behavior of SAS at design and run-
time [24]. Formal methods provide foundation for
describing, analyzing, reasoning, verifying and modeling

the complex systems. Formal methods tools provide a
comprehensive analysis of the system [25]. Specification
of a system is written by using notations which are based
on mathematical expressions instead of informal
explanations. These notations are based on first and
second order predicate calculus, temporal logic, algebraic
theory and graph theory. Sets, sequences, relations,
functions, mappings and state machines are the foundation
of formal modeling techniques. The syntax and semantic
of formal specification languages is a set of precise
mathematical expressions based on concrete mathematical
principles. The traditional systems development
techniques, such as graphical notations and natural
languages make the system specification highly
ambiguous.

Formal tools facilitate the designers to formally specify
the system’s requirements and produce its formal model.
The tools are also used to check that the model has the
desired formally specified requirements. It can be checked
that the implementation against the formal model is
equivalent and correct with respect to the user
requirements. Formal methods provide a methodology that
facilitates the development of large scale and complex
systems. Petri nets were proposed by Carl Adam Petri
[26] in 1962, he proposed these nets based on graph
theory and automata to model the dynamic aspects of
systems. With the passage of time Petri nets have evolved
and multiple variants have been proposed in literature [27].
We have used Petri Nets in this research and have found it
to be a very useful formal specification language to
analyze, model and verify any system.

4. MAPE-K Feedback Loop

This Loop is also known as MAPE-K Loop [4]. Where all
four letters represent four major phases of this loop/cycle.
Each phase can be further sub divided in to multiple sub
steps where the process for conducting each step varies
according to the requirements and system goals. The first
major step is Monitor, in this step the system/device takes
input from the environment through sensors. This input is
then checked with the existing set of requirements, if a
requirement exists, no adaptation is performed and the
concerned requirement is executed. However, if the inputs
do not match with the existing requirements then the loop
starts and proceeds to the next phase. In second phase the
inputs are analyzed, here multiple approaches can be used
for analysis/mapping of data. Once the inputs are analyzed,
we proceed with the next phase which is plan. In this
phase adaptations are proposed and tested. In this phase
validation and verification techniques are applied to check
the proposed adaptation. The best adaptation is forwarded
to the execute phase and the system acts according to the
adaptation. In case the adaption is unsuccessful the loop

IJCSNS International Journal of Computer Science and Network Security, VOL.17 No.12, December 2017 160

executes again [13]. It is named as feedback loop because
it takes input from the environment and gives feedback
(output) to the same environment and all this is done
iteratively [7]. It is to be noted that existing requirements,
systems goals, objectives, successful and unsuccessful
adaptations are all recorded/present in the knowledge. A
simplified version of MAPE-K feedback loop is shown in
Fig. 1.

Fig. 1 Phases of MAPE-K loop

5. Modeling and Analysis of MAPE-K using
Petri Nets

In this section an abstract Petri net model of MAPE-K
loop is described. Fig. 2 gives an initial state of Petri net
model for MAPE-K loop. This model is analyzed and
verified using CPN tool.

The inputs, conditions and outputs are kept simple for ease
of understanding and analysis. Following is a description
of each state and transition. The details are elaborated in
points to understand the complete process in a proper
sequence. We have used colored Petri nets [28] to model
this system. The model has been analyzed and verified
using CPN tool [29].

Fig. 2 Initial state of MAPE-K Petri Net

Following is a step wise description of each state and
transition:

1. Run: This is the initial state of the system, from
this state a random integer is generated using the
random function; the function is executed by the
transition ‘sensor environment’. This state keeps
the counter of number of transitions fired.

2. Sensor Environment: This transition is fired by
receiving token from the ‘Run’ state and
generates the random number which is
transferred to ‘input data’ state. Table 1 gives the
description of the functions and conditions that

were applied during the analysis of the Petri net
model for feedback loop.

Table 1: Type and color of inputs of MAPE-K Petri Net
Sr. # Color Sets Specification
1 Req String type
2 Signal List of integers from 1 to 100
3 Requirements Product of color set Req and Signal

3. Input Data: This is a state which stores/ receives

the data received from the transition ‘sensor
environment’. The data will be received as a
result firing of transition. Table 2 gives the

IJCSNS International Journal of Computer Science and Network Security, VOL.17 No.12, December 2017 161

description of the functions and conditions that
were applied during the analysis of the Petri net
model for feedback loop.

4. Get Data: This transition processes the data from
the ‘Input Data’ state and it is checked whether
the input is less than 50 or not. It is assumed that
1 to 50 represent the existing requirements.

5. Existing Requirements: In case the input is less
than 50, the token is moved to this state and no
action is further required from this state as the
system will perform the action specified in the
existing requirements.

6. New Requirements: If input is more than 50, we
move to New Requirements, in this case the
adaptation is required and complete feedback
loop has to be executed. From here the analysis
phase of MAPE-K will be finalized. Also
planning and Execution will be done in next steps.

Table 2: Functions of MAPE-K Petri Net
Sr.

Function
name Function

1 rule_1 fun rule_1(x:INT)= if x<=50
then 1`x else empty;

2 rule_2 fun rule_2(y:INT)= if y>50
then 1`y else empty;

3 Analysis
fun analysis(x:INT)= if x>59

andalso x<=90 then 1`x
else empty;

7. Check: In this transition, planning, testing and

execution is done and we generate the tested data.
Please note that conditions applied here are
assumed to keep the model simple and to
understand and analyze the MAPE-K loop using
Petri nets.

8. Tested Data: This state is reached after the data
is checked and here we have the requirements
which have been tested and are ready to execute.

9. Execute: Execute transition executes the action
and the new requirement is added in pool of
requirements. Additionally number of successful
executions are also recorded and stored in ‘count’
state.

10. Count: This keeps the count of the new
requirements which have been successfully
analyzed, tested and executed.

11. Pool of Requirements: This state stores the new
requirements which have been generated due to a
new set of inputs from the sensors and after
performing analysis, planning and testing on the
new set of inputs.

12. Forward: This transition performs two actions;
one is that it appends the existing requirements
with the new pool of requirements to form
complete set of requirements of the system.
Secondly it keeps a counter which is incremented
every time after the input data matches with the
existing requirements. This helps us to
understand the need of adaptation by calculating
the ratio of inputs that needed adaptation and the
inputs where the adaptation was not required.

13. Counter: The counter which is maintained by
‘Forward’ transition maintains the counter of
requirements which did not require any
adaptation. Fig. 3 presents the model after
fourteen executions and the adaptations were
conducted once in accordance with the given
inputs and constraints.

Fig. 3 MAPE-K Petri Net after multiple successful executions

IJCSNS International Journal of Computer Science and Network Security, VOL.17 No.12, December 2017 162

The above model represents the MAPE-K loop and it has
been observed that application of Petri nets to model the
feedback loop has not only been useful but it has also
increased the confidence throughout the development
process. This step clearly establishes the need and
usefulness of applying Petri nets in analysis, modeling,
verifying and simulation of self-adaptive systems. This
was an initial attempt and in future more variables, sensors,
conditions and scenarios will be added to develop a
complete model of a real life adaptive system using Petri
nets.

6. Conclusion and Future Work

Efficient and reliable working of feedback loop is the key
towards a successful adaptation in self-adaptive system. In
this research we have successfully modeled feedback loop
using Petri nets. The application of formal methods in
modeling the feedback loop using Petri nets has been
successful. Due to dynamic properties of Petri nets and
their strengths in modeling concurrent systems, this effort
will go a long way in development of a complete system
using Petri nets. After modeling the MAPE-K loop we can
confidently conclude that Petri net will plays key role in
analysis, development, verification and modeling of a real
life system. It is to be noted that all the steps of adaptation
are autonomously performed and we hope that a complete
multi-agent formal model will help the efficient and
reliable working of self-adaptive systems

In future, this model will be enhanced for multiple sensors
inputs, data types and conditions to appreciate the working
of the feedback loop for a more complex system. Further,
a complete formal model will be developed for a real life
system - self driving cars [30]. Finally, we intend to utilize
the strength of Petri nets to model, analyze, develop and
verify distributed adaptive systems where multiple
feedback loops are involved.

References
[1] F. Kneer and E. Kamsties, “A framework for prototyping

and evaluating self-adaptive systems - A research preview,”
in CEUR Workshop Proceedings, 2016, vol. 1564.

[2] G. Tallabaci and V. E. Silva Souza, “Engineering
adaptation with Zanshin: An experience report,” in ICSE
Workshop on Software Engineering for Adaptive and Self-
Managing Systems, 2013, pp. 93–102.

[3] C. Krupitzer, F. M. Roth, S. Vansyckel, G. Schiele, and C.
Becker, “A survey on engineering approaches for self-
adaptive systems,” Pervasive Mob. Comput., vol. 17, no.
PB, pp. 184–206, 2015.

[4] D. G. D. La Iglesia and D. Weyns, “MAPE-K Formal
Templates to Rigorously Design Behaviors for Self-
Adaptive Systems,” ACM Trans. Auton. Adapt. Syst., vol.
10, no. 3, pp. 1–31, 2015.

[5] T. Patikirikorala, A. Colman, J. Han, and L. Wang, “A
systematic survey on the design of self-adaptive software
systems using control engineering approaches,” in 2012 7th
International Symposium on Software Engineering for
Adaptive and Self-Managing Systems (SEAMS), 2012, pp.
33–42.

[6] J. Cámara et al., Self-aware computing systems: Related
concepts and research areas. 2017.

[7] G. Su, T. Chen, Y. Feng, D. S. Rosenblum, and P. S.
Thiagarajan, “An iterative decision-making scheme for
markov decision processes and its application to self-
adaptive systems,” in Lecture Notes in Computer Science
(including subseries Lecture Notes in Artificial Intelligence
and Lecture Notes in Bioinformatics), 2016, vol. 9633, pp.
269–286.

[8] S. W. Cheng, D. Garlan, and B. Schmerl, “Evaluating the
effectiveness of the rainbow self-adaptive system,” in
Proceedings of the 2009 ICSE Workshop on Software
Engineering for Adaptive and Self-Managing Systems,
SEAMS 2009, 2009, pp. 132–141.

[9] N. Khakpour, S. Jalili, C. Talcott, M. Sirjani, and M.
Mousavi, “Formal modeling of evolving self-adaptive
systems,” in Science of Computer Programming, 2012, vol.
78, no. 1, pp. 3–26.

[10] R. De Lemos et al., “Software engineering for self-adaptive
systems: A second research roadmap,” in Lecture Notes in
Computer Science (including subseries Lecture Notes in
Artificial Intelligence and Lecture Notes in Bioinformatics),
2013, vol. 7475 LNCS, pp. 1–32.

[11] M. Luckey and G. Engels, “High-quality specification of
self-adaptive software systems,” in ICSE Workshop on
Software Engineering for Adaptive and Self-Managing
Systems, 2013, pp. 143–152.

[12] P. Arcaini, E. Riccobene, and P. Scandurra, “Formal Design
and Verification of Self-Adaptive Systems with
Decentralized Control,” ACM Trans. Auton. Adapt. Syst.,
vol. 11, no. 4, pp. 1–35, 2017.

[13] F. Krikava and P. Collet, “A Reflective Model for
Architecting Feedback Control Systems,” in Proceeding of
the 2011 International Conference on Software Engineering
and Knowledge Engineering, 2011, p. 7.

[14] Y. Abuseta and K. Swesi, “Design Patterns for Self
Adaptive Systems Engineering,” Int. J. Softw. Eng. Appl.,
vol. 6, no. 4, pp. 11–28, 2015.

[15] N. Esfahani and S. Malek, “Uncertainty in Self-Adaptive
Software Systems,” in Lecture Notes in Computer Science,
2013, pp. 214–238.

[16] Q. Liu, S. Wu, D. Wang, Z. Li, and L. Wang, “Context-
Aware sequential recommendation,” in Proceedings - IEEE
International Conference on Data Mining, ICDM, 2017, pp.
1053–1058.

[17] B. Ciloglugil and M. M. Inceoglu, “User Modeling for
Adaptive E-Learning Systems,” in ICCSA, 2012, pp. 550–
561.

[18] N. Bencomo, K. Welsh, P. Sawyer, and J. Whittle, “Self-
explanation in adaptive systems,” in Proceedings - 2012
IEEE 17th International Conference on Engineering of
Complex Computer Systems, ICECCS 2012, 2012, pp.
157–166.

[19] J. Andersson, R. De Lemos, S. Malek, and D. Weyns,
“Modeling dimensions of self-adaptive software systems,”

IJCSNS International Journal of Computer Science and Network Security, VOL.17 No.12, December 2017 163

in Lecture Notes in Computer Science (including subseries
Lecture Notes in Artificial Intelligence and Lecture Notes in
Bioinformatics), 2009, vol. 5525 LNCS, pp. 27–47.

[20] F. D. Macías-Escrivá, R. Haber, R. Del Toro, and V.
Hernandez, “Self-adaptive systems: A survey of current
approaches, research challenges and applications,” Expert
Systems with Applications, vol. 40, no. 18. pp. 7267–7279,
2013.

[21] L. Gherardi and N. Hochgeschwender, “Poster: Model-
based Run-time Variability Resolution for Robotic
Applications,” in Proceedings - International Conference on
Software Engineering, 2015, vol. 2, pp. 829–830.

[22] Y. Brun et al., “Engineering self-adaptive systems through
feedback loops,” in Lecture Notes in Computer Science
(including subseries Lecture Notes in Artificial Intelligence
and Lecture Notes in Bioinformatics), 2009, vol. 5525
LNCS, pp. 48–70.

[23] J. Levinson et al., “Towards fully autonomous driving:
Systems and algorithms,” in IEEE Intelligent Vehicles
Symposium, Proceedings, 2011, pp. 163–168.

[24] Y. Zhao, Z. Yang, and D. Ma, “A survey on formal
specification and verification of separation kernels,”
Frontiers of Computer Science, vol. 11, no. 4. pp. 585–607,
2017.

[25] S. M. Edgar and S. A. Alexei, “Power and limitations of
formal methods for software fabrication: Thirty years later,”
Informatica (Slovenia), vol. 41, no. 3. pp. 275–282, 2017.

[26] C. A. Petri, “Kommunikation mit Automaten,” Fakultät für
Mathematik und Physik, vol. Doktor. p. 128, 1962.

[27] M. Koutny, J. Kleijn, and W. Penczek, “Transactions on
petri nets and other models of concurrency XII,” in Lecture
Notes in Computer Science (including subseries Lecture
Notes in Artificial Intelligence and Lecture Notes in
Bioinformatics), 2017, vol. 10470 LNCS, pp. IV–V.

[28] C. Rohr, “The Manual for Colored Petri Nets in Snoopy –
QPNC/SPNC/CPNC/GHPNC,” Science (80-.)., no. March,
2012.

[29] A. V. Ratzer et al., “CPN Tools for Editing, Simulating, and
Analysing Coloured Petri Nets,” Proc. 24th Int. Conf. Appl.
theory Petri nets, vol. 2679, no. Chapter 28, pp. 450–462,
2003.

[30] T. Luettel, M. Himmelsbach, and H.-J. Wuensche,
“Autonomous Ground Vehicles ―Concepts and a Path to
the Future,” Proc. IEEE, vol. 100, no. Special Centennial
Issue, pp. 1831–1839, 2012.

