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Summary 
 This paper presents a texture classification algorithm using 

Independent Component Analysis and Naïve Bayes Classifier. 

Naïve Bayes is one of the most effective and efficient 

classification algorithms. Naïve Bayes classifiers still tend to 

perform very well under unrealistic assumption.  Especially for 

small sample sizes, naive Bayes classifiers can outperform the 

more powerful classifiers. Texture features are extracted using 

Independent Component Analysis and then classified by Naïve 

Bayes Classifier. Experiments were performed in order to 

evaluate the performance of the proposed classifier. It consists of 

texture images from the Describable Textures Dataset (DTD) and 

Brodatz album. Experimental results show that the proposed 

algorithm has an encouraging performance. The Naïve Bayes 

Classifier produces a very accurate classification results. 
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1. Introduction 

Texture classification involves deciding what texture 

category an observed texture image belongs to. In order to 

accomplish this, a priori knowledge of the classes to be 

recognized is needed. Once this knowledge is available 

and the texture features are extracted, classical pattern 

classification techniques can be used in order to do the 

classification task.   

The texture classification problem is normally divided into 

the two sub problems of feature extraction and 

classification [1-4]. Many recent methods have been 

developed to extract textural features, which includes 

statistical, model-based, and signal processing methods 

[1,5-8]. 

In this paper we introduce Independent Component 

Analysis (ICA) of textured images as a componential 

technique for creating appropriate feature vectors. Then, 

the classification task is performed used Naïve Bayes 

classifier. Naive Bayes Classifier has been successfully 

used in many recent application [9-17]. It is one of most 

popular statistical learning systems. 

Independent component analysis (ICA) is a relatively new 

signal processing and data analysis technique. Independent 

Component Analysis is used widely in literature for blind 

source separation and has been applied in many 

application e.g., in wireless communications, biomedical 

signal processing texture classification and data mining 

[18-27]. 

The ICA based approach is different from existing 

methods in that it produces a new data dependent bank 

which called basis functions in order to be used in texture 

classification. These basis functions are able to capture the 

inherent properties of textured images. Feature vectors are 

obtained from training data using ICA algorithm. In order 

to perform this, it is required to provider training data 

containing the appropriate structure. In this paper, the 

independent components basis functions are computed 

using a fast ICA algorithm by Hyvainen [28]. The 

algorithm was derived based on neg-entropy. This fast 

ICA algorithm was empirically shown to be 10 to 100 

times faster than many ICA algorithms.  

2. Methodology 

Texture classification process involves four phases: Data 

gathering phase, Data preprocessing phase, the learning 

phase and the classification phase. In data gathering, the 

training and test set will be obtained from a texture images 

databases. The second phase is to pre-process the images, 

including sampling, whitening centering and 

dimensionality reduction. In the learning phase, the target 

is to build a model. The last step is using the remaining of 

the pre-processed data to test the model. A test set is used 

to determine the accuracy of the model. Usually, the given 

texture image set is divided into training and test sets, with 

training set used to build the model and test set used to 

validate it (Fig.1). 
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Fig. 1 The learning process: training and testing. 

2.1 Training stage 

The texture image can be represented by a weighted linear 

combinations of basis function as shown in Fig. 2.  

 

Fig. 2  An image can be expressed as a linear weighted sum of basis 

images. The weights are the independent components. 

The basis functions ICi are statistically independent of 

each other. The texture image of size (n x n) is illustrated 

in equation (1) 

  (1) 
Where N = n2, ICi is a the ith basis function vector and ai is 

independent component of basis function i 

Rewriting equation (1) in matrix form leads to equation (2), 

x = IC A,  (2) 
where IC = [IC1,IC2,…,ICN ] and A = [ a1, a2,….,an ]T. 

This is called the ICA model. 

 

The goal of ICA is to use the images xt, t = 1,..., M, to 

estimate a matrix W = IC-1  such that the linear transform 

makes the components ai, i = 1,..., N, of A as statistically 

independent as possible . 

 

Equation (3) presents the form the FastICA algorithm used 

in this paper as ICA algorithm  

 (3) 
 

Where g(wT x)=(wT x) 3 and  g’(wT x)=3(wT x) 2 are based 

on kurtosis algorithms [28]. FastICA will start by selecting 

random values of the weight matrix W and each iteration 

update the weight based on equation (3) until convergence.  

 

The texture image is initially transferred to a column 

vector by screening each raw in the image and concatenate 

it in the column vector. Due to this process part of the two-

dimensional correlations is destroyed. This can be solved 

in the training stage by rotating the texture images by 

random angle θ, where θ is between 0° and 180°.  Each 

rotated image will be used in the training process.  

 

Using k training texture images, (m x m) sub images will 

be generated. The size of the window should be large 

enough to contain sensible visual information and at the 

same time small enough to introduce generality in the data.  

This tradeoff can be solved selecting the appropriate 

window size and shape that maximize the classification 

accuracy. 

 

The used window sizes in this paper is (8×8). The used 

shape is the rectangular one, where a sample window of 

size (m x m) with top corner positioned at (x0,y0) is 

obtained by multiplying the original image function x with 

window function.   
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After multiplication, the area outside the window is 

discarded, leaving (m x m) image window. To ensure that 

no texture dominates the basic functions, each training 

texture image is normalized and made zero mean before 

sampling. In addition, every generated sub-image 

subtracted its individual local mean value. If this is not 

done, one of the resulting basis functions will represent the 

mean intensity value of the training data, which is of little 

value in the bank context.  Fig. 3 summarizes the steps 

used to generate the training vectors set from training 

texture images. 
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Fig. 3  Steps to generate training texture vectors 

The resulted training vectors will be input to ICA 

algorithm in order to produce basis functions bank. The 

proposed algorithm used to generate feature vectors is 

shown in Fig.4. 

 

Fig. 4 The algorithm for generating IC basis functions. 

The generated basis function bank is shown in Fig.5. 

 

Fig.5   Example of (8 x 8) ICA basis functions for texture. 

The basis function bank will be used to generate feature 

vectors and the assigned class label as shown in Fig.6. 

 

Fig. 6  Feature extraction using ICA.  

The input vector x comes directly from the gray-level 

values of the (m ×m) window resulting from the input 

image. The preprocessing consists of two operations; 

Centering and Whitening. Centering the data to the origin 

is done by subtracting the mean of the data from each x, 

x:=x -E{x}. 

This is done to simplify the estimation of the correlation 

matrix of x. Whitening, is a transformation of the data so 

that the components of the data are uncorrelated and have 

unit variance, i.e, 

z = Vx, so that E{zzT} = I,   (2) 

 

where I is the identity matrix, V is the whitening matrix 
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and z is the whitened data.  

 

The inner product between the vector x and each of the 

independent Components (IC’s) banks, each with specific 

frequency and orientation characteristics will be computed. 

If the bank consists of k independent components, the 

result from the inner product is k values called fTi where 

i=1,…,k . 

fTi =  |xT . ICi |  ( 3) 

 

The size of the k  ICs will be the same size as the input 

image patch (mx m). Each v corresponds to specific 

texture properties. Thus, each input image will have high 

value in regions corresponding to textures which are tuned 

to the IC, and low value corresponding to textures which 

are not tuned to.  If v was the selected feature vector, it has 

the size (mx1). 

  

Principal Component Analysis (PCA) is a transformation 

that aims to represent N-dimensional data in an orthogonal 

uncorrelated L-dimensional space such that the mean 

square error (MSE) between the original data x and the 

representation s in the new PCA basis is minimized, That 

is, 

Minimize E{ ||x-s||2 }  (4) 

 

The principal component vectors, are given by the 

eigenvectors of the correlation matrix of x, Rx, such that 

 

Rx = E{xxT} =VλVT  (5) 

 

Where x is assumed to be zero mean. The columns of V 

contain the eigenvectors, and the diagonal matrix λ 

contains the corresponding eigenvalues. 

 

The resulted dimension is truncated into a L < N. This 

reduces the space and time complexity and the degree of 

freedom. The reduction is done by rearranging the 

eigenvectors and eigenvalues and dropping the 

eigenvectors corresponding to small eigenvalues.  

2.2 Testing stage 

Texture classification is basically the problem of 

classifying pixels in a texture image according to their 

textural cues. The proposed system is shown in Fig 7 .The 

test image will be divided to (8 by 8) sized windows. The 

constructed sub-images will be preprocessed and feature 

vector will be extracted. The feature vector will be 

classified using Naïve Bayes classifier to the appropriate 

class.  

 

Fig.7 Proposed Texture classification approach using ICA and Naïve Bayes Classifier. 

The list of the sets of feature values and its corresponding 

class are given to the classifier with the constituted 

training set. The model is trained using Naïve Bayes 

Classifier learning algorithm. When a new record values, 

previously unseen test record, is presented to the classifier, 

the class can be predicted based on the training instances.  

The probability that a record with feather vector F=

 belongs to class Ci, Where 

 
 

 (6) 

 is the posterior probability of class (  

given features ( ).  

is the prior probability of class (  

is the likelihood which is the 

probability of features ( )  given class ( .  

P(x) is the prior probability of features ( ). 
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Calculating  is the main aim in Naïve Bayes 

Classifier. Specifically, we want to find the value of  

that maximize . Since 

 is constant number for all k values, 

then equation (9) can simply say  

 

 (7) 

Where  

     (8) 

Nci is count of samples from class Ci. 

NT is Count of all samples. 

 

Naive Bayes classifier assumes conditional independence 

that the effect of the value of a feature (F) on a given class 

(C) is independent of the values of other predictors [4]. 

Then the   can be written as  

  (9) 

For numerical features, the Gaussian Naive Bayes 

algorithm assumes distribution of features to be Gaussian 

or normal, i.e., the probability density function for the 

Gaussian distribution is defined by two parameters (mean 

and standard deviation). 

 

   (10) 

Where, 

  (11) 

 

 (12) 

 

Finally the Naïve Bayes calculate the posterior probability 

for each class. Choose value of Ci that maximizes P(Ci | 

F1, F2, …, Fn) is equivalent to choosing value of Ci that 

maximizes P(F1, F2, …, Fn|Ci) P(Ci). 

The class with the highest posterior probability is the 

predicted one. The estimated class  Corresponding to F 

is 

 

 (13) 

3. Experiments 

In order to evaluate the previous methods, textures subset 

(28 texture image) were taken from the Describable 

Textures Dataset (DTD) [29][30] as shown in Fig.8.  

DTD is a texture database consists of 5640 images. These 

images are classified to 47 categories inspired from human 

perception. There are 120 images for each category. Image 

sizes range between 300x300 and 640x640. These texture 

images provide us with different basis functions properties 

(features).Changing any one of the 28 images will produce 

new basis functions. The resulted basis functions are 

shown in Fig.5. The construct the ICA basis functions is 

achieved after applying extensive dimension reduction as 

provided by PCA 
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Fig.8 Training textures from the Describable Textures Dataset (DTD). 

The texture classifier was trained on randomly selected 

portions of (8×8) sub images of texture images that are not 

included in the test images. The total number of texture 

images used in the experimental part is 193 images.  

 

The performance measurements used for this paper were 

recall, precision, classifier F1 rating and accuracy. Recall 

(R) is the ratio of the relevant data among the retrieved. 

Precision (P) is the ratio of the accurate data among the 

retrieved data.  Their formulas are given as follow: 

   

 if TP+FN > 0, otherwise 

undefined.     (14) 

 

    if TP+Fp > 0, otherwise 

undefined.     (15) 

Classifier F1 rating is the harmonic mean of the classifier 

recall and the precision. It is given as 

    (16) 

where R represents the recall, , and P represents the  

precision 

 

Accuracy, which indicates the fraction of correctly 

classified samples among all the samples, 

obtained by: 

  (17) 

 

Where, 

• True Positive (TP) represents the number of positive data 

that is correctly labeled by a classifier 

• True Negative (TN) represents the number of negative 

data that is correctly labeled by a classifier 

• False Positive (FP) represents the number of positive 

data 

that is incorrectly labeled by a classifier 

• False Negative (FN) represents the number of negative 

data that is incorrectly labeled by a classifier 

 

Macro-averaged measure has been used in this multi 

label classification. The macro-averaged results can 

be computed as indicated by: 

Macro precision:  

𝑷𝒓𝒆𝒄𝒊𝒔𝒊𝒐𝒏𝒎𝒂𝒄𝒓𝒐 =
𝟏

𝒏
∑ 𝑷𝒓𝒆𝒄𝒊𝒔𝒊𝒐𝒏(𝑪𝒊)𝒏
𝒊=𝟏   (18) 

 

Macro Recall: 

𝑹𝒆𝒄𝒂𝒍𝒍𝒎𝒂𝒄𝒓𝒐 =
𝟏

𝒏
∑ 𝑹𝒆𝒄𝒂𝒍𝒍(𝑪𝒊)𝒏
𝒊=𝟏    (19) 

 

Macro F-measure:  

𝑭𝒎𝒂𝒄𝒓𝒐 =
𝟏

𝒏
∑ 𝑭(𝑪𝒊)𝒏
𝒊=𝟏     (20) 

Where n is the number of the classes Ci 

10-fold cross validation has been used in this paper. In 10-

fold the training set will be randomly splitted into 10’s that 

have approximately the same size. Then the classifier will 

be trained using (8) subsets. One of the two remaining 

subsets will be used for validation and the last for testing.  

 

This process will be repeated 10 times, while a different 

subset is used for testing and validation. Table 1 shows the 

average accuracy for 2-Fold, 4-Fold, 6-Fold, 8-Fold and 

the 10-Fold cross-validation 

Table 1:  Accuracy for 2-Fold, 4-Fold, 6-Fold, 8-Fold and the 10-Fold 
cross-validation. 

K-Fold Accuracy (%) 

2-Fold 91.5044 % 

4-Fold 93.2743 % 

6-Fold 93.2743 % 

8-Fold 92.3894 % 

10-Fold 99.4819 % 

 

The experiments were performed with input window sized 

(8×8). Using this size, the best classification accuracy has 

been achieved as shown in Table 2. When the texture 

boundary is more as in texture image shown in Fig.9, a 

larger window size was considered to be disadvantageous. 

The correct classification rate (%) of rectangular shaped 

window and circular shaped window of radius R is shown 

in Fig. 9. 

 

 

Fig.9 Correct classification rate of rectangular window and circular 

window. 

Table 2: Correct classification rate for different window size. 

Window size Correct classification rate (%) 
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5x5 82.06% 

8x8 97.54% 

12x12 93.24% 

17x17 89.69% 

 

As the number of features in that matrix was 40 features, 

we used PCA dimensionality reduction method and we 

selected around 23% of the features (9 features) with the 

highest importance.  

 

There are many different reduction techniques available 

including Principal Component Analysis (PCA), and Chi-

Squared for feature selection and reduction. We used the 

Describable Textures Dataset to compare PCA and Chi-

Squared on a reduced number of dimensions varying 

between 1 and 9 dimensions. Fig. 10 depicts the F1 rating 

of these two methods. Clearly, PCA F1 measurement of 

PCA outperformed the other method. 

 

 

Fig.10 F1 Measurement for PCA and Chi-Squared. 

As stated before, 5640 Texture from the database 

were used to train and test the developed system. 

Table 3 shows the experimental result of 193 texture 

images. The 193 texture images are from 4 different 

classes. The proposed algorithm has a recognition 

accuracy of 99.4%. 

Table 3: Overall performance results. 

Total Number of Instances                 193    

Correctly Classified Instances           192               99.4819 % 

Incorrectly Classified Instances          1           
0.5181 % 

Kappa statistic                                      0.9924 

Mean absolute error                            0.0467 

Root mean squared error                   0.0856 

Relative absolute error                       17.0269 % 

Root relative squared error                23.1491 % 

 

Another performance indicated by confusion matrix is 

shown in Table 4. This confusion matrix was built based 

on data testing.  We constructed the confusion matrix for 

each texture class (Texture 1, Texture 2, Texture 3, 

Texture 4). The confusion matrix has the form shown in 

Table 4, 

Table 4: Confusion matrix. 

 Texture 1 Texture 2 Texture 3 Texture 4 

Texture 1 69 1 0 0 

Texture 2 0 76 0 0 

Texture3 0 0 30 0 

Texture 4 0 0 0 17 

 

The performance measurements result is shown in Table 5.  

Table 5: Performance Measurements Result. 

TP Rate    FP Rate    Precision Recall F-Measure    Class 

0.986      0 1 0.986      0.993       Texture 1 

1 0.009       0.987      1 0.993       Texture 2 

1 0 1 1 1 Texture 2 

1 0 1 1 1 Texture 2 

 
We have also applied the proposed algorithm to several 

images of composite textures of different texture patterns 

with size 256× 256 pixels and 256 grey levels.  Composite 

textures images from the Brodatz album [31], [32] are 

used in this part of the experiment in order to compare the 

achieved result with the performance of other classifier 

proposed in the literature. Fig. 11 and Fig. 12 show 

examples of composite texture images. 

 

 

Fig. 11 Two-texture images D55D17 used in experiments (Size 256 X 
256). 

 

Fig.12 Five-texture imagesD55D17D84D77D24 used in experiments. 
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All of the images give an error percentage of below 5% which is 

a good result. Notice that the more texture boundaries there are, 

the more difficult decisions must be made, resulting in an 

increasing number of misclassified pixels. No boundary pixels 

seem to be well distinguished by the proposed algorithm.  

The results obtained from the proposed Naïve Bayes Classifier 

was compared by the results achieved using ICA, SVM, and 

using the filtering method (Gaber filter and wavelet). Some of 

these is shown in Table 6 [33],[34] and [35] .The proposed 

methodology a large classification improvement was observed.   

Table 6: Accuracy rates (%) using different classifiers and different 

texture image. 

………...Classifier 

 

images  

ICA  SVM Wavelet Proposed 

method  

D55D17 99.03

8 

---- 88.88  99.47 

D55D17D84D77D24 95.71 80.7  ---- 96.25 

4 Conclusions 

We have demonstrated that the Naïve Bayes Classifier 

with ICA are able to capture the inherent properties of 

textured images and correctly labeled it.  The excellent 

classification error rate achieved in the experiments 

confirm that the using of Naïve Bayes Classifiers well-

suited for texture classification. So the proposed algorithm 

can be characterized as reliable. 
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