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Abstract 
In this paper study,we introduce fuzzy fractional 
Volterraintegro- differentional equations (FFVIDEs) under 
Caputo generaliuzed Hukuhara differentiability.There are many 
applications of the G- derivative ,but we give positive solutions 
for (FFVIDEs)under Riemann -Liouville gH-differentiability 
using theJacobi polynomials operational matrix. Weintroduce 
Riemann -Liouville gH-differentiability as a direct 
generalization of the concept of fuzzy Caputo differentiability in 
a deterministic sense for a fuzzy context.Wepropose a 
computational method based on the tau method with Jacobi 
polynomials for FFVIDEs of order 0 < 𝛽𝛽 < 1. The efficiency 
and applicability of the proposed method are demonstrated by 
several test examples. Finally,we give some illustrative 
examples. 
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1. Introduction 

The theory of fractional calculus deals with the 
investigation and applications of derivatives and  
integrals of arbitrary order.The theory of fractional 
calculus developed mainnly as a purely theoretical field of 
mathematical،fractional calculus but the study of fuzzy 
fractional Volterra integro- differentional equations 
(FFVIDEs) has expanded rapidly in recent years due to 
considerable interest inboththeir mathematics and 
applications.The Caputo 𝑔𝑔𝑔𝑔 -differentiability concept 
based on Hukuhara differentiability can be employed to 
solve fuzzy fractional differential equations (FFDEs). 
Recently,Agarwal et al. [1] proposed the concept of 
solving fractional differential equations under 
Riemann-Liouville 𝑔𝑔 -differentiability.but this concepts 
are not implementeexplicitly in the fractional case under 
Caputo 𝑔𝑔-differentiabinility. Moreover, a recent study, 
the generalized differentiability concepts was is 
introduced for fuzzy-valued functions. As a consequence, 
several properties of these concepts have been 
investigated and similar fuzzy differentiability 

connections  have been compared between them. Hence, 
we extend the definitions of generalized 
𝑔𝑔𝑔𝑔-differentiability to the fractional case. In this study, 
we introduced the concept of Caputo 𝑔𝑔-differentiability 
as a direct generalization of fuzzy fractional Caputo 
derivative by usin the Hukuhara difference for 
(FFVIDEs) .We consider several possible definitions for 
the derivative of an interval valued function and the 
connections between them and their properties. Previously, 
generalized differentiability concepts is were introduced 
for fuzzy-valued functions. and several properties of these 
concepts were investigated by comparing the similar 
fuzzy differentiability connections between them. 
In thes present study,،we  also consider the properties of 
the well-known Jacobi polynomials operational 
matrix.We consider the existence and uniqueness of the 
solution to the initial value problem (*) 
(𝐷𝐷𝑎𝑎+𝐶𝐶 )𝛽𝛽𝑈𝑈(𝑡𝑡) = 𝐹𝐹(𝑡𝑡, 𝜆𝜆𝜆𝜆(𝑡𝑡))        (𝐷𝐷𝑎𝑎+𝐶𝐶 )𝛽𝛽−1𝜆𝜆(𝑡𝑡0) = 𝜆𝜆0

𝛽𝛽−1 ∈ 𝐸𝐸 
for FFVIDEs involving  the Riemann-Liouville 
sequential fuzzy Caputo fractional G-derivative by using  
the Jacobi polynomials operational matrix method. 
The, Mittag-Leffler function has a major role in the theory 
of fractional calculus for differential equations[2,3]. 
and it is stated as follows: 
𝐸𝐸𝛼𝛼,𝛽𝛽(𝑡𝑡) = ∑  ∞

𝑘𝑘=0
𝑡𝑡𝑘𝑘

Γ(𝛼𝛼𝑘𝑘+𝛽𝛽)
,   𝑡𝑡 ∈ 𝐶𝐶,𝛼𝛼,𝛽𝛽 ≠ 0  

𝐸𝐸𝛼𝛼(𝑡𝑡) = ∑  ∞
𝑘𝑘=0

𝑡𝑡𝑘𝑘

Γ(𝛼𝛼𝑘𝑘+1)
,    𝑡𝑡 ∈ 𝐶𝐶.,  (1) 

Recently monographs and research studies in the field of 
differential equations have provided solutions,such as 
those by Belmekki et al.[8], Komatik [8], Nito [4, 9], and 
Sequin [8]. Thes studiesemployed the fuzzy Laplace 
transforms method to solve fuzzy fractional differential 
equations. In Section [3].of the present study is obtained 
the exploit we obtain solutions of fractional equations 
under Riemann-Liouville Hukuhara differentiability using 
theJacobi polynomials operational matrix. 
Previously,Two new uniqueness resultswere investigated 
for FFDE involving Riemann-Liouville generalized 
Hukuhara differentiability [4]. with the Kerion-type 
condition.Inthe present is study,we extend the Jacobi 
polynomials operational matrix method to solved 
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(FFVIDEs).We need to convert thefollowing underlying 
(FFVIDEs) . 
(Da+

C )βU(t) = F(t, λu(t))        (Da+
C )β−1u(t0) = u0

β−1 ∈ E 
Where 0 < 𝑇𝑇 < +∞, and 𝑓𝑓 ∈ 𝐶𝐶([0,𝑇𝑇] × 𝐸𝐸 × 𝐸𝐸) 
We consider the existence and uniqueness  of the initial 
value problem for FFVIDEs involving Riemann-Liouville 
generalized Hukuhara differentiability by using  the 
Jacobi polynomials operational matrix method. 
Allahviranloo et al. [18] considered Fuzzy fractional 
differential equations under a generalizedfuzzy Caputo 
derivative.In addition,explicit solutionshave been 
presented for uncertain fractional differential equations 
under Riemann-LiouvilleH-differentiability [11]. Two 
new uniqueness resultswere alsoextended for fuzzy 
fractional differential equations 
involvingRiemann-Liouville generalized 
G-differentiability with fuzzy versions of the Nagumo and 
Krasnoselskiiconditions [12]. Another study investigated 
a fuzzy fractional integral equation with the 
Riemann-Liouville derivative and theexistence of the 
solutions for fuzzy fractional integral equations was 
established using theHausdorff measure of 
noncompactness [13]. The existence and uniqueness of 
solutions for nonlinearfuzzy integral equations of 
fractional order were established using the generalized 
Schauder theoremand contraction mapping principle [14] 
while compactly supported fuzzy sets were introduced in 
another study [15].The Caputo of FFVIDEsunder 
generalized Hukuhara (gH-)differentiability is introduced 
in the present study using the Jacobi polynomials 
operationalmatrix.follows. In Section 2, we recall some 
well-knowndefinitions of fuzzy numbers and wedefine 
some necessary concepts.   
In Section [3-1], Riemann-Liouville gH-differentiability is 
defined and the Caputo of (FFVIDEs) is considered under 
fuzzy Caputo 𝑔𝑔𝑔𝑔 -differentiability .We study the 
existence and uniqueness of the solution for a Caputo  of 
(FFVIDEs)using the initial value. In Section.4we solve 
some examples where the solutions are represented using  
the Jacobi polynomials operational matrix. 

2. Preliminaries 

In this section, we recall some definitions and introduce 
the necessary notation used throughout theisstudy.We 
denote the set of all real number by 𝑅𝑅,and the set of all 
fuzzy numbers on 𝑅𝑅 is indicated by 𝑅𝑅𝐹𝐹.  
Definition 1.[18] A fuzzy number 𝜆𝜆�  is a pair 
(𝜆𝜆(𝑟𝑟),𝜆𝜆(𝑟𝑟)) of functions 𝜆𝜆(𝑟𝑟),𝜆𝜆(𝑟𝑟);   0 ≤ 𝑟𝑟 ≤ 1, which 
satisfy the following requirements:   
• 𝜆𝜆(𝑟𝑟)  is a bounded monotonically increasing left 
continuous function;  
• 𝜆𝜆(𝑟𝑟)  is a bounded monotonically decreasing left 
continuous function;  

• 𝜆𝜆(𝑟𝑟) ≤ 𝜆𝜆(𝑟𝑟), 0 ≤ 𝑟𝑟 ≤ 1. 
 
Definition 2.The metric 𝑑𝑑  on 𝑅𝑅𝐹𝐹  is  given by 
𝑑𝑑:𝑅𝑅𝐹𝐹 × 𝑅𝑅𝐹𝐹 → 𝑅𝑅+ ∪ {0} 
𝐷𝐷(𝜆𝜆, 𝑣𝑣) = 𝑠𝑠𝜆𝜆𝑠𝑠 𝑑𝑑𝐻𝐻(𝜆𝜆𝑟𝑟,𝑣𝑣𝑟𝑟)    (2) 
where 𝑑𝑑𝐻𝐻is the Hausstdorff metric defined as follows. 
𝑑𝑑𝐻𝐻(𝜆𝜆𝑟𝑟,𝑣𝑣𝑟𝑟) = max{(𝑣𝑣𝑟𝑟− − 𝜆𝜆𝑟𝑟−), (𝑣𝑣𝑟𝑟+ − 𝜆𝜆𝑟𝑟+)},        𝑟𝑟 ∈ [0,1]   (3) 
We list the following properties of 𝑑𝑑:  
[(i)]  
    1.  𝑑𝑑(𝜆𝜆, 𝑣𝑣) = 0 
    2.  𝑑𝑑(𝜆𝜆, 𝑣𝑣) = 𝑑𝑑(𝜆𝜆 +𝑤𝑤, 𝑣𝑣 + 𝑤𝑤) 
    3.  𝑑𝑑(𝜆𝜆𝜆𝜆, 𝜆𝜆𝑣𝑣) = |𝜆𝜆|𝑑𝑑(𝜆𝜆,𝑣𝑣), 
    4.  𝑑𝑑(𝜆𝜆, 𝑣𝑣) ≤ 𝑑𝑑(𝜆𝜆,𝑤𝑤) + 𝑑𝑑(𝑤𝑤,𝑣𝑣) 
Ifwe have the𝐷𝐷 metric on 𝑅𝑅𝐹𝐹.then(𝑅𝑅𝐹𝐹 ,𝐷𝐷) is a complete 
metric space.For all 𝜆𝜆, 𝑣𝑣,𝑤𝑤,∈ 𝑅𝑅𝐹𝐹  and 𝜆𝜆 ∈ 𝑅𝑅 , we 
uniquely define the sum 𝜆𝜆 ⊕ 𝑣𝑣 and the product 𝜆𝜆 • 𝜆𝜆 
by 
[𝜆𝜆 ⊕ 𝑣𝑣]𝑟𝑟 = [𝜆𝜆]𝑟𝑟 + [𝑣𝑣]𝑟𝑟           , [𝜆𝜆 • 𝜆𝜆]𝑟𝑟 = 𝜆𝜆[𝜆𝜆]𝑟𝑟 ,       ∀𝑟𝑟 ∈ [0,1]   (4) 
 
Definition 3 .[8] The generalized Hukuhara difference of 
two fuzzy number 𝜆𝜆, 𝑣𝑣 ∈ 𝑅𝑅𝐹𝐹 is defined as follows  
𝜆𝜆Ө𝑔𝑔𝐻𝐻𝑣𝑣 = 𝑤𝑤 ⇔    (𝑖𝑖)𝜆𝜆 = 𝑣𝑣 + 𝑤𝑤  ∨   (𝑖𝑖𝑖𝑖)𝑣𝑣 = 𝜆𝜆 + (−1)𝑤𝑤  (5) 
Note that a function 𝑓𝑓: [𝑎𝑎, 𝑏𝑏] → 𝑅𝑅𝐹𝐹 is the so called 
fuzzy-valued function. The 𝑟𝑟  level representation 
fuzzy-valued function f is expressed 
by:𝑓𝑓𝑟𝑟(𝑡𝑡) = [𝑓𝑓𝑟𝑟−(𝑡𝑡), 𝑓𝑓𝑟𝑟+(𝑡𝑡)],    𝑡𝑡 ∈ [𝑎𝑎, 𝑏𝑏], 𝑟𝑟 ∈ [0,1] 
 
Definition 4 .[18] The generalized Hukuhara difference is 
the fuzzy number 𝑤𝑤, so it is easy to show that (𝑖𝑖) and 
(𝑖𝑖𝑖𝑖) are both valid if and only if 𝑤𝑤 is a crisp number. In 
terms of 𝑟𝑟-cuts , 
 
Definition 5.[6] Let x, y ∈ EIf z ∈ E  exist  such that 
x = y + z, then z is called the H-difference of x and y, 
which is denoted by xӨy ≠ x + (−1)y. 
 
The generalized difference (g-difference for short)of two 
fuzzy numbers u,v∈ 𝐸𝐸   is  given by the followinge 
expression [26]. 

[𝜆𝜆Ө𝑔𝑔𝑣𝑣]𝑟𝑟 = �𝑖𝑖𝑖𝑖𝑓𝑓𝛽𝛽≥𝑟𝑟{𝑚𝑚𝑖𝑖𝑖𝑖(𝑈𝑈𝑟𝑟− − 𝑉𝑉𝑟𝑟−,𝜆𝜆𝑟𝑟+ − 𝑣𝑣𝑟𝑟+)}, 
𝑠𝑠𝜆𝜆𝑠𝑠𝛽𝛽≥𝑟𝑟{𝑚𝑚𝑎𝑎𝑚𝑚(𝜆𝜆𝑟𝑟− − 𝑣𝑣𝑟𝑟−,𝜆𝜆𝑟𝑟+ − 𝑣𝑣𝛼𝛼+)}� 

For any fuzzy numbers u,v ∈ 𝐸𝐸 the  g-difference 𝜆𝜆Ө𝑔𝑔𝑣𝑣 
exists and it is a fuzzy number.In this  study,،we consider 
the definition of fuzzy differentiability given by Bede and 
Gal[26]. 
[𝜆𝜆Ө𝐺𝐺𝐻𝐻𝑣𝑣]𝑟𝑟 = [min{(𝜆𝜆𝑟𝑟− − 𝑣𝑣𝑟𝑟−), (𝜆𝜆𝑟𝑟+ − 𝑣𝑣𝑟𝑟+)}, max{(𝜆𝜆𝑟𝑟− − 𝑣𝑣𝑟𝑟−), (𝜆𝜆𝑟𝑟+ −
𝑣𝑣𝑟𝑟+)}]  (6) 
 If 𝑤𝑤 = [𝜆𝜆Ө𝑔𝑔𝐻𝐻𝑣𝑣] exists as a fuzzy number, then its level 
cuts [𝑤𝑤𝑟𝑟−,𝑤𝑤𝑟𝑟+] are obtained by 
𝑤𝑤𝑟𝑟− = min{(𝜆𝜆𝑟𝑟− − 𝑣𝑣𝑟𝑟−)}max{(𝜆𝜆𝑟𝑟− − 𝑣𝑣𝑟𝑟−), (𝜆𝜆𝑟𝑟+ − 𝑣𝑣𝑟𝑟+)}  and 𝑤𝑤𝑟𝑟+ =
max{(𝜆𝜆𝑟𝑟− − 𝑣𝑣𝑟𝑟−), (𝜆𝜆𝑟𝑟+ − 𝑣𝑣𝑟𝑟+)}  for 𝑟𝑟 ∈ [0,1] , and if the 
𝑔𝑔 -difference exists, then 𝜆𝜆Ө𝑔𝑔𝐻𝐻𝑣𝑣 = 𝜆𝜆−𝐻𝐻𝑣𝑣 ; The 
conditions for the existence of 𝜆𝜆Ө𝑔𝑔𝐻𝐻𝑣𝑣 = 𝑤𝑤 ∈ 𝑅𝑅𝐹𝐹  are as 
follows. 
Case(𝑖𝑖): 
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𝑤𝑤𝑟𝑟− = 𝜆𝜆𝑟𝑟− − 𝑣𝑣𝑟𝑟−and𝑤𝑤𝑟𝑟+ = 𝜆𝜆𝑟𝑟+ − 𝑣𝑣𝑟𝑟+𝑤𝑤𝑟𝑟− ≤ 𝑤𝑤𝑟𝑟+with𝑤𝑤𝑟𝑟−increasing
𝑤𝑤𝑟𝑟+ = 𝜆𝜆𝑟𝑟+ − 𝑣𝑣𝑟𝑟+and𝑤𝑤𝑟𝑟+ = 𝜆𝜆𝑟𝑟− − 𝑣𝑣𝑟𝑟−𝑤𝑤𝑟𝑟− ≤ 𝑤𝑤𝑟𝑟+with𝑤𝑤𝑟𝑟+decreasing  (7) 
Case (𝑖𝑖𝑖𝑖): 
𝑤𝑤𝑟𝑟− = 𝜆𝜆𝑟𝑟− − 𝑣𝑣𝑟𝑟−and𝑤𝑤𝑟𝑟+ = 𝜆𝜆𝑟𝑟+ − 𝑣𝑣𝑟𝑟+,𝑤𝑤𝑟𝑟− ≤ 𝑤𝑤𝑟𝑟+with𝑤𝑤𝑟𝑟−decreasing
𝑤𝑤𝑟𝑟− = 𝜆𝜆𝑟𝑟+ − 𝑣𝑣𝑟𝑟+and𝑤𝑤𝑟𝑟+ = 𝜆𝜆𝑟𝑟− − 𝑣𝑣𝑟𝑟−,𝑤𝑤𝑟𝑟− ≤ 𝑤𝑤𝑟𝑟+with𝑤𝑤𝑟𝑟+increasing   (8) 
We suppose that if either case (𝑖𝑖) or (𝑖𝑖𝑖𝑖)exists ,then 
Definition 4. should hold for any 
𝛼𝛼 ∈ [0,1] . Howeve, 𝑤𝑤0− = 𝜆𝜆0− − 𝑣𝑣0− = 0 < 𝑤𝑤0+ = 𝜆𝜆0+ −
𝑣𝑣0+ = 1 while 1 = 𝑤𝑤1− > 𝑤𝑤1+ = 0, so either case (𝑖𝑖) or 
(𝑖𝑖𝑖𝑖) is  not true from Eq. (5). 
 
Definition 6 . The g difference G-different for short of 
two numbers u, v ∈ RF is given by its level sets as  
[𝜆𝜆Ө𝐺𝐺𝑣𝑣]𝑟𝑟 = �min �inf

𝛽𝛽≥𝑟𝑟
(𝑈𝑈𝑟𝑟− − 𝑉𝑉𝑟𝑟−), inf

𝛽𝛽≥𝑟𝑟
(𝜆𝜆𝑟𝑟+ − 𝑣𝑣𝑟𝑟+)� ,  max�sup

𝛽𝛽≥𝑟𝑟
(𝜆𝜆𝑟𝑟− −

𝑣𝑣𝑟𝑟−), sup
𝛽𝛽≥𝑟𝑟

(𝜆𝜆𝑟𝑟+ − 𝑣𝑣𝛼𝛼+)��  (9) 

[𝜆𝜆Ө𝐺𝐺𝑣𝑣]𝑟𝑟 = cl(⋃  𝛽𝛽≥𝑟𝑟 ([𝜆𝜆]𝛽𝛽Ө𝐺𝐺𝐻𝐻[𝑉𝑉]𝛽𝛽)),∀𝑟𝑟 ∈ [0,1]  (10) 
Where the 
𝑔𝑔𝑔𝑔𝑖𝑖𝑔𝑔𝑟𝑟𝑎𝑎𝑔𝑔𝑖𝑖𝑔𝑔𝑔𝑔𝑑𝑑 𝑔𝑔𝜆𝜆𝐻𝐻𝜆𝜆ℎ𝑎𝑎𝑟𝑟𝑎𝑎 𝑑𝑑𝑖𝑖𝑓𝑓𝑓𝑓𝑔𝑔𝑟𝑟𝑔𝑔𝑖𝑖𝑑𝑑𝑔𝑔 (𝑔𝑔𝑔𝑔 − 𝑑𝑑𝑖𝑖𝑓𝑓𝑓𝑓𝑔𝑔𝑟𝑟𝑔𝑔𝑖𝑖𝑑𝑑𝑔𝑔) Ө𝑔𝑔𝐻𝐻 is 
given with interval operands [𝑈𝑈𝛽𝛽] and [𝑉𝑉𝑟𝑟].  
 
Lemma 1 .For any fuzzy number u, v ∈ RF  the 
gH-difference exists and it is a fuzzy number,souӨgHv is 
the smallest fuzzy number w. 
cl([𝜆𝜆]𝛽𝛽≥𝑟𝑟Ө𝑔𝑔𝐻𝐻[𝑣𝑣]𝛽𝛽≥𝑟𝑟) = [𝜆𝜆Ө𝐺𝐺𝑉𝑉]𝛽𝛽 = [𝑊𝑊]𝛽𝛽≥𝑟𝑟𝑟𝑟 ∈ [0,1] ≤ 𝛽𝛽  (11) 
 
Proof. If we denote (𝑤𝑤)− = (𝜆𝜆Ө𝑔𝑔𝐻𝐻𝑉𝑉)−  and (𝑊𝑊)+ =
(𝜆𝜆Ө𝑔𝑔𝐻𝐻𝑉𝑉)+ we have  
 (𝑤𝑤𝛽𝛽−)𝛽𝛽≥𝑟𝑟 = inf

𝛽𝛽≥𝑟𝑟
min{(𝜆𝜆𝛽𝛽− − 𝑣𝑣𝛽𝛽−), (𝜆𝜆𝛽𝛽+ − 𝑣𝑣𝛽𝛽+)} ≤

(𝑤𝑤𝛽𝛽+) 
 = sup

𝛽𝛽≥𝑟𝑟
max{(𝜆𝜆𝛽𝛽− − 𝑣𝑣𝛽𝛽−), (𝜆𝜆𝛽𝛽+ − 𝑣𝑣𝛽𝛽+)} 

 
and it follows that  
inf
𝛽𝛽≥𝑟𝑟

min{(𝜆𝜆𝛽𝛽− − 𝑣𝑣𝛽𝛽−), (𝜆𝜆𝛽𝛽+ − 𝑣𝑣𝛽𝛽+)}, sup
𝛽𝛽≥𝑟𝑟

max{(𝜆𝜆𝛽𝛽− − 𝑣𝑣𝛽𝛽−), (𝜆𝜆𝛽𝛽+ − 𝑣𝑣𝛽𝛽+)} 

    = [𝜆𝜆−𝐺𝐺𝑣𝑣]𝑟𝑟                                   (12) 
    = cl�  

𝛽𝛽≥𝑟𝑟

([𝜆𝜆]𝛽𝛽−𝑔𝑔𝐻𝐻[𝑉𝑉]𝛽𝛽) 

 
We observe that ([𝜆𝜆]𝛽𝛽−𝑔𝑔𝐻𝐻[𝑉𝑉]𝛽𝛽) ⊆ [𝑤𝑤]𝛽𝛽  and 
thus(⋃  𝛽𝛽≥𝑟𝑟 [𝜆𝜆]𝛽𝛽−𝑔𝑔𝐻𝐻[𝑉𝑉]𝛽𝛽) ⊆ [𝑤𝑤]𝛽𝛽 is closed,so we obtain 
[𝜆𝜆−𝐺𝐺𝑣𝑣]𝑟𝑟 = 𝑑𝑑𝑔𝑔(⋃  𝛽𝛽≥𝑟𝑟 ([𝜆𝜆]𝛽𝛽−𝑔𝑔𝐻𝐻[𝑉𝑉]𝛽𝛽)).  
 
Definition 7. Let to ∈ (a, b)  and h be such that 
to + h ∈ (a, b), then the level-wise gH-derivative of a 
function f: (a, b) → RF , at to  is defined as the set of 
set-valued gH-derivatives, if they exist,as follows. 
𝑓𝑓𝑔𝑔𝐻𝐻′𝐿𝐿 (𝑡𝑡𝑜𝑜; 𝑟𝑟) = lim

ℎ→0

1
ℎ

{[𝑓𝑓′−(𝑟𝑟; 𝑡𝑡𝑜𝑜 + ℎ)−𝑔𝑔𝐻𝐻𝑓𝑓′−(𝑟𝑟; 𝑡𝑡𝑜𝑜)], [𝑓𝑓′−(𝑟𝑟; 𝑡𝑡𝑜𝑜 +

ℎ)−𝑔𝑔𝐻𝐻𝑓𝑓′−(𝑡𝑡𝑜𝑜)]}  (13) 
𝑓𝑓𝑔𝑔𝐻𝐻′𝐿𝐿 (𝑡𝑡𝑜𝑜; 𝑟𝑟) is a compact interval for all 𝑟𝑟 ∈ [0,1],and we 
say that f is level-wise generalized Hukuhara 
differentiable at 𝑡𝑡0  and the family of intervals 
𝑓𝑓𝑔𝑔𝐻𝐻′𝐿𝐿 (𝑡𝑡𝑜𝑜; 𝑟𝑟) ∈ [0,1] is the 𝐿𝐿𝐿𝐿𝑔𝑔-derivative of f at 𝑡𝑡𝑜𝑜.  
 

Definition 8.[18,19]The generalized Hukuhara derivative 
of a fuzzy -valued function 𝑓𝑓: (𝑎𝑎, 𝑏𝑏) → 𝑅𝑅𝐹𝐹  at 𝑡𝑡𝑜𝑜  is 
defined as follows. 
𝑓𝑓′𝑔𝑔𝐻𝐻(𝑡𝑡𝑜𝑜) = lim

ℎ→0

𝑓𝑓(𝑡𝑡𝑜𝑜+ℎ)−𝑔𝑔𝑔𝑔𝑓𝑓(𝑡𝑡𝑜𝑜)
ℎ

= lim
ℎ→0

𝑓𝑓(𝑡𝑡𝑜𝑜)−𝑔𝑔𝑔𝑔𝑓𝑓(𝑡𝑡𝑜𝑜−ℎ)
ℎ

  (14) 
𝑓𝑓′𝑔𝑔𝐻𝐻(𝑟𝑟, 𝑡𝑡𝑜𝑜) ∈ 𝑅𝑅𝐹𝐹 and we say that f is (𝑔𝑔𝑔𝑔)-differentiable at 
𝑡𝑡𝑜𝑜In addition, we say that f is [(𝑖𝑖) − 𝑔𝑔𝑔𝑔]-differentiable at 
𝑡𝑡𝑜𝑜 if  
 
𝑓𝑓′𝐺𝐺𝐻𝐻(𝑟𝑟, 𝑡𝑡𝑜𝑜) = [𝑓𝑓′−(𝑟𝑟, 𝑡𝑡𝑜𝑜),𝑓𝑓′−(𝑟𝑟, 𝑡𝑡𝑜𝑜)], 𝑟𝑟 ∈ [0,1]  (15) 
 and that f is [(𝑖𝑖𝑖𝑖) − 𝑔𝑔𝑔𝑔]-differentiable at 𝑡𝑡0 
𝑓𝑓′𝐺𝐺𝐻𝐻(𝑟𝑟, 𝑡𝑡𝑜𝑜) = �𝑓𝑓′−(𝑟𝑟, 𝑡𝑡𝑜𝑜),𝑓𝑓′−(𝑟𝑟, 𝑡𝑡𝑜𝑜)�, 𝑟𝑟 ∈ [0,1].  (16) 
Definition 9 .[8]. We say that a point 𝑡𝑡𝑜𝑜 ∈ (𝑎𝑎, 𝑏𝑏) is a 
switching point for the differentiability of f,ifthe 
points𝑡𝑡𝑜𝑜 ∈ (𝑡𝑡1, 𝑡𝑡2)  exist in neighborhood  𝑉𝑉  of 𝑚𝑚0s uch 
that 
type (I) at 𝑡𝑡1(15) holdswhereas(16) does not hold andit 
holds at 𝑡𝑡2(16) holds and (15) dose not hold, or 
type(II) at 𝑡𝑡1(16) holds whereas(15) dose not hold and 
it holds at 𝑡𝑡2(15)but(16) does not hold.  

3 .Riemann-Liouville and Caputo 
GH-differentiability 

Now,we introduce the definition of fuzzy Caputo as well 
as the Riemann-Liouville integrals and derivatives under 
Hukuhara difference.We provide definitions and 
statements similar to the non-fractional case in a fuzzy 
context [1]. We propose definitions of Riemann-Liouville 
and Caputo differentiability in the fuzzycontext literature 
based on the Hukuhara difference.The definition is similar 
to the concept of the Caputo-type derivative in the crisp 
case [5]and it is a direct extension of strongly generalized 
H-differentiability [6] to the fractional context.  
Definition 10.[3] L et f: [a, b] → E , and the fuzzy 
Riemann-Liouville integral of the fuzzy-valued function f 
is defined as follows:  
(𝐼𝐼𝑎𝑎+
𝛽𝛽 )𝑓𝑓(𝑡𝑡) = 1

Γ(1−𝛽𝛽)∫  𝑡𝑡𝑎𝑎
𝑓𝑓(𝑠𝑠)

(𝑡𝑡−𝑠𝑠)𝛽𝛽
𝑑𝑑𝑠𝑠

= 1
Γ(𝛽𝛽)∫  𝑡𝑡𝑎𝑎 (𝑡𝑡 − 𝑠𝑠)𝛽𝛽−1𝑓𝑓(𝑠𝑠)𝑑𝑑𝑠𝑠,     𝑚𝑚 > 𝑎𝑎,     𝛽𝛽 ∈ (0,1]

  (17) 

 
Since ,𝑓𝑓(𝑡𝑡, 𝑟𝑟) = [𝑓𝑓−(𝑡𝑡; 𝑟𝑟)𝑓𝑓−(𝑡𝑡, 𝑟𝑟)], for all 𝑟𝑟 ∈ [0,1] then 
we can indicate the fuzzy Riemann-Liouville integral of 
the fuzzy -valued function based on the lower and upper 
functions as follows:  
(𝐼𝐼𝑎𝑎+
𝛽𝛽 )𝑓𝑓(𝑡𝑡; 𝑟𝑟) = [(𝐼𝐼𝑎𝑎+

𝛽𝛽 )𝑓𝑓−(𝑡𝑡; 𝑟𝑟), (𝐼𝐼𝑎𝑎+
𝛽𝛽 )𝑓𝑓−(𝑡𝑡; 𝑟𝑟)], 𝑟𝑟 ∈ [0,1]  (18) 

(𝐼𝐼𝑎𝑎+
𝛽𝛽 )𝑓𝑓−(𝑡𝑡; 𝑟𝑟) =

1
Γ(1− 𝛽𝛽)

�  
𝑡𝑡

𝑎𝑎

𝑓𝑓−(𝑠𝑠; 𝑟𝑟)
(𝑡𝑡 − 𝑠𝑠)𝛽𝛽

𝑑𝑑𝑠𝑠 

= 1
Γ(𝛽𝛽)∫  𝑡𝑡𝑎𝑎 (𝑡𝑡 − 𝑠𝑠)𝛽𝛽−1𝑓𝑓−(𝑠𝑠; 𝑟𝑟)𝑑𝑑𝑠𝑠, 𝑚𝑚 > 𝑎𝑎,𝛽𝛽 ∈ (0,1]  (19) 

and  
(𝐼𝐼𝑎𝑎+
𝛽𝛽 )𝑓𝑓−(𝑡𝑡; 𝑟𝑟) = 1

Γ(1−𝛽𝛽)∫  𝑡𝑡𝑎𝑎
𝑓𝑓+(𝑠𝑠;𝑟𝑟)
(𝑡𝑡−𝑠𝑠)𝛽𝛽

𝑑𝑑𝑠𝑠

= 1
Γ(𝛽𝛽)∫  𝑡𝑡𝑎𝑎 (𝑡𝑡 − 𝑠𝑠)𝛽𝛽−1𝑓𝑓+(𝑠𝑠; 𝑟𝑟)𝑑𝑑𝑠𝑠,        𝑚𝑚 > 𝑎𝑎,       𝛽𝛽 ∈ (0,1]

  

(20) 
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Definition .11 Let f′: [a, b] ∗ E → E ,and the fuzzy 
Caputo derivative of fuzzy-valued function f is defined 
as follows[19]: 
(𝐷𝐷𝑎𝑎+

𝛽𝛽 )𝑔𝑔𝐻𝐻𝑓𝑓(𝑡𝑡) = 1
Γ(1−𝛽𝛽)∫  𝑡𝑡𝑎𝑎

𝑓𝑓′𝑔𝑔𝑔𝑔(𝑠𝑠)
(𝑡𝑡−𝑠𝑠)𝛽𝛽

𝑑𝑑𝑠𝑠  (21) 
or (𝐷𝐷𝑎𝑎+

𝛽𝛽 )𝑔𝑔𝐻𝐻𝑓𝑓(𝑡𝑡) = 𝐼𝐼𝑎𝑎+
1−𝛽𝛽𝑓𝑓′𝑔𝑔𝐻𝐻(𝑡𝑡), 

and we also say that f is [−𝑖𝑖 − 𝑔𝑔𝑔𝑔]𝐶𝐶-differentiable at 𝑡𝑡0 
if  
(𝐷𝐷𝑎𝑎+

𝛽𝛽 )𝑔𝑔𝐻𝐻𝑓𝑓(𝑡𝑡0, 𝑟𝑟) = [(𝐷𝐷𝑎𝑎+
𝛽𝛽 )𝑔𝑔𝐻𝐻𝑓𝑓−(𝑡𝑡0, 𝑟𝑟), (𝐷𝐷𝑎𝑎+

𝛽𝛽 )𝑔𝑔𝐻𝐻𝑓𝑓−(𝑡𝑡0,𝑟𝑟)],  (22) 
and that f is [−𝑖𝑖𝑖𝑖 − 𝑔𝑔𝑔𝑔]𝐶𝐶  differentiable at 𝑡𝑡0 if  
(𝐷𝐷𝑎𝑎+

𝛽𝛽 )𝑔𝑔𝐻𝐻𝑓𝑓(𝑡𝑡0, 𝑟𝑟) = [(𝐷𝐷𝑎𝑎+
𝛽𝛽 )𝑔𝑔𝐻𝐻𝑓𝑓−(𝑡𝑡0, 𝑟𝑟), (𝐷𝐷𝑎𝑎+

𝛽𝛽 )𝑔𝑔𝐻𝐻𝑓𝑓−(𝑡𝑡0,𝑟𝑟)].  (23) 
 
Definition .12 Let f: [a, b] → E  and 
t0 ∈ (a, b)wheref′−(t), f′−(t) are both differentiable and 
real-valued functions at t0  We say that f is [(i) −
gH]-differentiable at t0 if  
(𝐷𝐷𝑎𝑎+

𝛽𝛽 )𝑔𝑔𝐻𝐻𝐿𝐿 𝑓𝑓(𝑡𝑡0, 𝑟𝑟) = [(𝐷𝐷𝑎𝑎+
𝛽𝛽 )𝑔𝑔𝐻𝐻𝐿𝐿 𝑓𝑓−(𝑡𝑡0, 𝑟𝑟), (𝐷𝐷𝑎𝑎+

𝛽𝛽 )𝑔𝑔𝐻𝐻𝐿𝐿 𝑓𝑓−(𝑡𝑡0,𝑟𝑟)]  (24) 
F is [(𝑖𝑖𝑖𝑖) − 𝑔𝑔𝑔𝑔]-differentiable at 𝑡𝑡0 if  
(𝐷𝐷𝑎𝑎+

𝛽𝛽 )𝑔𝑔𝐻𝐻𝐿𝐿 𝑓𝑓(𝑡𝑡0, 𝑟𝑟) = [(𝐷𝐷𝑎𝑎+
𝛽𝛽 )𝑔𝑔𝐻𝐻𝐿𝐿 𝑓𝑓−(𝑡𝑡0, 𝑟𝑟), (𝐷𝐷𝑎𝑎+

𝛽𝛽 )𝑔𝑔𝐻𝐻𝐿𝐿 𝑓𝑓−(𝑡𝑡0,𝑟𝑟)]  (25) 
 
Definition 13 .Let f′ ∈ CF[a, b] ∩ LF[a, b]. The fractional 
generalized Hukuhara Caputo derivative of fuzzy-valued 
function f is defined as follows:  
 
(Da+

β )gHL f(t) = 1
Γ(1−β)∫  ta

fgH
′L (s)

(t−s)β
ds = Ia+

1−βfgH′L (t)  (26) 
and 𝑡𝑡0 ∈ (𝑎𝑎, 𝑏𝑏) 
𝜑𝜑(𝑡𝑡) = 1

Γ(𝛽𝛽)∫  𝑡𝑡𝑎𝑎
𝑓𝑓𝐺𝐺𝑔𝑔
′𝐿𝐿 (𝑠𝑠)

(𝑡𝑡−𝑠𝑠)1−𝛽𝛽
𝑑𝑑𝑠𝑠 = 𝐼𝐼𝑎𝑎+

1−𝛽𝛽𝑓𝑓𝐺𝐺𝐻𝐻′𝐿𝐿 (𝑡𝑡),  (27) 
 
if an element (𝐷𝐷𝑎𝑎+

𝛽𝛽 )𝐺𝐺𝐻𝐻𝐿𝐿 𝑓𝑓(𝑡𝑡0) ∈ 𝐶𝐶𝐹𝐹exists such that for all 
𝑟𝑟 ∈ [0,1], ℎ > 0, either  
(𝑖𝑖)(𝐷𝐷𝑎𝑎+

𝛽𝛽 )𝑔𝑔𝐻𝐻𝐿𝐿 𝑓𝑓(𝑡𝑡0) = lim
ℎ→0+

𝜑𝜑𝛼𝛼−(𝑡𝑡0 + ℎ)Ө𝑔𝑔𝐻𝐻𝜑𝜑𝛼𝛼−(𝑡𝑡0)
ℎ

 

(𝑖𝑖𝑖𝑖)(𝐷𝐷𝑎𝑎+
𝛽𝛽 )𝑔𝑔𝐻𝐻𝐿𝐿 𝑓𝑓(𝑡𝑡0) = lim

ℎ→0+

𝜑𝜑𝛼𝛼+(𝑡𝑡0+ℎ)Ө𝑔𝑔𝑔𝑔𝜑𝜑𝛼𝛼+(𝑡𝑡0)
ℎ

.  (28) 
 
For the sake of simplicity, we say that a fuzzy-valued 
function 𝑓𝑓  is [−𝑖𝑖 − 𝛽𝛽]𝑐𝑐  c-differentiable, if it is 
differentiable as in definition of11 − 12 case (i), and that 
is [−𝑖𝑖𝑖𝑖 − 𝛽𝛽]𝑐𝑐-differentiable if it is differentiable as in the 
definition  of 13 case (ii).  
 
Lemma 2 .Let f: [a, b] → E  be a fuzzy continuous 
function and [β]-times differentiable in the independent 
variable t over the interval of differentiation (integration) 
[0, t]. Then the following relations holds:  
(𝐷𝐷𝑎𝑎+

𝛽𝛽 )𝛽𝛽𝑓𝑓(𝑡𝑡; 𝑟𝑟) = (𝐷𝐷𝑎𝑎+𝑅𝑅𝐿𝐿)𝛽𝛽((𝑓𝑓(𝑡𝑡; 𝑟𝑟) −∑  𝑘𝑘=𝑛𝑛
𝑘𝑘=0

𝑡𝑡𝑘𝑘

𝑘𝑘!
𝑓𝑓0

(𝑘𝑘)(𝑟𝑟)),𝛽𝛽 ∈ (𝑖𝑖 −
1,𝑖𝑖),𝑖𝑖 ∈ 𝑁𝑁  (29) 
where  
𝑓𝑓0

(𝑘𝑘)(𝑟𝑟) =
𝑑𝑑𝑘𝑘𝑓𝑓(𝑡𝑡; 𝑟𝑟)
𝑑𝑑𝑡𝑡𝑘𝑘

|𝑡𝑡0 
 
and (𝐷𝐷𝑎𝑎+

𝛽𝛽 𝑓𝑓) is the Caputo derivative operator.(𝐷𝐷𝑎𝑎+
𝛽𝛽 𝑓𝑓) is 

the more common Riemann-Liouville fractional 
derivative operator, which can be defined as follows:  

(𝐷𝐷𝑎𝑎+𝑅𝑅𝐿𝐿)𝛽𝛽 = 1
Γ(𝑛𝑛−𝛽𝛽)

𝑑𝑑𝑛𝑛

𝑑𝑑𝑡𝑡𝑛𝑛 ∫  𝑡𝑡𝑎𝑎
𝑓𝑓(𝑠𝑠)𝑑𝑑𝑠𝑠

(𝑡𝑡−𝑠𝑠)1−𝑛𝑛+𝛽𝛽
  (30) 

 
Proof.The Riemann-Liouville integral operator 
𝐼𝐼𝑎𝑎+
𝛽𝛽 , (𝐷𝐷𝑎𝑎+𝑅𝑅𝐿𝐿)𝛽𝛽 and the Caputo derivative operator𝐷𝐷𝑎𝑎+

𝛽𝛽  are 
in the following relation :  
(𝐼𝐼𝑎𝑎+
𝛽𝛽 𝐷𝐷𝑎𝑎+𝑐𝑐 )𝑓𝑓(𝑡𝑡; 𝑟𝑟) = 𝑓𝑓(𝑡𝑡; 𝑟𝑟) −∑  𝑘𝑘=𝑛𝑛

𝑘𝑘=0
𝑡𝑡𝑘𝑘

𝑘𝑘!
𝑓𝑓0

(𝑘𝑘)(𝑟𝑟),𝛽𝛽 ∈ (𝑖𝑖 − 1,𝑖𝑖),𝑖𝑖 ∈ 𝑁𝑁  
(31) 

and operators (𝐼𝐼𝑎𝑎+
𝛽𝛽 ), (𝐷𝐷𝑎𝑎+𝑅𝑅𝐿𝐿)𝛽𝛽  are the inverse of each 

other;hence, the proof is completed.  
 
Theorem 1 . Suppose that 𝑓𝑓(𝑡𝑡) ∈ 𝐶𝐶([0,𝑇𝑇)𝐸𝐸,𝐸𝐸)  and 
(𝐷𝐷𝑎𝑎+𝑐𝑐 )𝑓𝑓(𝑡𝑡) ∈ ((𝑜𝑜,𝑇𝑇) ∗ 𝐸𝐸,𝐸𝐸) 
𝑓𝑓(𝑡𝑡; 𝑟𝑟) = 𝑓𝑓(𝑡𝑡0; 𝑟𝑟) + 1

Γ(𝛽𝛽)
𝐷𝐷𝑎𝑎+𝑐𝑐 𝑓𝑓(𝜏𝜏, 𝑟𝑟)(𝑡𝑡 − 𝑡𝑡0)𝛽𝛽 , 𝜏𝜏 ∈ [𝑡𝑡0, 𝑡𝑡]  (32) 

and operators 𝐼𝐼𝑎𝑎+
𝛽𝛽 , (𝐷𝐷𝑎𝑎+𝑅𝑅𝐿𝐿)𝛽𝛽 are Caputo fuzzy fractional 

derivatives of order 𝛽𝛽 > 0 
 
Proof. Suppose that 𝑓𝑓(𝑡𝑡) ∈ 𝐶𝐶([0,𝑇𝑇) ∗ 𝐸𝐸,𝐸𝐸) , and 
(𝐷𝐷𝑎𝑎+𝑐𝑐 )𝑓𝑓(𝑡𝑡)((𝑜𝑜,𝑇𝑇) ∗ 𝐸𝐸,𝐸𝐸) for 𝛽𝛽 ∈ (𝑜𝑜, 1],then we have  
(𝐷𝐷𝑎𝑎+

𝛽𝛽 )𝑓𝑓(𝑡𝑡) = 1
(1−𝛽𝛽)

𝑑𝑑
𝑑𝑑𝑠𝑠 ∫  𝑡𝑡𝑎𝑎 𝑓𝑓(𝑠𝑠)(𝑡𝑡 − 𝑠𝑠)−𝛽𝛽𝑑𝑑𝑠𝑠 = 𝑑𝑑

𝑑𝑑𝑠𝑠
𝐼𝐼𝑎𝑎+
1−𝛽𝛽𝑓𝑓(𝑠𝑠),  (33) 

(𝐼𝐼𝑎𝑎+𝑚𝑚 𝐷𝐷𝑎𝑎+𝑚𝑚 )(𝛽𝛽)𝑓𝑓(𝑡𝑡, 𝑟𝑟) = (𝐼𝐼𝑎𝑎+
𝛽𝛽 𝐷𝐷𝑎𝑎+𝑐𝑐 )𝛽𝛽𝑓𝑓(𝑡𝑡, 𝑟𝑟) 

(𝐼𝐼𝑎𝑎+𝑚𝑚 𝐷𝐷𝑎𝑎+𝑚𝑚 )𝛽𝛽𝑓𝑓(𝑡𝑡, 𝑟𝑟) = 𝑓𝑓(𝑡𝑡; 𝑟𝑟) − �  
𝑘𝑘=𝑚𝑚−1

𝑘𝑘=0

𝑓𝑓(𝑘𝑘)(𝑡𝑡; 𝑟𝑟)
𝐻𝐻!

(𝑡𝑡 − 𝑡𝑡0)𝑘𝑘 ,𝛽𝛽

∈ (𝑖𝑖 − 1,𝑖𝑖),𝑖𝑖 ∈ 𝑁𝑁 
 
For 𝜏𝜏 ∈ [0, 𝑡𝑡], we have (𝐼𝐼𝑎𝑎+

𝛽𝛽 𝐷𝐷𝑎𝑎+𝑐𝑐 )(𝛽𝛽)𝑓𝑓(𝑡𝑡, 𝑟𝑟) = 𝑓𝑓(𝑡𝑡; 𝑟𝑟) − 𝑓𝑓(𝑡𝑡0, 𝑟𝑟) 
(𝐼𝐼𝑎𝑎+
𝛽𝛽 𝐷𝐷𝑎𝑎+𝑐𝑐 )(𝛽𝛽)𝑓𝑓(𝑡𝑡, 𝑟𝑟) = 𝑓𝑓(𝑡𝑡; 𝑟𝑟) − 𝑓𝑓(𝑡𝑡0; 𝑟𝑟)  (34) 

then (𝐼𝐼𝑎𝑎+
𝛽𝛽 𝐷𝐷𝑎𝑎+𝑐𝑐 )(𝛽𝛽)𝑓𝑓(𝑡𝑡, 𝑟𝑟) ≥ 0.  

 
Theorem 2 . Suppose that 𝑓𝑓(𝑡𝑡) ∈ 𝐶𝐶([0,𝑇𝑇) ∗ 𝐸𝐸,𝐸𝐸)  and 
(𝐷𝐷𝑎𝑎+𝑐𝑐 )𝑓𝑓(𝑡𝑡)((𝑜𝑜,𝑇𝑇) ∗ 𝐸𝐸,𝐸𝐸) , and (𝐼𝐼𝑎𝑎+

1−𝛽𝛽𝑓𝑓′)𝐺𝐺𝐻𝐻𝐿𝐿 (𝑡𝑡) = 𝜑𝜑(𝑡𝑡) , 
(𝐼𝐼𝑎𝑎+
1−𝛽𝛽𝑓𝑓′)𝐺𝐺𝑔𝑔(𝑡𝑡) ∈ 𝐶𝐶𝐹𝐹[𝑎𝑎, 𝑏𝑏], then we have  

 
(𝐼𝐼𝑎𝑎+
𝛽𝛽 𝐷𝐷𝑎𝑎+

𝛽𝛽 𝑓𝑓)𝐺𝐺𝐻𝐻(𝑡𝑡) = 𝑓𝑓(𝑡𝑡) − ∑  𝑘𝑘=𝑛𝑛
𝑘𝑘=0

𝑡𝑡𝑘𝑘

𝑘𝑘!
𝑓𝑓(𝑘𝑘)(𝑡𝑡)(𝑡𝑡 − 𝑡𝑡0)𝑘𝑘  (35) 

 
for case [−𝑖𝑖 − 𝛽𝛽]𝐶𝐶-differentiability, and we have  
 
(𝐼𝐼𝑎𝑎+
𝛽𝛽 𝐷𝐷𝑎𝑎+

𝛽𝛽 𝑓𝑓)𝐺𝐺𝐻𝐻(𝑡𝑡) = −(−𝑓𝑓(𝑡𝑡)) − ∑  𝑘𝑘=𝑛𝑛
𝑘𝑘=0

𝑡𝑡𝑘𝑘

𝑘𝑘!
𝑓𝑓(𝑘𝑘)(𝑡𝑡)(𝑡𝑡 − 𝑡𝑡0)𝑘𝑘 ,  (36) 

 
for case [−𝑖𝑖𝑖𝑖 − 𝛽𝛽]𝑐𝑐-differentiability.  
Proof. Indeed, by direct computation for case of 
[−𝑖𝑖 − 𝛽𝛽]𝐶𝐶-differentiability, 
we have:  
 (𝐼𝐼𝑎𝑎+

𝛽𝛽 𝐷𝐷𝑎𝑎+
𝛽𝛽 )𝑓𝑓(𝑡𝑡; 𝑟𝑟) =

[(𝐼𝐼𝑎𝑎+
𝛽𝛽 𝐷𝐷𝑎𝑎+

𝛽𝛽 𝑓𝑓−(𝑡𝑡; 𝑟𝑟), (𝐼𝐼𝑎𝑎+
𝛽𝛽 𝐷𝐷𝑎𝑎+

𝛽𝛽 𝑓𝑓−(𝑡𝑡; 𝑟𝑟)], 𝑟𝑟 ∈ [0,1]  (37) 

[𝑓𝑓−(𝑡𝑡; 𝑟𝑟) −�  
𝑘𝑘=𝑛𝑛

𝑘𝑘=𝑜𝑜

𝑡𝑡𝑘𝑘

𝐻𝐻!
𝑓𝑓−(𝑘𝑘)(𝑡𝑡; 𝑟𝑟)(𝑡𝑡 − 𝑡𝑡0)𝑘𝑘 , 

𝑓𝑓−(𝑡𝑡; 𝑟𝑟) −∑  𝑘𝑘=𝑛𝑛
𝑘𝑘=𝑜𝑜

𝑡𝑡𝑘𝑘

𝑘𝑘!
𝑓𝑓−(𝑘𝑘)(𝑡𝑡; 𝑟𝑟)(𝑡𝑡 − 𝑡𝑡0)𝑘𝑘],𝛽𝛽 ∈ (𝑖𝑖 − 1,𝑖𝑖),𝑖𝑖 ∈ 𝑁𝑁  (38) 

 
 and for [−𝑖𝑖𝑖𝑖 − 𝛽𝛽]𝑐𝑐- differentiability, we have 
 (𝐼𝐼𝑎𝑎+

𝛽𝛽 𝐷𝐷𝑎𝑎+𝑐𝑐 )𝛽𝛽𝑓𝑓(𝑡𝑡; 𝑟𝑟) =
[(𝐼𝐼𝑎𝑎+

𝛽𝛽 𝐷𝐷𝑎𝑎+𝑐𝑐 )𝛽𝛽𝑓𝑓−(𝑡𝑡; 𝑟𝑟), (𝐼𝐼𝑎𝑎+
𝛽𝛽 𝐷𝐷𝑎𝑎+𝑐𝑐 𝑓𝑓−(𝑡𝑡; 𝑟𝑟)], 𝑟𝑟 ∈ [0,1]  (39) 
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 [𝑓𝑓−(𝑡𝑡; 𝑟𝑟) − ∑  𝑘𝑘=𝑛𝑛
𝑘𝑘=𝑜𝑜

𝑡𝑡𝑘𝑘

𝑘𝑘!
𝑓𝑓−(𝑘𝑘)(𝑡𝑡; 𝑟𝑟)(𝑡𝑡 − 𝑡𝑡0)𝑘𝑘 , 

 
 𝑓𝑓−(𝑡𝑡; 𝑟𝑟) −∑  𝑘𝑘=𝑛𝑛

𝑘𝑘=𝑜𝑜
𝑡𝑡𝑘𝑘

𝑘𝑘!
𝑓𝑓(𝑘𝑘)(𝑡𝑡; 𝑟𝑟)(𝑡𝑡 − 𝑡𝑡0)𝑘𝑘],𝛽𝛽 ∈ (𝑖𝑖 −

1,𝑖𝑖),𝑖𝑖 ∈ 𝑁𝑁  (40) 
 
as well as for [−𝑖𝑖𝑖𝑖 − 𝛽𝛽]𝑐𝑐 -differentiability for all 
𝑟𝑟 ∈ [0,1], which completes the proof.  

3.1FFVIDES under Caputo GH-differentiability 

we consider the following fuzzy Caputo fractional 
differential equation: 
(𝐷𝐷𝑎𝑎+𝐶𝐶 )𝛽𝛽𝑈𝑈(𝑡𝑡) = 𝐹𝐹(𝑡𝑡, 𝜆𝜆𝜆𝜆(𝑡𝑡))        (𝐷𝐷𝑎𝑎+𝐶𝐶 )𝛽𝛽−1𝜆𝜆(𝑡𝑡0) = 𝜆𝜆0

𝛽𝛽−1 ∈ 𝐸𝐸  (41) 
Where 𝐹𝐹: (𝑎𝑎, 𝑏𝑏) ∗ 𝐸𝐸 → 𝐸𝐸  is continuous fuzzy -valued 
function and 𝑡𝑡0 ∈ [𝑎𝑎, 𝑏𝑏]. The following Lemma transform 
theFFDEs in to their corresponding FFVIDEs.  
Lemma 3: Let 𝑟𝑟 ∈ [0,1]  and 𝑡𝑡0 ∈ 𝑅𝑅 ,then the fuzzy 
fractional differential equation: (43) is equivalent to one 
of the following integral equations: 
 
𝑈𝑈(𝑡𝑡) = 𝜆𝜆(𝑡𝑡0) + 𝜆𝜆

Γ(𝛽𝛽)∫  𝑡𝑡
𝑡𝑡0

𝑓𝑓(𝑠𝑠,𝑢𝑢(𝑠𝑠))𝑑𝑑𝑠𝑠
(𝑡𝑡−𝑠𝑠)1−𝛽𝛽

, 𝑡𝑡 ∈ [𝑎𝑎, 𝑏𝑏]  (42) 
if 𝑈𝑈 is differentiable,and  
𝑈𝑈(𝑡𝑡) = 𝜆𝜆(𝑡𝑡0)Ө𝑔𝑔𝐻𝐻

−𝜆𝜆
Γ(𝛽𝛽)∫  𝑡𝑡

𝑡𝑡0
𝑓𝑓(𝑠𝑠,𝑢𝑢(𝑠𝑠))𝑑𝑑𝑠𝑠

(𝑡𝑡−𝑠𝑠)1−𝛽𝛽
, 𝑡𝑡 ∈ [𝑎𝑎, 𝑏𝑏]  (43) 

if 𝑈𝑈  is [−𝑖𝑖𝑖𝑖 − 𝛽𝛽]𝑐𝑐 −  differentiable,provided that the 
𝑔𝑔-difference exists.  
Proof. Let us consider 𝑓𝑓 ∈ 𝐶𝐶𝐹𝐹[𝑎𝑎, 𝑏𝑏], then we have  the 
following: 
 
(𝐼𝐼𝑎𝑎+
𝛽𝛽 𝐷𝐷𝑎𝑎+𝑐𝑐 )𝛽𝛽𝑓𝑓(𝑡𝑡; 𝑟𝑟) = [(𝐼𝐼𝑎𝑎+

𝛽𝛽 𝐷𝐷𝑎𝑎+𝑐𝑐 )𝛽𝛽𝑓𝑓−(𝑡𝑡; 𝑟𝑟), (𝐼𝐼𝑎𝑎+
𝛽𝛽 𝐷𝐷𝑎𝑎+𝑐𝑐 𝑓𝑓−(𝑡𝑡; 𝑟𝑟)], 𝑟𝑟 ∈ [0,1]   

(44) 
 
(𝐼𝐼𝑎𝑎+
𝛽𝛽 𝐷𝐷𝑎𝑎+𝑐𝑐 )𝑓𝑓−(𝑡𝑡; 𝑟𝑟) = 𝑓𝑓−(𝑡𝑡; 𝑟𝑟) − 𝑓𝑓−(𝑡𝑡0; 𝑟𝑟), (𝐼𝐼𝑎𝑎+

𝛽𝛽 𝐷𝐷𝑎𝑎+𝑐𝑐 )𝑓𝑓−(𝑡𝑡; 𝑟𝑟) = 𝑓𝑓−(𝑡𝑡; 𝑟𝑟) −
𝑓𝑓−(𝑡𝑡0; 𝑟𝑟)  (45) 
 
For case [−𝑖𝑖𝑖𝑖 − 𝛽𝛽]𝑐𝑐 -differentiability. For case [−𝑖𝑖 −
𝛽𝛽]𝑐𝑐-differentiability, we have  
(𝐼𝐼𝑎𝑎+
𝛽𝛽 𝐷𝐷𝑎𝑎+𝑐𝑐 )𝛽𝛽𝑓𝑓(𝑡𝑡; 𝑟𝑟) = [(𝐼𝐼𝑎𝑎+

𝛽𝛽 𝐷𝐷𝑎𝑎+𝑐𝑐 )𝛽𝛽𝑓𝑓−(𝑡𝑡; 𝑟𝑟), (𝐼𝐼𝑎𝑎+
𝛽𝛽 𝐷𝐷𝑎𝑎+𝑐𝑐 )𝑓𝑓−(𝑡𝑡; 𝑟𝑟)],  (46) 

 
Finally, we recall that for case [−𝑖𝑖 − 𝛽𝛽]𝑐𝑐-differentiability,  
(𝐼𝐼𝑎𝑎+
𝛽𝛽 𝐷𝐷𝑎𝑎+𝑐𝑐 )𝛽𝛽𝑓𝑓(𝑡𝑡; 𝑟𝑟) = [𝑓𝑓−(𝑡𝑡; 𝑟𝑟) − 𝑓𝑓−(𝑡𝑡0; 𝑟𝑟), 𝑓𝑓−(𝑡𝑡; 𝑟𝑟) − 𝑓𝑓−(𝑡𝑡0; 𝑟𝑟)],  (47) 

 
and for case [−𝑖𝑖𝑖𝑖 − 𝛽𝛽]𝑐𝑐 − differentiability,we have 
(𝐼𝐼𝑎𝑎+
𝛽𝛽 𝐷𝐷𝑎𝑎+𝑐𝑐 )𝛽𝛽𝑓𝑓(𝑡𝑡; 𝑟𝑟) = [𝑓𝑓−(𝑡𝑡; 𝑟𝑟) − 𝑓𝑓−(𝑡𝑡0;𝑟𝑟),𝑓𝑓−(𝑡𝑡; 𝑟𝑟) − 𝑓𝑓−(𝑡𝑡0; 𝑟𝑟)],  (48) 

 
which completes the proof [8].  
Theorem 3.[4] We consider the following fuzzy Caputo 
fractional differential equation  
(𝐷𝐷𝑎𝑎+𝐶𝐶 )𝛽𝛽𝑈𝑈(𝑡𝑡) − 𝜆𝜆 ∗ 𝑑𝑑(𝑟𝑟) ∗ 𝜆𝜆(𝑡𝑡) = 𝑓𝑓(𝑡𝑡)  (49) 
 
 let 𝑓𝑓: [𝑎𝑎, 𝑏𝑏] ∗ (𝑎𝑎, 𝑏𝑏) ∗ 𝐸𝐸 → 𝐸𝐸  be bounded continuous 
functions.Let the sequence𝜆𝜆𝑛𝑛: [𝑎𝑎,𝑏𝑏] → 𝐸𝐸 given by  
lim
𝑡𝑡→𝑜𝑜+

(𝑡𝑡1−𝛽𝛽𝐷𝐷0+𝐶𝐶 )𝑈𝑈(𝑡𝑡) = 𝜆𝜆0
1−𝛽𝛽 ∈ 𝐸𝐸  (50) 

 

𝑟𝑟 ∈ [0,1],𝛽𝛽 ∈ (0,1], 𝜆𝜆 ∈ 𝑅𝑅 have a unique solution given 
by (49) 
𝑈𝑈(𝑡𝑡) = 1

Γ(𝛽𝛽)
(𝜆𝜆0+

𝛽𝛽−1𝑡𝑡𝛽𝛽−1𝐸𝐸𝛽𝛽,𝛽𝛽(𝜆𝜆𝑡𝑡𝛽𝛽)) + 𝜆𝜆
Γ(𝛽𝛽)∫  𝑡𝑡

𝑜𝑜+
𝑓𝑓(𝑠𝑠)𝑑𝑑𝑠𝑠

(𝑡𝑡−𝑠𝑠)1−𝛽𝛽
𝐸𝐸𝛽𝛽,𝛽𝛽(𝜆𝜆(𝑡𝑡 − 𝑠𝑠)𝛽𝛽),  

(51) 
 
 For case [−𝑖𝑖𝑖𝑖 − 𝛽𝛽]𝑐𝑐-differentiability and  
𝑈𝑈(𝑡𝑡) = 1

Γ(𝛽𝛽)
(𝜆𝜆0+

𝛽𝛽−1𝑡𝑡𝛽𝛽−1𝐸𝐸𝛽𝛽,𝛽𝛽(𝜆𝜆𝑡𝑡𝛽𝛽))Ө −𝜆𝜆
Γ(𝛽𝛽)∫  𝑡𝑡

𝑜𝑜+
𝑓𝑓(𝑠𝑠)𝑑𝑑𝑠𝑠

(𝑡𝑡−𝑠𝑠)1−𝛽𝛽
𝐸𝐸𝛽𝛽,𝛽𝛽(𝜆𝜆(𝑡𝑡 − 𝑠𝑠)𝛽𝛽),  

(52) 
 
Theorem 4.[4] Let 𝑓𝑓: [𝑎𝑎, 𝑏𝑏] → 𝐸𝐸  be a fuzzy-valued 
function on [𝑎𝑎, 𝑏𝑏] 
𝑓𝑓 is [−𝑖𝑖𝑖𝑖 − 𝑔𝑔𝑔𝑔]𝐶𝐶-differentiable at 𝐶𝐶 ∈ [𝑎𝑎, 𝑏𝑏] iff  
𝑓𝑓 is[−𝑖𝑖𝑖𝑖 − 𝑔𝑔𝑔𝑔]𝐶𝐶𝐹𝐹-differentiable at 𝐶𝐶.  
𝑓𝑓is [−𝑖𝑖 − 𝑔𝑔𝑔𝑔]𝐶𝐶-differentiable at 𝐶𝐶 ∈ [𝑎𝑎, 𝑏𝑏] iff 
𝑓𝑓 is [−𝑖𝑖 − 𝑔𝑔𝑔𝑔]𝐶𝐶𝐹𝐹-differentiable at 𝐶𝐶.  
 
Lemma 4. Let 𝑓𝑓: [𝑎𝑎, 𝑏𝑏] → 𝐸𝐸 be a fuzzy-valued function 
such that 𝐹𝐹𝑔𝑔𝐻𝐻′𝐿𝐿 ∈ 𝐶𝐶𝐹𝐹[𝑎𝑎, 𝑏𝑏] ∩ 𝐿𝐿𝐹𝐹[𝑎𝑎, 𝑏𝑏],  
 
(𝐼𝐼𝑎𝑎+
𝛽𝛽 𝐷𝐷𝑎𝑎+

𝛽𝛽 )𝑔𝑔𝐻𝐻𝐿𝐿 𝑓𝑓(𝑡𝑡) = 𝑓𝑓(𝑡𝑡)Ө𝑔𝑔𝐻𝐻𝑓𝑓(𝑡𝑡0) = 𝐼𝐼𝑎𝑎+
1−𝛽𝛽𝑓𝑓𝑔𝑔𝐻𝐻′𝐿𝐿 (𝑡𝑡),  (53) 

 
𝐏𝐏𝐏𝐏𝐏𝐏𝐏𝐏𝐏𝐏 :By using Definition (5)  and (10)  we have 
(𝐼𝐼𝑎𝑎+
𝛽𝛽 𝑓𝑓′)𝑔𝑔𝐻𝐻(𝑡𝑡) = (𝐼𝐼𝑎𝑎+

𝛽𝛽 𝐷𝐷𝑎𝑎+
𝛽𝛽 )𝑔𝑔𝐻𝐻𝑓𝑓(𝑡𝑡) = ∫  𝑏𝑏𝑎𝑎 𝑓𝑓′𝑔𝑔𝐻𝐻(𝑆𝑆)𝑑𝑑𝑠𝑠,such that  

∫  𝑏𝑏𝑎𝑎 𝑓𝑓′𝑔𝑔𝐻𝐻(𝑆𝑆)𝑑𝑑𝑠𝑠 = 𝐼𝐼𝑎𝑎+
𝛽𝛽 𝐼𝐼𝑎𝑎+

1−𝛽𝛽𝑓𝑓′𝑔𝑔𝐻𝐻(𝑡𝑡)  (54) 
 
 We consider that f is [−𝑖𝑖 − 𝑔𝑔𝑔𝑔]𝐶𝐶𝑓𝑓 - differentiable. 
according Theorem (4) f is [−𝑖𝑖 − 𝑔𝑔𝑔𝑔]𝐶𝐶 - 
differentiable.Then we have  
∫  𝑏𝑏𝑎𝑎 𝑓𝑓′𝑔𝑔𝐻𝐻(𝑆𝑆)𝑑𝑑𝑠𝑠 = [𝐼𝐼𝑎𝑎+

𝛽𝛽 𝐼𝐼𝑎𝑎+
1−𝛽𝛽𝑓𝑓′𝑔𝑔𝐻𝐻(𝑡𝑡)] = (𝐼𝐼𝑎𝑎+

𝛽𝛽 )𝑔𝑔𝐻𝐻𝑓𝑓(𝑡𝑡)  (55) 
 
(𝐼𝐼𝑎𝑎+
𝛽𝛽 𝐷𝐷𝑎𝑎+

𝛽𝛽 )𝑔𝑔𝐻𝐻𝑓𝑓(𝑡𝑡) = [∫  𝑏𝑏𝑎𝑎 (𝑓𝑓′)𝛽𝛽−(𝑠𝑠)𝑑𝑑𝑠𝑠,∫  𝑏𝑏𝑎𝑎 (𝑓𝑓′)𝛽𝛽+(𝑠𝑠)𝑑𝑑𝑠𝑠] = 𝑓𝑓𝛽𝛽(𝑡𝑡)Ө𝑔𝑔𝐻𝐻𝑓𝑓𝛽𝛽(𝑡𝑡0),  
(56) 

 
According  to Theorem (4), 𝑖𝑖 f is [−𝑖𝑖𝑖𝑖 − 𝑔𝑔𝑔𝑔]𝐶𝐶𝑓𝑓 - 
differentiable.then we have  
 
(𝐼𝐼𝑎𝑎+
𝛽𝛽 𝐷𝐷𝑎𝑎+

𝛽𝛽 )𝑔𝑔𝐻𝐻𝑓𝑓(𝑡𝑡) = [�  
𝑏𝑏

𝑎𝑎
(𝑓𝑓′)𝛽𝛽+(𝑠𝑠)𝑑𝑑𝑠𝑠,�  

𝑏𝑏

𝑎𝑎
(𝑓𝑓′)𝛽𝛽−(𝑠𝑠)𝑑𝑑𝑠𝑠] = 𝑓𝑓𝛽𝛽(𝑡𝑡)Ө𝑔𝑔𝐻𝐻𝑓𝑓𝛽𝛽(𝑡𝑡0), 

(57) 
 For all 𝑡𝑡 ∈ [𝑎𝑎, 𝑏𝑏]  ,  𝑟𝑟 ∈ [0,1] ,  𝛽𝛽 ∈ (0,1] , which 
proves the lemma. 
 
Theorem 5. Let 𝑓𝑓: [𝑎𝑎, 𝑏𝑏] ∗ 𝐸𝐸 ∗ 𝐸𝐸 → 𝐸𝐸 be a fuzzy-valued 
function such that 𝐹𝐹𝐺𝐺𝐻𝐻′𝐿𝐿 ∈ 𝐶𝐶𝐹𝐹[𝑎𝑎, 𝑏𝑏] ∩ 𝐿𝐿𝐹𝐹[𝑎𝑎, 𝑏𝑏] , Let the 
sequences𝜆𝜆𝑛𝑛: [𝑎𝑎, 𝑏𝑏] → 𝐸𝐸 is  be given by 
 
𝜆𝜆0(𝑡𝑡) = 𝜆𝜆0,              𝑈𝑈𝑛𝑛+1(𝑡𝑡) = 𝜆𝜆0(𝑡𝑡)Ө𝑔𝑔𝐻𝐻

−𝜆𝜆
Γ(𝛽𝛽)∫  𝑡𝑡

𝑡𝑡0
𝑓𝑓(𝑠𝑠,𝑢𝑢𝑛𝑛(𝑠𝑠))
(𝑡𝑡−𝑠𝑠)1−𝛽𝛽

𝑑𝑑𝑠𝑠  (58) 
 
which is defined for any 𝑖𝑖 ∈ 𝑁𝑁.Then the sequens 𝜆𝜆𝑛𝑛 is 
convex sentence to the unique solution of  
problem (59) which is [−𝑖𝑖𝑖𝑖 − 𝑔𝑔𝑔𝑔]𝑐𝑐𝑓𝑓 -differentiable on 
[𝑎𝑎, 𝑏𝑏] ,provided that 𝜆𝜆 < 1.  
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Proof. Now we show that sequence 𝜆𝜆𝑛𝑛 , (59)  is a 
Cauchy sequence 𝑖𝑖𝑖𝑖𝐶𝐶𝐹𝐹[𝑎𝑎, 𝑏𝑏]. To do Thus,we have 
𝑑𝑑(𝜆𝜆1,𝜆𝜆0) = 𝑑𝑑(𝜆𝜆0Ө

−𝜆𝜆
Γ(𝛽𝛽)∫  𝑡𝑡

𝑡𝑡0
(𝑓𝑓(𝑠𝑠,𝑢𝑢0(𝑠𝑠))

𝑑𝑑
𝑠𝑠(𝑡𝑡 − 𝑠𝑠)1−𝛽𝛽 ,𝜆𝜆0)

≤ 𝜆𝜆
Γ(𝛽𝛽) ∫  (𝑡𝑡 − 𝑠𝑠)𝛽𝛽−1𝑑𝑑(𝑓𝑓(𝑠𝑠,𝜆𝜆0(𝑠𝑠)), 0~) = 𝜆𝜆𝑡𝑡0

𝛽𝛽𝑀𝑀
  (59) 

 
where 𝑀𝑀 = sup𝑑𝑑(𝑓𝑓(𝑠𝑠,𝜆𝜆(𝑠𝑠)), 𝑜𝑜~) . Since f is Lipschitz 
continuous then by Definition (2) , we can 
assume 𝑑𝑑(𝜆𝜆𝑛𝑛(𝑠𝑠),𝜆𝜆𝑛𝑛−1(𝑠𝑠)) ≤ 𝜇𝜇𝑛𝑛−1 and usingthis 
assumption, we have  
𝑑𝑑(𝜆𝜆𝑛𝑛+1(𝑠𝑠),𝜆𝜆𝑛𝑛(𝑠𝑠)) = 𝜆𝜆

Γ(𝛽𝛽)
𝑑𝑑(∫  𝑡𝑡

𝑡𝑡0
(𝑡𝑡 − 𝑠𝑠)𝛽𝛽−1𝑓𝑓(𝑠𝑠, 𝜆𝜆𝑛𝑛(𝑠𝑠))𝑑𝑑𝑠𝑠, (𝑡𝑡 − 𝑠𝑠)𝛽𝛽−1𝑓𝑓(𝑠𝑠,𝜆𝜆𝑛𝑛−1(𝑠𝑠)))

≤ 𝜆𝜆
Γ(𝛽𝛽)∫  𝑡𝑡

𝑡𝑡0
𝑑𝑑((𝑡𝑡 − 𝑠𝑠)𝛽𝛽−1𝑓𝑓(𝑠𝑠,𝜆𝜆𝑛𝑛(𝑠𝑠)), (𝑡𝑡 − 𝑠𝑠)𝛽𝛽−1𝑓𝑓(𝑠𝑠,𝜆𝜆𝑛𝑛−1(𝑠𝑠)))𝑑𝑑𝑠𝑠

 

(60) 
 
𝑑𝑑(𝜆𝜆𝑛𝑛+1(𝑠𝑠),𝜆𝜆𝑛𝑛(𝑠𝑠)) ≤ 𝜆𝜆

Γ(𝛽𝛽)∫  𝑡𝑡
𝑡𝑡0

((𝑡𝑡 − 𝑠𝑠)𝛽𝛽−1𝑔𝑔(𝑠𝑠,𝑑𝑑(𝜆𝜆𝑛𝑛(𝑠𝑠),𝜆𝜆𝑛𝑛−1(𝑠𝑠)))𝑑𝑑𝑠𝑠  
(61) 

𝑑𝑑(𝜆𝜆𝑛𝑛+1(𝑠𝑠),𝜆𝜆𝑛𝑛(𝑠𝑠)) = 𝜇𝜇𝑛𝑛(𝑠𝑠) (62) 
 
Moreover |(𝐷𝐷𝑎𝑎+𝑐𝑐 )𝛽𝛽𝜆𝜆𝑛𝑛+1(𝑡𝑡)|=|𝑔𝑔(𝑠𝑠,𝜆𝜆𝑛𝑛(𝑠𝑠)| ≤ 𝑀𝑀1; and thus, 
by  the Ascoli-Arzela theorem and the monotonicity of e 
sequence 𝜆𝜆𝑛𝑛,we can conclude that lim𝑛𝑛→∞𝜇𝜇𝑛𝑛(𝑡𝑡) = 𝜇𝜇(𝑡𝑡) 
uniformly on [𝑡𝑡0, 𝑡𝑡0 + 𝑟𝑟] and  
𝜇𝜇(𝑡𝑡) = 1

Γ(𝛽𝛽)∫  𝑡𝑡
𝑡𝑡0

𝑔𝑔(𝑠𝑠,𝑢𝑢(𝑠𝑠))𝑑𝑑𝑠𝑠
(𝑡𝑡−𝑠𝑠)1−𝛽𝛽

  (63) 
 
Thus ,by the inductive method ,we know that 
𝑑𝑑(𝜆𝜆𝑛𝑛+1(𝑠𝑠),𝜆𝜆𝑛𝑛(𝑠𝑠)) ≤ 𝜇𝜇𝑛𝑛(𝑠𝑠),  (64) 
 
∀𝑡𝑡 ∈ [𝑡𝑡0, 𝑡𝑡0 + 𝑟𝑟],𝑖𝑖 = 0,1,2,3, . .. so ,we have  
 
𝑑𝑑((𝐷𝐷𝑎𝑎+𝑐𝑐 )𝛽𝛽𝜆𝜆𝑛𝑛+1(𝑡𝑡), (𝐷𝐷𝑎𝑎+𝑐𝑐 )𝛽𝛽𝜆𝜆𝑛𝑛(𝑡𝑡)) = 𝑑𝑑(𝑓𝑓(𝑠𝑠,𝜆𝜆𝑛𝑛(𝑠𝑠),𝑓𝑓(𝑠𝑠,𝜆𝜆𝑛𝑛−1(𝑠𝑠)))

≤ 𝑔𝑔(𝑠𝑠,𝑑𝑑(𝜆𝜆𝑛𝑛(𝑠𝑠),𝜆𝜆𝑛𝑛−1(𝑠𝑠))).
 (65) 

 
𝑑𝑑((𝐷𝐷𝑎𝑎+𝑐𝑐 )𝛽𝛽𝜆𝜆𝑛𝑛+1(𝑡𝑡), (𝐷𝐷𝑎𝑎+𝑐𝑐 )𝛽𝛽𝜆𝜆𝑛𝑛(𝑡𝑡)) ≤ 𝑔𝑔(𝑠𝑠,𝑑𝑑(𝜆𝜆𝑛𝑛(𝑠𝑠),𝜆𝜆𝑛𝑛−1(𝑠𝑠)))  (66) 

4. Extension of the Jacobi polynomials 
operationalmatrixmethod for FFVIDEs 

We introduce a suitable method for approximating the 
fuzzy solutions of linear fuzzy fractional 
integro-differential equations as shifted Jacobi functions 
based on the fuzzy residual of the problem where the 
Jacobi operational matrix is employed in the derivation of 
the proposed method. In addition, the approximate 
solution based on the shifted Jacobi polynomials 
 𝑠𝑠𝑛𝑛
𝛼𝛼,𝛽𝛽(𝑡𝑡)(𝑖𝑖 ≥ 0,𝛼𝛼,𝛽𝛽 > 0)can be obtained in terms of the 

Jacobi parameters 𝛼𝛼and 𝛽𝛽.In this section, we derive the 
fuzzy approximation function using the shifted Jacobi 
polynomials 
.Moreover, the Jacobi operational matrix based on fuzzy 
shifted Jacobi polynomials is introduced in detail where 
this method can be employed for solving fuzzy linear 
fractional differential equations of order fuzzy linear 
fractional differential equations of order 0<𝛽𝛽<1. It should 

be noted that this method is an the extension studies 
implemented in the crisp sense by Doha et al. 
[20] and Kazem [21]. 
 
𝑠𝑠𝑛𝑛
𝛼𝛼,𝛽𝛽(𝑡𝑡) = ∑ 𝑠𝑠𝑖𝑖

(𝑛𝑛)𝑡𝑡𝑖𝑖𝑛𝑛
𝑖𝑖=0 ,          𝑠𝑠𝑖𝑖

(𝑛𝑛) = (−1)𝑛𝑛−𝑖𝑖𝐶𝐶𝑖𝑖
𝑛𝑛+𝛼𝛼+𝛽𝛽+𝑖𝑖  .𝐶𝐶𝑛𝑛−𝑖𝑖𝑛𝑛+𝛼𝛼  ,   𝑖𝑖 =

0,1,2, … … ,𝑖𝑖   (67) 

�((Jn
α,β(𝑡𝑡), Jm

α,β(t))γ .ωα,β(t) dt = �𝑠𝑠𝑙𝑙
(𝑗𝑗)

𝑗𝑗

𝑙𝑙=0

𝐵𝐵(𝜏𝜏 + 𝑔𝑔 + 𝛽𝛽 + 1,𝛼𝛼 + 1) 

Where B(s, t) is the Beta function defined as follows. 
 

𝐵𝐵(𝑠𝑠, 𝑡𝑡) = �𝜏𝜏𝑠𝑠−1(1− 𝜏𝜏)𝑡𝑡−1
1

0

𝑑𝑑𝜏𝜏 =
Г(𝑠𝑠)Г(𝑡𝑡)
Г(𝑠𝑠 + 𝑡𝑡)

 

 
Let 𝜎𝜎 =  (0, 1) and { 𝑠𝑠𝑛𝑛

𝛼𝛼,𝛽𝛽(𝑡𝑡)}𝑛𝑛=0 
∞ generate the 

space 𝑠𝑠𝑛𝑛
𝑚𝑚+1,.𝛼𝛼,𝛽𝛽 ., A function f belonging to 

𝐿𝐿2𝑊𝑊(𝜎𝜎), can be expanded in 𝑠𝑠𝑛𝑛
𝑚𝑚+1,.𝛼𝛼,𝛽𝛽, by 

𝜆𝜆(𝑡𝑡) = � 𝑠𝑠𝑖𝑖
𝛼𝛼,𝛽𝛽(𝑡𝑡)𝜆𝜆𝑖𝑖

𝑚𝑚−1

𝑖𝑖=0
 

Where the coefficients 𝜆𝜆𝑖𝑖are obtained by 

𝜆𝜆𝑖𝑖 =
1
𝑣𝑣𝑖𝑖
𝛼𝛼,𝛽𝛽 �𝑠𝑠𝑖𝑖

𝛼𝛼,𝛽𝛽(𝑡𝑡).𝜆𝜆(𝑡𝑡).
1

0

𝜔𝜔𝛼𝛼,𝛽𝛽(𝑡𝑡) 𝑑𝑑𝑡𝑡  , 𝑖𝑖 = 0,1, … … 

 
Lemma 5.The fuzzy Caputo fractional derivative of order 
0<𝛽𝛽<1over the shifted Jacobi 
Functions can be obtained in the form of 
𝐼𝐼(𝜏𝜏)𝑠𝑠𝐾𝐾

𝛼𝛼,𝛽𝛽(𝑡𝑡) = � 𝑠𝑠𝑖𝑖𝑘𝑘(𝑡𝑡)𝑚𝑚𝑖𝑖+𝑣𝑣
𝑘𝑘

𝑖𝑖=0

Г(𝑖𝑖 + 1)
Г(𝑖𝑖 + 𝑣𝑣 + 1)

 
 
(𝐷𝐷𝑎𝑎+𝐶𝐶 )𝛽𝛽𝑠𝑠𝐾𝐾

𝛼𝛼,𝛽𝛽(𝑡𝑡)=∑ 𝑠𝑠′𝑖𝑖
𝑘𝑘(𝑡𝑡)𝑚𝑚𝑖𝑖−𝛽𝛽𝑘𝑘

𝑖𝑖=0
Г(𝑖𝑖+1)

Г(𝑖𝑖+𝛽𝛽+1)
 

 
Where  𝑠𝑠′𝑖𝑖𝑘𝑘 = 0,for𝑖𝑖 < [𝛽𝛽],and ,   𝑠𝑠𝑖𝑖𝑘𝑘 = 𝑠𝑠′𝑖𝑖𝑘𝑘  for i ≥ [β]. 
 
Proof. The proof is straightforward from based on Section 
3-2 and the Caputo derivative of 𝑚𝑚𝑘𝑘. 
The fuzzy Caputo operational matrix based on the shifted 
Jacobi polynomial 𝑠𝑠𝑛𝑛

𝛼𝛼,𝛽𝛽(𝑡𝑡),a real is expressed by relation 
(5). So, we have the following. 
 
(𝐷𝐷𝑎𝑎+𝐸𝐸 )𝛽𝛽∅(𝑡𝑡) ≅ (𝐷𝐷𝑎𝑎+𝐸𝐸 (𝛽𝛽))∅(𝑡𝑡) 
 
Definition 15[29].For 𝜆𝜆 ∈ 𝐿𝐿𝑃𝑃𝐸𝐸 [0,1] ∩ 𝐶𝐶𝐸𝐸[0,1] and the 
shifted Jacobi polynomial 𝑠𝑠𝑛𝑛

𝛼𝛼,𝛽𝛽(𝑡𝑡),a real value function 
over [0, 1], the fuzzy function is approximated by 
 
𝜆𝜆(𝑡𝑡) ≅ 𝜆𝜆𝑚𝑚(𝑡𝑡) = ∑ 𝑠𝑠𝑖𝑖

𝛼𝛼,𝛽𝛽(𝑡𝑡)𝜆𝜆𝑖𝑖𝑚𝑚−1
𝑖𝑖=0   (68) 

Where the fuzzy coefficients 𝜆𝜆𝑖𝑖are obtained by 
 
𝜆𝜆𝑖𝑖 = 1

𝜗𝜗𝑖𝑖𝛼𝛼,𝛽𝛽 ∫((𝐽𝐽𝑛𝑛
𝛼𝛼,𝛽𝛽(𝑡𝑡), 𝐽𝐽𝑚𝑚

𝛼𝛼,𝛽𝛽(𝑡𝑡))𝛾𝛾 .𝜔𝜔𝛼𝛼,𝛽𝛽(𝑡𝑡) 𝑑𝑑𝑡𝑡  , 𝑖𝑖 = 0,1, … … (69) 
 
Theorem6.The best approximation of a fuzzy function 
based on the Jacobi points exists and is unique, and only 
the first (m + 1)-terms of the shifted Jacobi polynomials 
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are considered. Then we have 
𝜆𝜆(𝑡𝑡) ≅ 𝜆𝜆𝑚𝑚(𝑡𝑡) = ∑ 𝑠𝑠𝑖𝑖

𝛼𝛼,𝛽𝛽(𝑡𝑡)𝜆𝜆𝑖𝑖𝑚𝑚−1
𝑖𝑖=0 = 𝐹𝐹𝑇𝑇∅(𝑡𝑡), (70) 

That 
 
∅𝑚𝑚+1(𝑡𝑡) = [𝑠𝑠0

𝛼𝛼,𝛽𝛽(𝑡𝑡),𝑠𝑠1
𝛼𝛼,𝛽𝛽(𝑡𝑡), … … … . 𝑠𝑠𝑚𝑚

𝛼𝛼,𝛽𝛽(𝑡𝑡)]𝑇𝑇,     ©𝑚𝑚+1
𝑇𝑇

= [𝜆𝜆0 ,𝜆𝜆1,𝜆𝜆2, … … … 𝜆𝜆𝑚𝑚], 
 
Where 𝜔𝜔𝛼𝛼,𝛽𝛽(𝑡𝑡) = (1 − 𝑡𝑡)𝛼𝛼 ∗ 𝑡𝑡𝛽𝛽,  𝑠𝑠𝑛𝑛

𝛼𝛼,𝛽𝛽(𝑡𝑡)is as the same as 
the shifted Jacobi polynomials described in Section 2-1, 
and∑∗means denotes the addition with respect to Ө 𝑖𝑖𝑖𝑖 𝐸𝐸. 
Thus, the following lemma provides the upper bound of 
the approximate function 𝑓𝑓𝑚𝑚+1(𝑡𝑡)  using the shifted 
Jacobi polynomials. This error bound proves that the 
approximate function𝑓𝑓𝑚𝑚(𝑡𝑡) converges to f (t) based on the 
shifted Jacobi polynomials. 
The proof is an immediate result of Theorem 4.2.1 in [23]. 
 
Lemma 6. u(t)has a unique best approximation 
from   𝑠𝑠𝑛𝑛

𝑚𝑚+1,.𝛼𝛼,𝛽𝛽(𝑡𝑡) ,say  𝜆𝜆𝑚𝑚(𝑡𝑡) ∈  𝑠𝑠𝑛𝑛
𝑚𝑚+1,.𝛼𝛼,𝛽𝛽 that i.e  

∀ 𝑣𝑣 ∈  𝑠𝑠𝑛𝑛
𝑚𝑚+1,.𝛼𝛼,𝛽𝛽||𝜆𝜆(𝑡𝑡) − 𝜆𝜆𝑚𝑚(𝑡𝑡)||𝜔𝜔 ≤ ||𝜆𝜆(𝑡𝑡) − 𝑣𝑣||𝜔𝜔 

 
Lemma7.[22]Let   ∅(𝑡𝑡) be the shifted Jacobi vector 
defined inEq.(4) and let 𝛽𝛽>0. 
Then 

(𝐷𝐷𝑎𝑎+𝐸𝐸 )𝛽𝛽∅(𝑡𝑡) ≅ (𝐷𝐷𝑎𝑎+𝐸𝐸 (𝛽𝛽))∅(𝑡𝑡) 
                                   (71) 
𝑤𝑤ℎ𝑔𝑔𝑟𝑟𝑔𝑔(𝐷𝐷𝑎𝑎+𝐸𝐸 )𝜷𝜷  𝑖𝑖𝑠𝑠  𝑡𝑡ℎ𝑔𝑔 (𝑚𝑚 + 1) × (𝑚𝑚 + 1) Operational 
matrix of derivatives of order 𝛽𝛽  in the Caputo sense 
which defined by: 

𝐷𝐷(𝛽𝛽) =

⎣
⎢
⎢
⎢
⎢
⎡

0                    0            0             0
0                      0           0             0 ⋯ 0

0
⋮ ⋱ ⋮

∆([𝛽𝛽], 0) ∆([𝛽𝛽], 1) ∆([𝛽𝛽], 2)    0
∆(𝑖𝑖, 0)
∆(𝑚𝑚, 0)

∆(𝑖𝑖, 1)
∆(𝑚𝑚, 1)

∆(𝑖𝑖, 2)        0
∆(𝑚𝑚, 2)      0

⋯
∆([𝛽𝛽],𝑖𝑖)
∆(𝑖𝑖,𝑁𝑁)
∆(𝑚𝑚,𝑚𝑚) ⎦

⎥
⎥
⎥
⎥
⎤

 

Where 
∆(𝛽𝛽)(𝑖𝑖, 𝑗𝑗) = � 𝛿𝛿𝑖𝑖𝑗𝑗𝐻𝐻

𝑖𝑖

𝑘𝑘=[𝛽𝛽]
 

 
And δijk is given as follows. 
δijk= (−1)𝑖𝑖−𝑘𝑘Г(𝑗𝑗+𝛽𝛽+1)Г(𝑖𝑖+𝛽𝛽+1)Г(𝑖𝑖+𝛼𝛼+𝑘𝑘+𝛽𝛽+1)

Г(𝑗𝑗+𝑘𝑘+𝛼𝛼+𝛽𝛽+1)Г(𝑘𝑘+𝛽𝛽+1)Г(𝑖𝑖+𝛼𝛼+𝛽𝛽+1)Г(𝑘𝑘−𝜏𝜏+1)𝜏𝜏𝑗𝑗
×

(−1)𝑗𝑗−𝑙𝑙Г(𝑗𝑗+𝛽𝛽+𝑙𝑙+𝛼𝛼+1)Г(𝑙𝑙+𝑘𝑘+𝛽𝛽−𝜏𝜏+1)Г(𝛼𝛼+1)
Г(𝑙𝑙+𝑘𝑘+𝛼𝛼+𝛽𝛽−𝜏𝜏+2)Г(𝑙𝑙+𝛽𝛽+1)(𝑗𝑗−𝑙𝑙)!𝑙𝑙!

 
(Note that in 𝐷𝐷(𝛽𝛽), the first [𝛽𝛽]rows, are all zeros). 
 
Where (𝐷𝐷𝑎𝑎+𝐸𝐸 )𝛽𝛽 is the (m + 1)-square operational matrix 
of the fuzzy fractional Caputo derivative of the shifted 
Jacobi polynomials and�𝐷𝐷𝑎𝑎+𝐸𝐸 (𝛽𝛽)�∅ ∈  𝐶𝐶𝐸𝐸[0,1].Thus, by 
using(70) and (68) we can approximate the fuzzy 
fractional Caputo derivative as follows. 
 
𝜆𝜆(𝑡𝑡) ≅ 𝜆𝜆~

𝑚𝑚+1(𝑡𝑡) = ∑ 𝑠𝑠𝑖𝑖
𝛼𝛼,𝛽𝛽(𝑡𝑡) ∗ 𝑓𝑓𝑖𝑖𝑚𝑚

𝑖𝑖=0 = 𝐹𝐹𝑚𝑚+1
𝑇𝑇 ∗ ∅𝑚𝑚+1  (72) 

𝒖𝒖(𝒕𝒕,𝒓𝒓) ≅ 𝒖𝒖𝒎𝒎+𝟏𝟏
~ (𝒕𝒕,𝒓𝒓) = �� 𝒑𝒑𝒊𝒊

𝜶𝜶,𝜷𝜷(𝒕𝒕) ∗ 𝝀𝝀𝒊𝒊−
𝒓𝒓

𝒎𝒎

𝒊𝒊=𝟎𝟎
,� 𝒑𝒑𝒊𝒊

𝜶𝜶,𝜷𝜷(𝒕𝒕)
𝒎𝒎

𝒊𝒊=𝟎𝟎

∗ 𝝀𝝀𝒊𝒊+
𝒓𝒓 �   ,    𝟎𝟎 < 𝑟𝑟 ≤ 1     

 
𝐷𝐷𝐸𝐸

𝛽𝛽  𝜆𝜆(𝑡𝑡, 𝑟𝑟) ≅ 𝐷𝐷 𝒖𝒖𝒎𝒎+𝟏𝟏~ (𝒕𝒕, 𝒓𝒓) =𝐸𝐸
(𝛽𝛽) �∑ 𝑫𝑫𝑬𝑬

(𝜷𝜷) 𝒑𝒑𝒊𝒊
𝜶𝜶,𝜷𝜷(𝒕𝒕) ∗𝒎𝒎

𝒊𝒊=𝟎𝟎

𝝀𝝀𝒊𝒊−
𝒓𝒓 ,∑ 𝑫𝑫𝑬𝑬

(𝜷𝜷) 𝒑𝒑𝒊𝒊
𝜶𝜶,𝜷𝜷(𝒕𝒕) ∗ 𝝀𝝀𝒊𝒊+

𝒓𝒓𝒎𝒎
𝒊𝒊=𝟎𝟎 �    (73) 

 
The subsequent property of the product of the fuzzy 
Jacobi function vectors is also utilized where gijk is given 
by 
gijk=∫((𝐽𝐽𝑛𝑛

𝛼𝛼,𝛽𝛽(𝑡𝑡), 𝐽𝐽𝑚𝑚
𝛼𝛼,𝛽𝛽(𝑡𝑡))𝛾𝛾 .𝜔𝜔𝛼𝛼,𝛽𝛽(𝑡𝑡) 𝑑𝑑𝑡𝑡 , 𝑖𝑖 = 0,1, … … 

 
The error bound of the fuzzy Caputo fractional differential 
operator is considered in the next theorem for 0<𝛽𝛽<1. 
Therefore, we define𝐸𝐸𝛽𝛽𝐸𝐸as follows. 
𝐸𝐸𝑘𝑘,𝑣𝑣 = ( 𝑫𝑫)𝑬𝑬

𝜷𝜷 𝑠𝑠𝑘𝑘
𝛼𝛼,𝛽𝛽(𝑡𝑡) − ∑ ( 𝑫𝑫𝒌𝒌𝒌𝒌)𝑬𝑬

(𝜷𝜷) 𝒑𝒑𝒌𝒌
𝜶𝜶,𝜷𝜷(𝒕𝒕)𝒎𝒎

𝒊𝒊=𝟎𝟎    (74) 
Subsequently, by replacing Eq. (72) in the initial 
condition of the problem 
U (0) =∑ 𝜆𝜆𝑗𝑗

(𝑟𝑟)𝑚𝑚
𝑗𝑗=0 ∗  𝑠𝑠𝑗𝑗

(𝛼𝛼,𝛽𝛽)(0) = 𝜆𝜆0 
And from the above equation with Eq. (73), the (m+ 
1)-fuzzy linear algebraic equations are generated. 
It is obvious that the unknown fuzzy coefficients are 
obtained by solving this fuzzy system using the method 
presented for the example in [24]. 
 
𝑈𝑈𝑛𝑛+1(𝑡𝑡) = 𝑈𝑈0(𝑡𝑡)Ө𝑔𝑔𝐻𝐻

−1
Γ(𝛽𝛽)∫  𝑡𝑡

0+
𝐹𝐹�𝑠𝑠,𝑢𝑢𝑛𝑛(𝑠𝑠)�𝑑𝑑𝑠𝑠

(𝑡𝑡−𝑠𝑠)1−𝛽𝛽
Ө −𝜆𝜆
Γ(𝛽𝛽)∫  𝑡𝑡

0+
𝑢𝑢𝑛𝑛(𝑠𝑠))𝑑𝑑𝑠𝑠
(𝑡𝑡−𝑠𝑠)1−𝛽𝛽

 ,  (75) 

5. Example 

Example 1 In this section,we present examples of the 
solution of FFVIDEs under Caputo H-differentiability in 
order to show the application of the positive 
solutionsobtained. Let us consider the followingexample. 
 
� 𝐷𝐷0+𝜗𝜗𝑔𝑔𝐻𝐻

𝐶𝐶 𝜆𝜆�
𝛽𝛽

(𝑡𝑡) + 𝜆𝜆𝜆𝜆 = 𝑡𝑡𝑔𝑔−𝑡𝑡 ,     0 ≤ 𝑡𝑡 ≤ 1 ,    0 < 𝜗𝜗 ≤ 1    
(76)  
𝜆𝜆(0, 𝑟𝑟) = [−1 + 𝑟𝑟, 1 − 𝑟𝑟] 
 
Again, according to case (i) in Definition(13) and 
Theorem 5, we can determine the 
parametric form of (72) asfollows. 
 
� 𝐷𝐷0+𝜗𝜗𝑔𝑔𝐻𝐻

𝐶𝐶 𝜆𝜆−�𝛽𝛽(𝑡𝑡, 𝑟𝑟) + 𝜆𝜆𝜆𝜆−(𝑡𝑡, 𝑟𝑟) = 𝑡𝑡𝑔𝑔−𝑡𝑡 ,        𝜆𝜆−(0, 𝑟𝑟)
= −1 + 𝑟𝑟,   0 ≤ 𝑡𝑡 ≤ 1,      0 < 𝜗𝜗 ≤ 1 

and 
� 𝐷𝐷0+𝜗𝜗𝑔𝑔𝐻𝐻

𝐶𝐶 𝜆𝜆+�
𝛽𝛽

(𝑡𝑡, 𝑟𝑟) + 𝜆𝜆𝜆𝜆+(𝑡𝑡, 𝑟𝑟) = 𝑡𝑡𝑔𝑔−𝑡𝑡 ,       𝜆𝜆+(0, 𝑟𝑟)
= 1 − 𝑟𝑟,   0 ≤ 𝑡𝑡 ≤ 1 ,    0 < 𝜗𝜗 ≤ 1 

 
Usingthe presented method in Section 3-2, we can obtain 
following system  of fuzzy equations: 

�𝑓𝑓𝑗𝑗,−
𝑟𝑟

𝑚𝑚

𝑗𝑗=0

𝑠𝑠𝑗𝑗
𝛼𝛼,𝛽𝛽(𝑡𝑡) = �𝜃𝜃𝑗𝑗,−

𝑟𝑟 [∆𝛾𝛾

𝑚𝑚

𝑗𝑗=0

(𝑖𝑖, 𝑗𝑗) + 𝐼𝐼]𝑠𝑠𝑗𝑗
𝛼𝛼,𝛽𝛽(𝑡𝑡),    
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�𝑓𝑓𝑗𝑗,+
𝑟𝑟

𝑚𝑚

𝑗𝑗=0

𝑠𝑠𝑗𝑗
𝛼𝛼,𝛽𝛽(𝑡𝑡) = �𝜃𝜃𝑗𝑗,+

𝑟𝑟 [∆𝛾𝛾

𝑚𝑚

𝑗𝑗=0

(𝑖𝑖, 𝑗𝑗) + 𝐼𝐼]𝑠𝑠𝑗𝑗
𝛼𝛼,𝛽𝛽(𝑡𝑡) 

where 

𝒇𝒇𝒊𝒊 =
𝟏𝟏

𝝑𝝑𝒊𝒊𝜶𝜶,𝜷𝜷 �𝒑𝒑𝒊𝒊
𝜶𝜶,𝜷𝜷(𝒕𝒕) ∗ 𝒕𝒕𝒆𝒆−𝒕𝒕 ∗ 𝝎𝝎𝜶𝜶,𝜷𝜷(𝒕𝒕)𝒅𝒅𝒕𝒕

1

0

,           𝑖𝑖 = 0,1,2, … … . ,𝑚𝑚 

Next, bysubstituting Eq. (72) in the initial condition of Eq. 
(76) yields 
u(0)=∑ 𝜆𝜆𝑗𝑗

(𝑟𝑟)𝑚𝑚
𝑗𝑗=0 ∗  𝑠𝑠𝑗𝑗

(𝛼𝛼,𝛽𝛽)(0) = 𝜆𝜆0 , 𝜆𝜆(0, 𝑟𝑟) = [−1 + 𝑟𝑟, 1 −
𝑟𝑟]             (77) 
 
ByTakingm = 2, v = 0.95, α = 0.0, 𝜷𝜷=0.5 and applying 
theproposed method, obtain 

𝐷𝐷.95 = �
0 0

2.4852 0.1137 −0.0478

0.3655 5.8573 0.2754
�    , 𝑠𝑠𝑗𝑗

𝛼𝛼,𝛽𝛽(𝑡𝑡)

=

⎩
⎪
⎨

⎪
⎧

1,
−3
2

15
8
−

35
4 𝑡𝑡

+
63

8 𝑡𝑡2

+
5

2 𝑡𝑡
 

�©3,−, ©3,+�
= [(−0.1783,0.1947,−0.0158), (0.3806,−0.0385,0.0329)] 
and by, putting 𝑔𝑔𝑖𝑖𝑡𝑡𝑔𝑔𝑟𝑟𝑖𝑖𝑖𝑖𝑔𝑔  𝐷𝐷.95 and  𝑠𝑠𝑗𝑗

(𝛼𝛼,𝛽𝛽)(t) inEqs. (75) 
and(76), we can obtain the fuzzy unknowncoefficients 
asfollows. 
©3,− = (−0.1783,0.1947,−0.0158),                     ©3,+

= (0.3806,−0.0385,0.0329)

 

Table 1. Absolute error using the proposed method for Example 1. with different values of α,𝛽𝛽,and m = 9 
(𝜶𝜶,𝜷𝜷) (0,0) (0.5,0)  (0,0.5) (0.5,0.5) (0,0) (0.5,0) (0,0.5) (0.5,0.5) 
𝒓𝒓 𝑬𝑬.𝟗𝟗𝟗𝟗

𝟏𝟏  𝑬𝑬.𝟗𝟗𝟗𝟗
𝟐𝟐  𝑬𝑬.𝟗𝟗𝟗𝟗

𝟑𝟑  𝑬𝑬.𝟗𝟗𝟗𝟗
𝟒𝟒  𝑬𝑬.𝟗𝟗𝟗𝟗

𝟏𝟏  𝑬𝑬.𝟗𝟗𝟗𝟗
𝟑𝟑  𝑬𝑬.𝟗𝟗𝟗𝟗

𝟒𝟒  𝑬𝑬.𝟗𝟗𝟗𝟗
𝟒𝟒  

0 5.2340e-2 1.4530e-3 7.6606e-4 1.0543e-4 4.856e-4 3.467e-3 3.873e-3 3.455e-4 
.1 5.3455e-3 6.6595e-5 6.7854e-6 3.0321e-6 3.043e-3 4.873e-4 2.489e-3 2.435e-5 
.2 5.6543e-7 8.6543e-5 5.0345e-7 5.0872e-6 4.075e-3 8.734e-2 8.345e-5 2.764e-4 
.3 4.3589e-7 7.6523e-5 4.5467e-3 6.5427e-6 4.034e-3 9.023e-3 3.934e-7 5.236e-5 
.4 4.5674e-8 7.9065e-7 3.7789e-5 3.0854e-3 5.854e-7 2.876e-3 2.439e-7 4.245e-5 
.5 4.7654e-4 6.8704e-8 7.0432e-6 2.0543e-7 3.548e-4 5.034e-3 4.549e-2 5.732e-3 
.6 5.6743e-8 4.7690e-5 2.4045e-2 5.5003e-6 1.349e-4 8.640e-5 5.593e-2 3.459e-5 
.7 2.8754e-4 3.4573e-4 7.0342e-7 9.0432e-2 2.595e-6 6.002e-5 5.945e-5 6.495e-3 
.8 4.7643e-2 4.4532e-6 6.9432e-4 8.0320e-4 7.984e-7 8.034e-5 4.795e-6 4.503e-7 
.9 5.5436e-5 5.0912e-6 5.0432e-6 9.0346e-2 4.048e-7 3.980e-4 3.498e-5 8.543e-6 

 
 
Comparison of  the absolute errors forExample5.using 
different values of α, 𝜷𝜷 
at t =1 in Table1.Table 1shows clearly that the proposed 
method achieves better accuracy with α = 𝜷𝜷  =0 so 
according to this assumption the method 
is in agreement with the Legendre tau method proposed 
previously [25]. These results are confirmed 
byFigure 1. The problem is a fuzzy fractional oscillation 
equation, 
thismethod successfullyobtains asuitableapproximation 
thatbecause its precion is increases 
progressively with the increasing of the number of Jacobi 
functions according to Figure2.In addition, 
the approximate fuzzy solution is shown in Figure 2 for 
different fractional ordersv. 
The estimated CPU time is shown in Table 3.where the 
values were usingmathematica verion 7.0 
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Figure 1. Absolute error with different values (α,𝛽𝛽in Example.1, v = 0.95, m = 9. 

 

Figure 2.Fuzzy approximate solution forExample 1.usingdifferent fractional orders v, α = 0.5,𝛽𝛽= 0.5, m = 9 

Example 2.We Consider the following FFDE: 
 
� 𝐷𝐷0+𝜗𝜗𝐺𝐺𝐻𝐻

𝐶𝐶 𝜆𝜆�
𝛽𝛽

(𝑡𝑡) = 𝜆𝜆.𝜆𝜆(𝑡𝑡) + (𝑡𝑡 + 1),       0 < 𝛽𝛽 ≤ 1,               0 < 𝑟𝑟 ≤ 1,  
 𝜆𝜆(𝑜𝑜, 𝑟𝑟) = [𝜆𝜆−𝑟𝑟 (0),𝜆𝜆+𝑟𝑟 (0)] =   [0.5 + 0.5 𝑟𝑟, 1.5− 0.5 𝑟𝑟];                    (77) 
where we, suppose that 𝛌𝛌= −1 ∈ 𝑅𝑅− = (−∞, 0).Using 
[ i--𝛽𝛽]-differentiability and Theorem 4. we haveobtain 
the following parametric form: 
 
� 𝐷𝐷0+𝜗𝜗𝐺𝐺𝐻𝐻

𝐶𝐶 𝜆𝜆−�𝛽𝛽(𝑡𝑡, 𝑟𝑟) = −1.𝜆𝜆−(𝑡𝑡, 𝑟𝑟) + 𝑡𝑡 + 1, 
𝜆𝜆−𝑟𝑟 (0) = 𝜆𝜆0−𝑟𝑟        0 < 𝛽𝛽 ≤ 1,               0 < 𝑟𝑟 ≤ 1, (78) 
 
and 
� 𝐷𝐷0+𝜗𝜗𝑔𝑔𝐻𝐻

𝐶𝐶 𝜆𝜆+�
𝛽𝛽

(𝑡𝑡, 𝑟𝑟) = −1.𝜆𝜆+(𝑡𝑡, 𝑟𝑟) + 𝑡𝑡 + 1, 
𝜆𝜆+𝑟𝑟 (0) = 𝜆𝜆0+𝑟𝑟        0 < 𝛽𝛽 ≤ 1,         0 < 𝑟𝑟 ≤ 1, (79) 

 
where [𝜆𝜆−𝑟𝑟 (0),𝜆𝜆+𝑟𝑟 (0)] =   [0.5 + 0.5 𝑟𝑟, 1.5− 0.5 𝑟𝑟] . The 
analytical solution to the problem (75) can be 
obtained using Eqs. (77) and (76) asfollows. 

𝜆𝜆−(𝑡𝑡, 𝑟𝑟) = (0.5 + 0.5 𝑟𝑟)𝐸𝐸𝛽𝛽,1�𝑡𝑡𝛽𝛽�

+ � (𝑡𝑡 − 𝑠𝑠)𝛽𝛽−1𝐸𝐸𝛽𝛽,𝛽𝛽�−(𝑡𝑡 − 𝑠𝑠)𝛽𝛽�(𝑡𝑡 + 1)𝑑𝑑𝑠𝑠,
𝑡𝑡

0

 

𝜆𝜆−(𝑡𝑡, 𝑟𝑟) = (1.5− 0.5 𝑟𝑟)𝐸𝐸𝛽𝛽,1�𝑡𝑡𝛽𝛽�

+ � (𝑡𝑡 − 𝑠𝑠)𝛽𝛽−1𝐸𝐸𝛽𝛽,𝛽𝛽�−(𝑡𝑡 − 𝑠𝑠)𝛽𝛽�(𝑡𝑡 + 1)𝑑𝑑𝑠𝑠,
𝑡𝑡

0

 

Using the method explained in Section 3-2, the equation is 
obtained in matrix 
form as: 
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©𝑚𝑚+1,−
𝑇𝑇 �𝐷𝐷𝛽𝛽 + 𝐼𝐼�∅(𝑡𝑡) = 𝐹𝐹𝑚𝑚+1,−

𝑇𝑇 ∅(𝑡𝑡), (80) 
©𝑚𝑚+1,+
𝑇𝑇 �𝐷𝐷𝛽𝛽 + 𝐼𝐼�∅(𝑡𝑡) = 𝐹𝐹𝑚𝑚+1,+

𝑇𝑇 ∅(𝑡𝑡) 
 
where the values of vector 𝐹𝐹𝑇𝑇are obtained by Eq. (72). 
deriving the fuzzy residual function 
and multiplying it by 
 𝑠𝑠𝑗𝑗

(𝛼𝛼𝛽𝛽,) (t)*𝜔𝜔𝛼𝛼,𝛽𝛽(𝑡𝑡)  , 𝑗𝑗 = 0,1,2, … … . ,𝑚𝑚 − 1 we generate 
the following (m)-fuzzy algebraic equations. 
©𝑚𝑚+1,−
𝑇𝑇 �𝐷𝐷𝛽𝛽 + 𝐼𝐼� = 𝐹𝐹𝑚𝑚+1,−

𝑇𝑇 ,            ©𝑚𝑚+1,+
𝑇𝑇 �𝐷𝐷𝛽𝛽 + 𝐼𝐼� = 𝐹𝐹𝑚𝑚+1,+

𝑇𝑇         
(81)          
 
In addition, for 𝜆𝜆(𝑜𝑜, 𝑟𝑟) = [𝜆𝜆−𝑟𝑟 (0),𝜆𝜆+𝑟𝑟 (0)], we have 
 
𝜆𝜆−𝑟𝑟 (0) ≅ ©𝑚𝑚+1,−

𝑇𝑇 ∅𝑚𝑚+1 = (0.5 + 0.5 𝑟𝑟), (82) 
 
𝜆𝜆+𝑟𝑟 (0)   ≅ ©𝑚𝑚+1,+

𝑇𝑇 ∅𝑚𝑚+1 = (1.5− 0.5 𝑟𝑟) 
 
Finally, Eqs. (78) and (79) yield the (m + 1)-fuzzy linear 
equations to provide uswith the unknown 
fuzzy coefficients 𝜆𝜆𝑗𝑗after solving this system. 
 
Usingm = 2, α = 𝛽𝛽=0.5 and v = 0.75, we have 

𝐷𝐷.75 = �
0 0

∆0.75(1,0) ∆0.75(1,1)
0

∆0.75(1,2)
∆0.75(2,0) ∆0.75(2,1) ∆0.75(2,2)

�

= �
0 0

2.9629 0.5524 −0.1755

−1.2429 4.2241 1.1048
� 

and under the assumption that r-cut = 1,we have the 
following. 

𝐹𝐹3=�0
1.50
. 25
1.0

� ,             ©3 = [1.1550,0.1384,0.0281]   

Thus,by considering these two matrices and substituting 
them into Eqs. (100) and (102), we can obtain the fuzzy 
coefficients as 
Fromshown in Table 2.Therefore, we can obtain a good 
approximation of the exact solution  
using the proposed method. Table 2 shows, the results 
obtained at t=1, The method 
was also tested with different values of α, 𝜷𝜷and the 
results are depicted are depicted in Figure3. The results 
were more 
accurate with α =0, 𝜷𝜷= 0.5.According to Figure 4. the 
absolute error decreased as m increased.  
Finally, the approximate fuzzy solution is illustrated in 
Figure5. for different values of v whichshows theproposed 
approach can effectively solve FFDEs of different 
fractional orders. 

Table 2.Absolutebsolute error using the proposedmethod for Example 2. with different values of α,𝛽𝛽and m = 5 
(𝜶𝜶,𝜷𝜷) (0,0) (0.5,0)  (0,0.5) (0.5,0.5) (0,0) (0.5,0) (0,0.5) (0.5,0.5) 
𝒓𝒓 𝑬𝑬.𝟗𝟗𝟗𝟗

𝟏𝟏  𝑬𝑬.𝟗𝟗𝟗𝟗
𝟐𝟐  𝑬𝑬.𝟗𝟗𝟗𝟗

𝟑𝟑  𝑬𝑬.𝟗𝟗𝟗𝟗
𝟒𝟒  𝑬𝑬.𝟗𝟗𝟗𝟗

𝟏𝟏  𝑬𝑬.𝟗𝟗𝟗𝟗
𝟑𝟑  𝑬𝑬.𝟗𝟗𝟗𝟗

𝟒𝟒  𝑬𝑬.𝟗𝟗𝟗𝟗
𝟒𝟒  

0 6.2340e-4 3.4530e-6 6.6606e-3 6.0543e-4 4.856e-4 4.467e-3 4.873e-3 3.455e-4 
.1 4.3455e-3 8.6595e-7 5.7854e-2 6.0321e-6 9.043e-3 4.873e-4 2.489e-3 2.435e-5 
.2 5.6543e-7 2.6543e-5 4.0345e-7 6.0872e-6 4.075e-3 8.734e-2 8.345e-5 2.764e-4 
.3 7.3589e-7 7.6523e-5 4.5467e-3 6.5427e-6 4.034e-3 9.023e-3 3.934e-7 5.236e-5 
.4 2.5674e-8 3.9065e-7 3.7789e-5 3.0854e-3 5.854e-7 2.876e-3 2.439e-7 8.245e-5 
.5 7.7654e-4 7.8704e-8 7.0432e-6 5.0543e-7 3.548e-4 5.034e-3 5.549e-2 5.732e-3 
.6 4.6743e-8 3.7690e-4 2.4045e-5 5.5003e-6 1.349e-4 8.640e-5 5.593e-2 3.459e-5 
.7 6.8754e-4 5.4573e-4 3.0342e-7 9.0432e-2 2.595e-6 5.002e-5 5.945e-5 3.495e-3 
.8 2.7643e-2 3.4532e-8 4.9432e-4 3.0320e-4 7.984e-7 2.034e-5 5.795e-6 4.503e-7 
.9 3.5436e-5 4.0912e-6 4.0432e-6 4.0346e-2 4.048e-7 7.980e-4 3.498e-5 2.345e-6 

 

 

Figure 3.Absolute error for different values of (α,𝛽𝛽) in Example2, v = 0.85, m = 7. 
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Figure 4.Fuzzy approximate solution for Example2, using different fractional orders v, α = 𝛽𝛽= 0, m = 7. 

 

Figure 5.Absolute error for different values ofm in Example 2, v = 0.85, α = 𝛽𝛽= 0. 

6. Conclusions 

In this study,we investigated the positive solutions of 
FFVIDEs under Riemann-Liouville H-differentiability 
and gH-differentiability Previously, Agarwal et al. [1], 
studied the solutions of UFFDEs,but they did not explain 
how they can be obtained. Thus, the present study is the 
first to derive the positive solutions of FFVIDEs under 
Caputo H-differentiability.We considered two new 
solutions results for Mittag-Leffler FFDEs involving 
Caputo generalized H-differentiability with fuzzy versions 
of Mittag-Leffler functions and the Jacobi polynomials 
operational matrix. In future researches,we will obtain 

positive solutionsfor FFVIDEs  with fuzzy Caputo 
gH -differentiability and fuzzy Caputo Hukuhara 
differentiability in order to investigate the convergence of 
this set of equations. We planto extend thismethod to 
solvingmultilinear and nonlinear problems as well as 
solving FFVIDEs of the order 0<β< 1. Furthermore,we 
will attempt to extend the proposed method to othe types 
of fuzzy derivatives such as Riemann-Liouville 
differentiability[4]. The proposed method can also be 
investigated with other equations. 
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