
IJCSNS International Journal of Computer Science and Network Security, VOL.18 No.1, January 2018

63

Manuscript received January 5, 2018.
Manuscript revised January 20, 2018.

Comparative Analysis of FDD and SFDD

Shabib Aftab†, Zahid Nawaz†, Madiha Anwar††, Faiza Anwer†, Muhammad Salman Bashir†,
 Munir Ahmad†

†Department of Computer Science, Virtual University of Pakistan
††Department of Computer Science, University of Gujrat, Lahore Campus, Pakistan

Summary
No doubt, development of high quality software depends upon
the selection of software process model. Conventional software
development models such as Water fall, Spiral and V-Model have
been dominant in software industry till mid 1990s and then the
era of agile development models started. Agile process models
got the attention of software industry by proposing the solutions
of problems which developers were facing with conventional
models. Feature Driven Development (FDD) is one of the widely
used software development models from agile family. FDD is
known as client centric model as it develops the software product
according to client valued features. It follows adaptive and
incremental approach to implement the required functionality and
focuses on designing and building aspects of software
development with more emphasis on quality. However besides the
benefits, FDD lacks at some areas. Having less ability to respond
towards the changing requirements, reliance on experienced staff
and no focus on small projects are the main problems of FDD. To
overcome these issues, Simplified Feature Driven Development
(SFDD) was proposed. This paper empirically compares both the
models by presenting the results, which are obtained from the
development of real time client oriented projects.
Key words:
Agile Modeling, Process Evaluation, Empirical Evaluation,
Empirical Comparison, Feature Driven Development, Simplified
Feature Driven Development, Modified FDD, SFDD.

1. Introduction

Agile models provided a lighter way of software
development with the intention to overcome the limitations
of traditional software development models. Drawbacks of
traditional models include less user interaction, long
development duration, high cost, no adaptability and most
importantly no response to frequently changing user
requirements [17],[18]. Agile methodologies shifted the
focus from process to people and valued those factors
which were neglected in traditional models [19]. Agile
models include Extreme Programming (XP), Scrum, Test
Driven Development (TDD), Dynamic System
Development Model (DSDM), Crystal methods and
Feature Driven Development (FDD) etc [17],[19]. All
these models follow the values, principles and practices
suggested by agile manifesto. The agile manifesto can be
considered as a parent document of all agile models which
contains twelve foundation principles of software
development. These principles are about frequent team

communication, customer satisfaction, managing frequent
changing requirements and early delivery of partial
working software module [17],[18],[19],[23]. The teams in
agile models are self-organizing where members work in
close collaboration with each other, moreover agile
manifesto focuses on timely delivery of reliable and
quality product with simple design. These models develop
the software in multiple iterations, each iteration ends with
a working module of the complete upcoming product
which helps in early feedback from the customer [20],[21],
[22]. FDD is a process oriented agile development model
that mainly focuses on design and building aspects of
software development [11],[12],[13]. The lifecycle of FDD
follows a well-known pattern called ETVX. The
development process is completed in five phases, which
are: Develop an Overall Model, Build a Features List, Plan
by Feature, Design by Feature and Build by Feature. Each
phase consists of different tasks and activities [11],[13],
[14]. FDD develops the Software according to client
valued functionality by using the iterative and incremental
approach [15]. It uses eight best practices such as: domain
object modeling, development by feature, individual class
ownership, feature teams, inspection, configuration
management, regular builds and progress reporting [11]
[12],[16]. Besides the advantages, FDD faced some
limitations as well such as its heavy structure only makes
it suitable for medium to large scale projects. Further
limitations include explicitly dependence upon experience
staff and rigid nature for handling changing requirements.
To overcome these limitations a simplified version of FDD
called SFDD is proposed by [16] which tried to reduce its
limitations without affecting the agility. SFDD is designed
for small to medium scale projects with the feature of
handling changing requirements more effectively. Besides
the designing and building aspects the proposed model
also concentrates on early delivery of qualitative product
by introducing a testing phase within the iteration. SFDD
also removed the constraint of trained staff which was one
of the key limitations of classical FDD. The purpose of
this paper is to perform a comparative analysis of FDD
and SFDD on the base of empirical results.
Further organization of this paper is as follows. Section 2
describes different attempts of FDD customizations and
also precisely explains FDD & SFDD models. Section 3
presents the comparative analysis of both models. Section
4 finally concludes the paper.

IJCSNS International Journal of Computer Science and Network Security, VOL.18 No.1, January 2018

64

2. Material and Methods

FDD has been discussed and tailored by many researchers
in the last decade. To make the FDD more effective, its
limitations have to be eliminated. For this purpose, some
researchers have presented its customized versions
whereas some proposed its integrations with other process
models. Here we are going to discuss some selected
studies. In [1], authors proposed SCR-FDD, which is a
hybrid model that integrated Scrum and FDD. This model
tried to reduce the limitations of both the agile methods by
taking the schedule related aspects from Scrum and quality
related aspects from FDD. The proposed solution has tried
to resolve the limitations regarding schedule, quality and
deployment. Authors in [2] presented Feature-Driven
Methodology Development (FDMD), an extended version
of Feature Driven Development. The features of object
oriented approach are integrated with Situational Method
Engineering (SME) in FDMD. The proposed solution
represented the requirements as features, which are based
on object oriented principles. This model tried to reduce
the issues of maintainability and reusability. Authors of [3]
proposed an extended version of FDD, Secure Feature
Driven Development (SFDD). This model introduced two
new phases in the development life cycle of FDD, “Build
security by feature” and “Test security by feature”.
Moreover it also included the element of “In-phase
Security“ in each phase as well as the new role called
security master, to ensure the secure software development.
Authors of [4] proposed Feature Driven Reuse
Development (FDRD) which introduced reusability feature
by considering re-useable feature sets for new
requirements. In [5], authors presented an ontology based
feature driven development model for semantic web
application. The proposed model uses the concepts of
domain ontology from domain knowledge modeling. Each
phase of this model consists of ontology as a basic
building block. Ontology languages like RDF and OWL
helped to overcome the language ambiguity and
inconsistency. In [6], authors conducted a case study to
check the suitability of FDD for secure web development.
They have pointed out that by integrating more iterations,
security practices and other helping tools can make this
model suitable for secure software development. Authors
in [7] presented a framework to handle the changing
requirements in an efficient way. The proposed model is
based on Adaptive Software Development and Cognizant
Feature Driven Development (CFDD). CFDD is a
customized version of FDD. In [8], authors have proposed
a hybrid software architecture evaluation method (SAEM)
by integrating Quality Attribute Workshop (QAW),
Architecture Trade-off Analysis Method (ATAM) and
Active Review for Intermediate Designs (ARID) with
FDD. Authors in [9], presented a supporting tool for the
implementation of FDD. This tool implements the model

in a multi-user web based environment, in the form of sub
processes. This tool holds the ability to track changes in
requirements and also can map the modifications in design
classes. In [10], authors customized the FDD for aspect
oriented development. The proposed solution focused on
the separation of concerns which can help in handling
complexity and maintenance problems. According to
authors the refinement in FDD can be helpful for the
detection of inconsistencies among features and also can
help in smooth transition from one phase to other.

2.1 Feature Driven Development (FDD)

FDD is a process oriented and client centric agile process
model which works by focusing on the designing and
building aspects of software development process [11],
[12],[13]. FDD follows a well-known pattern called ETVX
and consists of five phases also known as processes [12].
The phases include: 1) Develop an Overall Model, 2)
Build a Features List, 3) Plan by Feature, 4) Design by
Feature and 5) Build by Feature. Each phase further
consists of different series of activities [11],[13],[14]. Like
other agile process models, it also follows iterative and
incremental approach for software development. FDD
develops the software according to client valued features
[15] by using eight best practices such as: domain object
modeling, development by feature, individual class
ownership, feature teams, inspection, configuration
management, regular builds and progress reporting [11],
[12]. In the first phase, key activity is the development of
overall model, which is performed after the discussion
regarding scope and context of the project in a
walkthrough meeting [11],[12]. The responsibility of
modeling authority is to select one best model for initiating
further processes [11] then different domain experts
develop object models. Second phase focuses on the
creation and management of feature/requirement list,
which would be developed in later phases. The feature list
is further classified into groups called feature set [12],[13].
In third phase, priority is assigned to every feature [11] so
that the higher priority feature would be considered in
early iterations. After assigning the priority, every feature
is checked against its business need, which verifies that the
features are according to the project’s requirements. This
phase also deals with the identification of dependencies
among features and measuring the complexities. Feature
ownership is also assigned to each developer in the form
of classes. Fourth phase focuses on different activities such
as: designing the sequence diagrams, writing the classes
and refining the overall model [11]. Moreover different
design packages are also produced against each class in
this phase [11],[13].

IJCSNS International Journal of Computer Science and Network Security, VOL.18 No.1, January 2018

65

Fig. 1 FDD Process Model [18]

The fifth and last phase deals with the implementation and
development of design packages. This phase includes
many activities such as coding, code inspection, unit
testing and integration testing [11],[12]. These activities
are actually performed in iterations. FDD defines six key
roles such as project manager, chief architect, development
manager, chief programmer, class owner and domain
experts. Besides the key roles, this model has five
supporting roles such as: release manager, language guru,
build engineer, tool smith and system administrator. It also
includes three additional roles: tester, deployer and
technical writer [11],[12].

2.2 Simplified Feature Driven Development (SFDD)

Authors in [16] presented Simplified Feature Driven
Development (SFDD) model to eliminate the limitations
of classical FDD. SFDD focuses on small to medium scale
projects where requirements are more likely to change.
The proposed solution concentrates on story cards for
requirement elicitations and also intends to improve the
software quality by introducing a testing phase within the
iteration. SFDD also removed the constraint of trained
staff which was one of the key limitations of classical
FDD. The first phase of SFDD is 'Develop an Overall
Model', in which project scope is finalized and
requirements are gathered. Project scope is finalized by the
chief programmer and domain expert, which are the two
active participant of this phase. Chief Programmer is the
focal person from development team and Domain Expert
represents the client. The requirements are presented by
the Domain expert along with the priorities in the form of
story cards. These story cards effectively explain the
required functionality without involving any technical
detail. After the completion of requirement gathering task,
the chief programmer develops the use case diagrams and
class diagrams with the help of other team members. At
the end of this phase four documents are generated: 1)

Project Scope, 2) Functional & Non-Functional
Requirements, 3) Use-case Diagrams and 4) class diagram.
The second phase of SFDD is 'Build Feature List'. In this
phase the chief programmer extracts and classifies the
features for each domain of the system to be developed by
using the documents produced in previous phase. Features
under a specific domain are called a feature sets. The
related requirements are collected as a single feature set.
Complete list of features is documented and approved by
the domain expert. At the end of this phase one document
is generated named feature list. Third phase of SFDD is
'Plan by Feature'. This phase deals with the project
planning activities and starts with a meeting between
Domain Expert and Chief Programmer regarding the
financial budget and time frame. This activity is followed
by the development of project plan in which chief
programmer decides about the number of iterations,
selection of the features to be developed in each iteration
and other required resources such as hardware, softwares,
time and effort (resource persons). After all these crucial
estimations, chief programmer assigns classes to class
owners. At the end of this phase one document is
generated named Project Plan. Fourth phase of SFDD is
'Design by Feature'. In this phase, the class diagrams
which were developed in first phase are refined. After that
an object model is developed of the system by Chief
Programmer and Class owners. The pseudo code is written
by the class owners for their concerned classes. Complete
design of the software is documented and inspected by the
QA a manager. Fifth phase of SFDD is 'Build by Feature'.
This phase enters in the iteration. The purpose of the
iteration is to develop and deliver the project in small
workable modules. The iteration of SFDD consists of two
phases: Build by feature phase and the Test by feature
phase.

IJCSNS International Journal of Computer Science and Network Security, VOL.18 No.1, January 2018

66

Fig. 2 SFDD Process Model [16]

This phase deals with the actual implementation of
features and classes. The class owners write code and a
formal code inspection session is conducted in the
supervision of QA manager to assure that code is written
according to the pseudo code and is working properly. At
the end of this phase small workable module will be ready
to go in the next phase of the iteration. A document named
Inspected Module is generated which will consist of the
detail regarding developed module. Sixth phase of SFDD
is ‘Test by Feature’. This is the second phase of iteration
and the last phase of SFDD. This phase makes sure that
the software is bug free and working according to the
required features. It starts with the unit testing in which
QA manager assured that the developed module is working
properly as per required functions. In case of successful
unit testing the module is integrated with the previously
developed module followed by integration testing. Domain
expert finally performs the acceptance testing. At the end
of this phase two documents are generated, Testing
document and User's manual.

4. Results and Discussions

FDD and SFDD both are implemented via real time client
oriented projects in a software house, situated in Islamabad,
capital of Pakistan. The software house consists of
experienced staff with dominating knowledge of software
development along with higher degrees in computer
science. They were already using agile models for most of
the development. Both case studies were carried out in
same working environment but with different teams. FDD
case study was implemented by an experienced team
whereas SFDD case study was assigned to the team having
less or no experience with agile development. However
training session of 10 days was organized for those team
members.
Two web based applications were developed with FDD
and SFDD respectively. Both applications were related to
Human Resource Management Systems. Most of the
characteristics of applications were same such as size of
the project, no of iterations and no of team members etc,
details are given in Table 1 and Table 2.

IJCSNS International Journal of Computer Science and Network Security, VOL.18 No.1, January 2018

67

Table 1: Case Study of FDD
Characteristics Description
Product Type Human Resource

Management
Size Small
Number of Modules 6
No of User Stories 57
Number of User
Interfaces

12

Iterations 4
Programming Approach Object Oriented
Language C#, ASP.NET
Documentation MS Office
Testing Browser Stack
Web Server IIS
Project Type Average
Team Size 5 Member
Feedback Weekly
Development
Environment Visual Studio 2012

Other Tools MS Visio
Reports Crystal Report

Table 2: Case Study of SFDD

Characteristics Description
Product Type Human Resource

Management
Size Small
Number of Modules 4
No of User Stories 65
Number of User
Interfaces 10

Iterations 4
Programming Approach Object Oriented
Language C#, ASP.NET
Documentation MS Office
Testing Browser Stack
Web Server IIS
Project Type Average
Team Size 5 Member
Feedback Weekly
Development
Environment Visual Studio 2012

Other Tools MS Visio
Reports Crystal Report

Comparative analysis is performed on the basis of
following performance related parameters:

• Completion Time
• Total Line of Code
• Budgeted Work Effort
• Actual Work Effort
• Post Release Defects
• Team Productivity
• Time to Manage Pre-release Change Requests

Table 3 describes the overall performance of both models
with the selected parameters. It can be seen that SFDD
improved the overall development process as it was
simplified to handle small to medium scale projects in an
efficient manner. The Results empirically demonstrates the
effectiveness of proposed SFDD.

Table 3: Comparison of FDD and SFDD
Parameter FDD SFDD

Completion Time (in weeks) 4 3.2

Total Tine of Code (LOC) 12810 13110

Budgeted Work Effort (in
hours) 800 640

Actual Work Effort (in hours) 700 592

Post Release Defects 12 5

Team Productivity 18.3 22.14

Pre-release Change Request 10 12
Time to Manage Change (in
hours) 14 11

Total project completion time is less in SFDD because of
its simplified nature. FDD contains heavy architectural
design and a complicated development life cycle along
with large number of roles which makes it only suitable
for large scale projects. This is the reason that its
completion time with small project is larger than the
completion time of SFDD (Table 3, Fig. 3).

Fig. 3 Total Completion Time

One notable thing is that the line of code was larger with
the case of SFDD but with effective customization the
completion time is significantly lower than FDD. The
budgeted work effort is also lower with the case of SFDD.
Total budgeted work effort is calculated using the
following formula;

IJCSNS International Journal of Computer Science and Network Security, VOL.18 No.1, January 2018

68

Total Budgeted Work Effort (h) =No of hours in a day (8)
* No of days in a week (5) *No of weeks* Total team size
(5).
The parameters other than the completion time are same
for both the case studies. As the completion time is less in
SFDD than FDD so the budgeted work effort would also
be lower in SFDD (Table 3, Fig. 4).

Fig. 4 Budgeted Work Effort

Actual spending hours are always less from budgeted as
some time is consumed on other related activities. The
actual work effort depends upon the actual time spent in a
day (h) for the development (Table 3, Fig. 5). In case of
SFDD, on averege 7.4 hours were given daily for project
development whereas in FDD the number of hours are 7.

Fig. 5 Actual Work Effort

The formula for actualwork effort is given below:
Actual Work Effort (h) =No of actual working hours (h) *
No of days in a week (5) *No of weeks* Total team size
(5).

The number of Post release defects is one of the important
parameters related to the quality of developed software
and also reflects the customer’s satisfaction. In case of
FDD 12810 LOC were written and total 12 post release
defects were reported however in SFDD case study 13110
LOC were written and total of 5 defects were reported. So
the complicated nature of FDD could not handle the small
project effectively. SFDD on the other hand performed
quite well due to its effective testing series in iterative
manner (Table 3, Fig. 6).

Fig. 6 Post Release Defects

Team productivity is also an important parameter to
analyze the development performance with any particular
SDLC. However only this parameter is not enough to
judge the performance as post release defects can affect
this reflection.

Fig. 7 Team Productivity

IJCSNS International Journal of Computer Science and Network Security, VOL.18 No.1, January 2018

69

Team Productivity is calculated using the following
formula;
Team Productivity = line of code / actual time spent in
hours.
As in SFDD case study, more lines of code were written in
less time that’s why team productivity is higher than FDD
(Table 3, Fig. 7).
In FDD case study 10 pre-release change request were
implemented in 14 hours however with SFDD, 12 requests
were implemented in 11 hours (Table 3, Fig. 8). This
quality parameter shows the advantage of SFDD over
FDD with respect to change implementation. SFDD
performed better due to its simple design and effective
customization. These features make the SFDD to track and
implement changes more efficiently.

Fig. 8 Time to Manage Change Requests

4. Conclusion

This paper performed a comparative analysis of classical
FDD and SFDD. FDD is an agile development model
which follows process oriented and iterative approach with
more focus on software quality. Its complex architecture,
large number of roles and dependency upon experienced
staff make it only suitable for large scale projects where
there is less tendency of change in requirements. On the
other hand SFDD is proposed to overcome these
limitations without affecting the agility. It’s simple
architecture makes it suitable for small to medium scale
projects and it can also handle changing requirements in an
effective and efficient manner. For comparative analysis,
two software applications having same nature were
developed by FDD and SFDD respectively. SFDD
reported better results in terms of completion time,
budgeted work effort, actual work effort, no of post release
defects, team productivity and time to manage pre-release
change requests. From empirical comparison, It can be
said that SFDD has proved to be effective than classical

FDD in terms of quality, efficiency and effectiveness.
However SFDD should be tested further for medium scale
projects.

References
[1] S. S. Tirumala, S. Ali, and A. Babu G, “A Hybrid Agile

model using SCRUM and Feature Driven Development,”
International Journal of Computer Applications, vol. 156, no.
5, pp. 1–5, 2016.

[2] R. Mahdavi-Hezave and R. Ramsin, “FDMD:
Feature-Driven Methodology Development,” Proceedings of
the 10th International Conference on Evaluation of Novel
Approaches to Software Engineering, pp. 229–237, 2015.

[3] A. Firdaus, I. Ghani, and S. R. Jeong, “Secure Feature
Driven Development (SFDD) Model for Secure Software
Development,” Procedia - Social and Behavioral Sciences,
vol. 129, pp. 546–553, 2014.

[4] S. Thakur and H. Singh, “FDRD: Feature driven reuse
development process model,” in Proceedings of 2014 IEEE
International Conference on Advanced Communication,
Control and Computing Technologies, ICACCCT 2014,
2015, pp. 1593–1598.

[5] F. Siddiqui and M. A. Alam, “Ontology based application
model for feature driven development,” Proceedings of the
5th Indian International Conference on Artificial
Intelligence, IICAI 2011, pp. 1125–1137, 2011.

[6] A. Firdaus, I. Ghani, and N. I. M. Yasin, “Developing
Secure Websites Using Feature Driven Development (FDD):
A Case Study,” Journal of Clean Energy Technologies, vol.
1, no. 4, pp. 322–326, 2013.

[7] K. Kumar, P. K. Gupta, and D. Upadhyay, “Change-oriented
adaptive software engineering by using agile methodology:
CFDD,” in ICECT 2011 - 2011 3rd International Conference
on Electronics Computer Technology, 2011, vol. 5, pp.
11–14.

[8] F. Kanwal, K. Junaid, and M. A. Fahiem, “A hybrid
software architecture evaluation method for FDD - An agile
process model,” in 2010 International Conference on
Computational Intelligence and Software Engineering, CiSE
2010, 2010.

[9] M. Rychlý and P. Tichá, “A tool for supporting
feature-driven development,” in Lecture Notes in Computer
Science (including subseries Lecture Notes in Artificial
Intelligence and Lecture Notes in Bioinformatics), 2008, vol.
5082 LNCS, pp. 196–207.

[10] J. Pang and L. Blair, “Refining Feature Driven Development
- A Methodology for Early Aspects,” Early Aspects:
Aspect-Oriented Requirements Engineering and
Architecture Design, pp. 85–90, 2004.

[11] P. Abrahamsson, O. Salo, J. Ronkainen, and J. Warsta,
“Agile software development methods: Review and
analysis,” VTT Publications, no. 478. pp. 3–107, 2002.

[12] S. R. Palmer and M. Felsing, A Practical Guide to Feature
Driven Development. 2002.

[13] S. Goyal, “Major Seminar On Feature Driven Development,”
p. 22, 2007.

[14] B. Boehm, “A Survey of Agile Development
Methodologies,” Laurie Williams, pp. 209–227, 2007.

[15] P. Coad, J. D. Luca, and E. Lefebvre, “Java Modeling In
Color With UML,” in Java Modeling In Color With UML:
Enterprise Components and Process, no. c, 1999, pp. 1–12.

IJCSNS International Journal of Computer Science and Network Security, VOL.18 No.1, January 2018

70

[16] Z. Nawaz, S. Aftab, and F. Anwer, “Simplified FDD Process
Model,” International Journal of Modern Education and
Computer Science, vol. 9, no. 9, pp. 53–59, 2017.

[17] G. Rasool, S. Aftab, S. Hussain, and D. Streitferdt,
“eXRUP: A Hybrid Software Development Model for Small
to Medium Scale Projects,” Journal of Software Engineering
and Applications, vol. 6, no. 9, pp. 446–457, 2013.

[18] F. Anwer, S. Aftab, U. Waheed, and S. S. Muhammad,
“Agile Software Development Models TDD , FDD ,
DSDM , and Crystal Methods : A Survey,” International
Journal of Multidisciplinary Sciences and Engineering, vol.
8, no. 2, pp. 1–10, 2017.

[19] F. Anwer, S. Aftab, S. S. M. Shah, and U. Waheed,
“Comparative Analysis of Two Popular Agile Process
Models: Extreme Programming and Scrum,” International
Journal of Computer Science and Telecommunications
Journal, vol. 8, no. 2, pp. 1–7, 2017.

[20] F. Anwer and S. Aftab, “SXP: Simplified Extreme
Programing Process Model,” International Journal of
Modern Education and Computer Science, vol. 9, no. 6, pp.
25–31, 2017.

[21] F. Anwer and S. Aftab, “Latest Customizations of XP : A
Systematic Literature Review,” International Journal of
Modern Education and Computer Science, vol. 9, no. 12, pp.
26–37, 2017.

[22] S. Ashraf and S. Aftab, “Latest Transformations in Scrum: A
State of the Art Review,” International Journal of Modern
Education and Computer Science, vol. 9, no. 7, pp. 12–22,
2017.

[23] M. R. J. Qureshi, “Agile software development
methodology for medium and large projects,” IET Software,
vol. 6, no. 4, p. 358, 2012.

