
IJCSNS International Journal of Computer Science and Network Security, VOL.18 No.1, January 2018

112

Manuscript received January 5, 2018

Manuscript revised January 20, 2018

Texture Classification using Naïve Bayes Classifier

Ayman M Mansour

Department of Communication, Electronics and Computer Engineering,

Tafila Technical University, Tafila, Jordan

Summary
 This paper presents a texture classification algorithm using

Independent Component Analysis and Naïve Bayes Classifier.

Naïve Bayes is one of the most effective and efficient

classification algorithms. Naïve Bayes classifiers still tend to

perform very well under unrealistic assumption. Especially for

small sample sizes, naive Bayes classifiers can outperform the

more powerful classifiers. Texture features are extracted using

Independent Component Analysis and then classified by Naïve

Bayes Classifier. Experiments were performed in order to

evaluate the performance of the proposed classifier. It consists of

texture images from the Describable Textures Dataset (DTD) and

Brodatz album. Experimental results show that the proposed

algorithm has an encouraging performance. The Naïve Bayes

Classifier produces a very accurate classification results.

Key words:
Naïve Bayes, feature, Independent Component, Classifier.

1. Introduction

Texture classification involves deciding what texture

category an observed texture image belongs to. In order to

accomplish this, a priori knowledge of the classes to be

recognized is needed. Once this knowledge is available

and the texture features are extracted, classical pattern

classification techniques can be used in order to do the

classification task.

The texture classification problem is normally divided into

the two sub problems of feature extraction and

classification [1-4]. Many recent methods have been

developed to extract textural features, which includes

statistical, model-based, and signal processing methods

[1,5-8].

In this paper we introduce Independent Component

Analysis (ICA) of textured images as a componential

technique for creating appropriate feature vectors. Then,

the classification task is performed used Naïve Bayes

classifier. Naive Bayes Classifier has been successfully

used in many recent application [9-17]. It is one of most

popular statistical learning systems.

Independent component analysis (ICA) is a relatively new

signal processing and data analysis technique. Independent

Component Analysis is used widely in literature for blind

source separation and has been applied in many

application e.g., in wireless communications, biomedical

signal processing texture classification and data mining

[18-27].

The ICA based approach is different from existing

methods in that it produces a new data dependent bank

which called basis functions in order to be used in texture

classification. These basis functions are able to capture the

inherent properties of textured images. Feature vectors are

obtained from training data using ICA algorithm. In order

to perform this, it is required to provider training data

containing the appropriate structure. In this paper, the

independent components basis functions are computed

using a fast ICA algorithm by Hyvainen [28]. The

algorithm was derived based on neg-entropy. This fast

ICA algorithm was empirically shown to be 10 to 100

times faster than many ICA algorithms.

2. Methodology

Texture classification process involves four phases: Data

gathering phase, Data preprocessing phase, the learning

phase and the classification phase. In data gathering, the

training and test set will be obtained from a texture images

databases. The second phase is to pre-process the images,

including sampling, whitening centering and

dimensionality reduction. In the learning phase, the target

is to build a model. The last step is using the remaining of

the pre-processed data to test the model. A test set is used

to determine the accuracy of the model. Usually, the given

texture image set is divided into training and test sets, with

training set used to build the model and test set used to

validate it (Fig.1).

IJCSNS International Journal of Computer Science and Network Security, VOL.18 No.1, January 2018 113

Fig. 1 The learning process: training and testing.

2.1 Training stage

The texture image can be represented by a weighted linear

combinations of basis function as shown in Fig. 2.

Fig. 2 An image can be expressed as a linear weighted sum of basis

images. The weights are the independent components.

The basis functions ICi are statistically independent of

each other. The texture image of size (n x n) is illustrated

in equation (1)

 (1)
Where N = n2, ICi is a the ith basis function vector and ai is

independent component of basis function i

Rewriting equation (1) in matrix form leads to equation (2),

x = IC A, (2)
where IC = [IC1,IC2,…,ICN] and A = [a1, a2,….,an]T.

This is called the ICA model.

The goal of ICA is to use the images xt, t = 1,..., M, to

estimate a matrix W = IC-1 such that the linear transform

makes the components ai, i = 1,..., N, of A as statistically

independent as possible .

Equation (3) presents the form the FastICA algorithm used

in this paper as ICA algorithm

 (3)

Where g(wT x)=(wT x) 3 and g’(wT x)=3(wT x) 2 are based

on kurtosis algorithms [28]. FastICA will start by selecting

random values of the weight matrix W and each iteration

update the weight based on equation (3) until convergence.

The texture image is initially transferred to a column

vector by screening each raw in the image and concatenate

it in the column vector. Due to this process part of the two-

dimensional correlations is destroyed. This can be solved

in the training stage by rotating the texture images by

random angle θ, where θ is between 0° and 180°. Each

rotated image will be used in the training process.

Using k training texture images, (m x m) sub images will

be generated. The size of the window should be large

enough to contain sensible visual information and at the

same time small enough to introduce generality in the data.

This tradeoff can be solved selecting the appropriate

window size and shape that maximize the classification

accuracy.

The used window sizes in this paper is (8×8). The used

shape is the rectangular one, where a sample window of

size (m x m) with top corner positioned at (x0,y0) is

obtained by multiplying the original image function x with

window function.





 


otherwise

myyyandmxxxif
yxyxw

0

111
),,,(

0000

00

 (1)

After multiplication, the area outside the window is

discarded, leaving (m x m) image window. To ensure that

no texture dominates the basic functions, each training

texture image is normalized and made zero mean before

sampling. In addition, every generated sub-image

subtracted its individual local mean value. If this is not

done, one of the resulting basis functions will represent the

mean intensity value of the training data, which is of little

value in the bank context. Fig. 3 summarizes the steps

used to generate the training vectors set from training

texture images.

IJCSNS International Journal of Computer Science and Network Security, VOL.18 No.1, January 2018 114

Fig. 3 Steps to generate training texture vectors

The resulted training vectors will be input to ICA

algorithm in order to produce basis functions bank. The

proposed algorithm used to generate feature vectors is

shown in Fig.4.

Fig. 4 The algorithm for generating IC basis functions.

The generated basis function bank is shown in Fig.5.

Fig.5 Example of (8 x 8) ICA basis functions for texture.

The basis function bank will be used to generate feature

vectors and the assigned class label as shown in Fig.6.

Fig. 6 Feature extraction using ICA.

The input vector x comes directly from the gray-level

values of the (m ×m) window resulting from the input

image. The preprocessing consists of two operations;

Centering and Whitening. Centering the data to the origin

is done by subtracting the mean of the data from each x,

x:=x -E{x}.

This is done to simplify the estimation of the correlation

matrix of x. Whitening, is a transformation of the data so

that the components of the data are uncorrelated and have

unit variance, i.e,

z = Vx, so that E{zzT} = I, (2)

where I is the identity matrix, V is the whitening matrix

IJCSNS International Journal of Computer Science and Network Security, VOL.18 No.1, January 2018 115

and z is the whitened data.

The inner product between the vector x and each of the

independent Components (IC’s) banks, each with specific

frequency and orientation characteristics will be computed.

If the bank consists of k independent components, the

result from the inner product is k values called fTi where

i=1,…,k .

fTi = |xT . ICi | (3)

The size of the k ICs will be the same size as the input

image patch (mx m). Each v corresponds to specific

texture properties. Thus, each input image will have high

value in regions corresponding to textures which are tuned

to the IC, and low value corresponding to textures which

are not tuned to. If v was the selected feature vector, it has

the size (mx1).

Principal Component Analysis (PCA) is a transformation

that aims to represent N-dimensional data in an orthogonal

uncorrelated L-dimensional space such that the mean

square error (MSE) between the original data x and the

representation s in the new PCA basis is minimized, That

is,

Minimize E{ ||x-s||2 } (4)

The principal component vectors, are given by the

eigenvectors of the correlation matrix of x, Rx, such that

Rx = E{xxT} =VλVT (5)

Where x is assumed to be zero mean. The columns of V

contain the eigenvectors, and the diagonal matrix λ

contains the corresponding eigenvalues.

The resulted dimension is truncated into a L < N. This

reduces the space and time complexity and the degree of

freedom. The reduction is done by rearranging the

eigenvectors and eigenvalues and dropping the

eigenvectors corresponding to small eigenvalues.

2.2 Testing stage

Texture classification is basically the problem of

classifying pixels in a texture image according to their

textural cues. The proposed system is shown in Fig 7 .The

test image will be divided to (8 by 8) sized windows. The

constructed sub-images will be preprocessed and feature

vector will be extracted. The feature vector will be

classified using Naïve Bayes classifier to the appropriate

class.

Fig.7 Proposed Texture classification approach using ICA and Naïve Bayes Classifier.

The list of the sets of feature values and its corresponding

class are given to the classifier with the constituted

training set. The model is trained using Naïve Bayes

Classifier learning algorithm. When a new record values,

previously unseen test record, is presented to the classifier,

the class can be predicted based on the training instances.

The probability that a record with feather vector F=

 belongs to class Ci, Where

 (6)

 is the posterior probability of class (

given features ().

is the prior probability of class (

is the likelihood which is the

probability of features () given class (.

P(x) is the prior probability of features ().

IJCSNS International Journal of Computer Science and Network Security, VOL.18 No.1, January 2018 116

Calculating is the main aim in Naïve Bayes

Classifier. Specifically, we want to find the value of

that maximize . Since

 is constant number for all k values,

then equation (9) can simply say

 (7)

Where

 (8)

Nci is count of samples from class Ci.

NT is Count of all samples.

Naive Bayes classifier assumes conditional independence

that the effect of the value of a feature (F) on a given class

(C) is independent of the values of other predictors [4].

Then the can be written as

 (9)

For numerical features, the Gaussian Naive Bayes

algorithm assumes distribution of features to be Gaussian

or normal, i.e., the probability density function for the

Gaussian distribution is defined by two parameters (mean

and standard deviation).

 (10)

Where,

 (11)

 (12)

Finally the Naïve Bayes calculate the posterior probability

for each class. Choose value of Ci that maximizes P(Ci |

F1, F2, …, Fn) is equivalent to choosing value of Ci that

maximizes P(F1, F2, …, Fn|Ci) P(Ci).

The class with the highest posterior probability is the

predicted one. The estimated class Corresponding to F

is

 (13)

3. Experiments

In order to evaluate the previous methods, textures subset

(28 texture image) were taken from the Describable

Textures Dataset (DTD) [29][30] as shown in Fig.8.

DTD is a texture database consists of 5640 images. These

images are classified to 47 categories inspired from human

perception. There are 120 images for each category. Image

sizes range between 300x300 and 640x640. These texture

images provide us with different basis functions properties

(features).Changing any one of the 28 images will produce

new basis functions. The resulted basis functions are

shown in Fig.5. The construct the ICA basis functions is

achieved after applying extensive dimension reduction as

provided by PCA

IJCSNS International Journal of Computer Science and Network Security, VOL.18 No.1, January 2018 117

Fig.8 Training textures from the Describable Textures Dataset (DTD).

The texture classifier was trained on randomly selected

portions of (8×8) sub images of texture images that are not

included in the test images. The total number of texture

images used in the experimental part is 193 images.

The performance measurements used for this paper were

recall, precision, classifier F1 rating and accuracy. Recall

(R) is the ratio of the relevant data among the retrieved.

Precision (P) is the ratio of the accurate data among the

retrieved data. Their formulas are given as follow:

 if TP+FN > 0, otherwise

undefined. (14)

 if TP+Fp > 0, otherwise

undefined. (15)

Classifier F1 rating is the harmonic mean of the classifier

recall and the precision. It is given as

 (16)

where R represents the recall, , and P represents the

precision

Accuracy, which indicates the fraction of correctly

classified samples among all the samples,

obtained by:

 (17)

Where,

• True Positive (TP) represents the number of positive data

that is correctly labeled by a classifier

• True Negative (TN) represents the number of negative

data that is correctly labeled by a classifier

• False Positive (FP) represents the number of positive

data

that is incorrectly labeled by a classifier

• False Negative (FN) represents the number of negative

data that is incorrectly labeled by a classifier

Macro-averaged measure has been used in this multi

label classification. The macro-averaged results can

be computed as indicated by:

Macro precision:

𝑷𝒓𝒆𝒄𝒊𝒔𝒊𝒐𝒏𝒎𝒂𝒄𝒓𝒐 =
𝟏

𝒏
∑ 𝑷𝒓𝒆𝒄𝒊𝒔𝒊𝒐𝒏(𝑪𝒊)𝒏
𝒊=𝟏 (18)

Macro Recall:

𝑹𝒆𝒄𝒂𝒍𝒍𝒎𝒂𝒄𝒓𝒐 =
𝟏

𝒏
∑ 𝑹𝒆𝒄𝒂𝒍𝒍(𝑪𝒊)𝒏
𝒊=𝟏 (19)

Macro F-measure:

𝑭𝒎𝒂𝒄𝒓𝒐 =
𝟏

𝒏
∑ 𝑭(𝑪𝒊)𝒏
𝒊=𝟏 (20)

Where n is the number of the classes Ci

10-fold cross validation has been used in this paper. In 10-

fold the training set will be randomly splitted into 10’s that

have approximately the same size. Then the classifier will

be trained using (8) subsets. One of the two remaining

subsets will be used for validation and the last for testing.

This process will be repeated 10 times, while a different

subset is used for testing and validation. Table 1 shows the

average accuracy for 2-Fold, 4-Fold, 6-Fold, 8-Fold and

the 10-Fold cross-validation

Table 1: Accuracy for 2-Fold, 4-Fold, 6-Fold, 8-Fold and the 10-Fold
cross-validation.

K-Fold Accuracy (%)

2-Fold 91.5044 %

4-Fold 93.2743 %

6-Fold 93.2743 %

8-Fold 92.3894 %

10-Fold 99.4819 %

The experiments were performed with input window sized

(8×8). Using this size, the best classification accuracy has

been achieved as shown in Table 2. When the texture

boundary is more as in texture image shown in Fig.9, a

larger window size was considered to be disadvantageous.

The correct classification rate (%) of rectangular shaped

window and circular shaped window of radius R is shown

in Fig. 9.

Fig.9 Correct classification rate of rectangular window and circular

window.

Table 2: Correct classification rate for different window size.

Window size Correct classification rate (%)

3x3 74.56%

60.00%

70.00%

80.00%

90.00%

100.00%

C
o

rr
ec

t
cl

as
si

fi
ca

ti
o

n
 r

at
e

%

Cases
Rectangular Windowing

Circular Windowing

IJCSNS International Journal of Computer Science and Network Security, VOL.18 No.1, January 2018 118

5x5 82.06%

8x8 97.54%

12x12 93.24%

17x17 89.69%

As the number of features in that matrix was 40 features,

we used PCA dimensionality reduction method and we

selected around 23% of the features (9 features) with the

highest importance.

There are many different reduction techniques available

including Principal Component Analysis (PCA), and Chi-

Squared for feature selection and reduction. We used the

Describable Textures Dataset to compare PCA and Chi-

Squared on a reduced number of dimensions varying

between 1 and 9 dimensions. Fig. 10 depicts the F1 rating

of these two methods. Clearly, PCA F1 measurement of

PCA outperformed the other method.

Fig.10 F1 Measurement for PCA and Chi-Squared.

As stated before, 5640 Texture from the database

were used to train and test the developed system.

Table 3 shows the experimental result of 193 texture

images. The 193 texture images are from 4 different

classes. The proposed algorithm has a recognition

accuracy of 99.4%.

Table 3: Overall performance results.

Total Number of Instances 193

Correctly Classified Instances 192 99.4819 %

Incorrectly Classified Instances 1
0.5181 %

Kappa statistic 0.9924

Mean absolute error 0.0467

Root mean squared error 0.0856

Relative absolute error 17.0269 %

Root relative squared error 23.1491 %

Another performance indicated by confusion matrix is

shown in Table 4. This confusion matrix was built based

on data testing. We constructed the confusion matrix for

each texture class (Texture 1, Texture 2, Texture 3,

Texture 4). The confusion matrix has the form shown in

Table 4,

Table 4: Confusion matrix.

 Texture 1 Texture 2 Texture 3 Texture 4

Texture 1 69 1 0 0

Texture 2 0 76 0 0

Texture3 0 0 30 0

Texture 4 0 0 0 17

The performance measurements result is shown in Table 5.

Table 5: Performance Measurements Result.

TP Rate FP Rate Precision Recall F-Measure Class

0.986 0 1 0.986 0.993 Texture 1

1 0.009 0.987 1 0.993 Texture 2

1 0 1 1 1 Texture 2

1 0 1 1 1 Texture 2

We have also applied the proposed algorithm to several

images of composite textures of different texture patterns

with size 256× 256 pixels and 256 grey levels. Composite

textures images from the Brodatz album [31], [32] are

used in this part of the experiment in order to compare the

achieved result with the performance of other classifier

proposed in the literature. Fig. 11 and Fig. 12 show

examples of composite texture images.

Fig. 11 Two-texture images D55D17 used in experiments (Size 256 X
256).

Fig.12 Five-texture imagesD55D17D84D77D24 used in experiments.

0

0.2

0.4

0.6

0.8

1

1.2

0 1 2 3 4 5 6 7 8 9 10

F1

M
ea

su
re

m
en

ts

Number of Dimentions

PCA Chi- Squared

IJCSNS International Journal of Computer Science and Network Security, VOL.18 No.1, January 2018 119

All of the images give an error percentage of below 5% which is

a good result. Notice that the more texture boundaries there are,

the more difficult decisions must be made, resulting in an

increasing number of misclassified pixels. No boundary pixels

seem to be well distinguished by the proposed algorithm.

The results obtained from the proposed Naïve Bayes Classifier

was compared by the results achieved using ICA, SVM, and

using the filtering method (Gaber filter and wavelet). Some of

these is shown in Table 6 [33],[34] and [35] .The proposed

methodology a large classification improvement was observed.

Table 6: Accuracy rates (%) using different classifiers and different

texture image.

………...Classifier

images

ICA SVM Wavelet Proposed

method

D55D17 99.03

8

---- 88.88 99.47

D55D17D84D77D24 95.71 80.7 ---- 96.25

4 Conclusions

We have demonstrated that the Naïve Bayes Classifier

with ICA are able to capture the inherent properties of

textured images and correctly labeled it. The excellent

classification error rate achieved in the experiments

confirm that the using of Naïve Bayes Classifiers well-

suited for texture classification. So the proposed algorithm

can be characterized as reliable.

References
[1] P. Cavalin and L. S. Oliveira, "A Review of Texture

Classification Methods and Databases," 2017 30th

SIBGRAPI Conference on Graphics, Patterns and

Images,2017

[2] Jasjit S. Suri, Majid Mirmehdi, Xianghua Xie, Handbook of

Texture Analysis, World Scientific, 2008.

[3] A Olson, D., Data Mining Models, Business Expert Press

2016.

[4] Ian H Witten; Eibe Frank; Mark A Hall; Christopher J Pal,

Data Mining : Practical Machine Learning Tools and

Techniques, Fourth Edition, Elsevier Science and

Technology Books, Inc., 2017

[5]

[6] S. Wang and G. Wang, "Texture classification by

multifractal spectrum and barycentric coordinates of bit

planes of wavelet coefficients," in IET Image Processing,

vol. 11, no. 12, pp. 1205-1209, 12 2017.

[7] T. H. Rassem, A. A. Alsewari and N. M. Makbol, "Texture

image classification using wavelet completed local binary

pattern descriptor (WCLBP)," 2017 Seventh International

Conference on Innovative Computing Technology

(INTECH), Luton, 2017, pp. 15-20.

[8] C. Di Ruberto, "Histogram of Radon transform and texton

matrix for texture analysis and classification," in IET Image

Processing, vol. 11, no. 9, pp. 760-766, 9 2017.

[9] K. Meshkini and H. Ghassemian, "Texture classification

using Shearlet transform and GLCM," 2017 Iranian

Conference on Electrical Engineering (ICEE), Tehran, 2017,

pp. 1845-1850.

[10] R. Bayindir, M. Yesilbudak, M. Colak and N. Genc, "A

Novel Application of Naive Bayes Classifier in Photovoltaic

Energy Prediction," 2017 16th IEEE International

Conference on Machine Learning and Applications

(ICMLA), Cancun, Mexico, 2017, pp. 523-527.

[11] K. Nirmala, N. Venkateswaran and C. V. Kumar, "HoG

based Naive Bayes classifier for glaucoma

detection," TENCON 2017 - 2017 IEEE Region 10

Conference, Penang, 2017, pp. 2331-2336.

[12] M. Granik and V. Mesyura, "Fake news detection using

naive Bayes classifier," 2017 IEEE First Ukraine

Conference on Electrical and Computer Engineering

(UKRCON), Kiev, 2017, pp. 900-903.

[13] W. B. Zulfikar, M. Irfan, C. N. Alam and M. Indra, "The

comparation of text mining with Naive Bayes classifier,

nearest neighbor, and decision tree to detect Indonesian

swear words on Twitter," 2017 5th International Conference

on Cyber and IT Service Management (CITSM), Denpasar,

2017, pp. 1-5.

[14] Y. P. Chen, C. H. Liu, K. Y. Chou and S. Y. Wang, "Real-

time and low-memory multi-face detection system design

based on naive Bayes classifier using FPGA," 2016

International Automatic Control Conference (CACS),

Taichung, 2016, pp. 7-12.

[15] N. Sharma and M. Singh, "Modifying Naive Bayes classifier

for multinomial text classification," 2016 International

Conference on Recent Advances and Innovations in

Engineering (ICRAIE), Jaipur, 2016, pp. 1-7.

[16] Y. Suresh, "Software quality assessment for open source

software using logistic & Naive Bayes classifier," 2016

International Conference on Computation System and

Information Technology for Sustainable Solutions (CSITSS),

Bangalore, 2016, pp. 267-272.

[17] R. M. Moraes and L. S. Machado, "A Fuzzy Binomial Naive

Bayes classifier for epidemiological data," 2016 IEEE

International Conference on Fuzzy Systems (FUZZ-IEEE),

Vancouver, BC, 2016, pp. 745-750.

[18] S. C. Hsu, I. C. Chen and C. L. Huang, "Image classification

using pairwise local observations based Naive Bayes

classifier," 2015 Asia-Pacific Signal and Information

Processing Association Annual Summit and Conference

(APSIPA), Hong Kong, 2015, pp. 444-452.

[19] H. Martin, W. Izquierdo, M. Cabrerizo and M. Adjouadi,

"Real-time R-spike detection in the cardiac waveform

through independent component analysis," 2017 IEEE

Signal Processing in Medicine and Biology Symposium

(SPMB), Philadelphia, PA, USA, 2017, pp. 1-7.

[20] A. K. Maddirala and R. A. Shaik, "Separation of Sources

From Single-Channel EEG Signals Using Independent

Component Analysis," in IEEE Transactions on

Instrumentation and Measurement, vol. 67, no. 2, pp. 382-

393, Feb. 2018.

[21] L. Feng and R. Sun, "Dynamic kernel independent

component analysis approach for fault detection and

diagnosis," 2017 Chinese Automation Congress (CAC),

Jinan, China, 2017, pp. 2193-2197.

[22] D. Wei, X. Li, C. Lei and W. Wang, "Process monitoring

using independent component analysis based on gradient

http://www.worldcat.org/search?q=au%3AWitten%2C+Ian+H.%2C&qt=hot_author
http://www.worldcat.org/search?q=au%3AFrank%2C+Eibe.&qt=hot_author
http://www.worldcat.org/search?q=au%3AHall%2C+Mark+A.&qt=hot_author
http://www.worldcat.org/search?q=au%3APal%2C+Christopher+J.&qt=hot_author

IJCSNS International Journal of Computer Science and Network Security, VOL.18 No.1, January 2018 120

and newton iteration methods," 2017 Chinese Automation

Congress (CAC), Jinan, China, 2017, pp. 3182-3187.

[23] S. Ç inar, E. C. Mengüç and N. Acir, "Automatic removal of

ocular artefacts in EEG signal by using independent

component analysis and Artificial Neural Network," 2017

Medical Technologies National Congress (TIPTEKNO),

Trabzon, Turkey, 2017, pp. 1-4.

[24] Z. Gu, J. Huangfu and L. Ran, "Blind separation of human

motions based on independent component analysis," 2017

International Applied Computational Electromagnetics

Society Symposium (ACES), Suzhou, 2017, pp. 1-2.

[25] P. Jaraut, G. C. Tripathi, M. Rawat and P. Roblin,

"Independent component analysis for multi-carrier

transmission for 4G/5G power amplifiers," 2017 89th

ARFTG Microwave Measurement Conference (ARFTG),

Honololu, HI, 2017, pp. 1-4.

[26] P. Addabbo, C. Clemente and S. L. Ullo, "Fourier

independent component analysis of radar micro-Doppler

features," 2017 IEEE International Workshop on Metrology

for AeroSpace (MetroAeroSpace), Padua, 2017, pp. 45-49.

[27] A. K. Maddirala and R. A. Shaik, "Separation of Sources

From Single-Channel EEG Signals Using Independent

Component Analysis," in IEEE Transactions on

Instrumentation and Measurement, vol. 67, no. 2, pp. 382-

393, Feb. 2018.

[28] W. L. Hwang, K. S. Lu and J. Ho, "Constrained Null Space

Component Analysis for Semiblind Source Separation

Problem," in IEEE Transactions on Neural Networks and

Learning Systems, vol. 29, no. 2, pp. 377-391, Feb. 2018.

[29] Aapo Hyvainen, Erkki Oja, Juha Karhunen. “Independent

Component Analysis”, (1st ed.). New York: John wiley

&sons, 2001.

[30] M. Cimpoi, S. Maji, I. Kokkinos, S. Mohamed and A.

Vedaldi, "Describing Textures in the Wild," 2014 IEEE

Conference on Computer Vision and Pattern Recognition,

Columbus, OH, 2014, pp. 3606-3613.

[31] https://www.robots.ox.ac.uk/~vgg/data/dtd/

[32] http://www.ux.uis.no/~tranden/brodatz.html

[33] P.Brodatz, Textures: A Photographic Album for Artists and

Designers. New York: Dover, 1966.

[34] C. S. Lu, P.C. Chung, and C.F. Chen. “Unsupervised

Texture Segmentation via Wavelet Transform”. Pattern

Recognition, Vol 30(5),PP 729-742, 1997.

[35] Se Hyun Park, Kwang In Kim, Keechul Jung , and Hang

Joon Kim. “Support Vector Machines for Texture

Classification”. IEEE Transactions on Pattern Analysis and

Machine Intelligence, vol. 24 (11), pp1542-1550 ,2002.

[36] D. A. Al Nadi and A. M. Mansour, "Independent

Component Analysis (ICA) for texture classification," 2008

5th International Multi-Conference on Systems, Signals and

Devices, Amman, 2008, pp. 1-5.

Dr. Ayman M Mansour received his

Ph.D. degree in Electrical Engineering

from Wayne State University in 2012. Dr.

Mansour received his M.Sc degree in

Electrical Engineering from University of

Jordan, Jordan, in 2006 and his B.Sc

degree in Electrical and Electronics

Engineering from University of Sharjah,

UAE, in 2004. He graduated top of his class in both Bachelor and

Master. Currently, Dr. Mansour is an assistant professor in the

Department of Communication, Electronics and Computer

Engineering, Tafila Technical University, Jordan. He is also the

director of energy research center in Tafila Technical University.

His areas of research include communication systems, multi-

agent systems, fuzzy systems, data mining and intelligent

systems. He conducted several researches in his area of interest.

Dr. Mansour is a member of IEEE, Michigan Society of

Professional Engineers, IEEE Honor Society (HKN), Society of

Automotive Engineers (SAE),

http://www.ux.uis.no/~tranden/brodatz.html

