
IJCSNS International Journal of Computer Science and Network Security, VOL.18 No.2, February 2018

1

Manuscript received February 5, 2018

Manuscript revised February 20, 2018

Enhancing the Security of Over-The-Air-Activation of LoRaWAN

Using a Hybrid Cryptosystem

Kevin Feichtinger†, Yuto Nakano††, Kazuhide Fukushima†† and Shinsaku Kiyomoto††

KDDI Research, Inc.

2-1-15 Ohara, Fujimino-shi, Saitama, 356-8502 JAPAN

Summary
The Internet of Things (IoT) pursues the objective to connect

daily used devices to the web and support humans in their

everyday life. Most IoT devices like sensors and cameras are

optimized for low power consumption and sometimes spread

over many kilometers, which makes different communication

protocols necessary than WiFi or ZigBee. Low Power Wide Area

(LPWA) networks organize low-power devices in energy

efficient networks while allowing these devices to be spread and

move over an enormous geographical area. One of the

established communication protocols for long-range

communication in LPWANs is LoRaWAN, which is optimized

for battery-powered end devices. In this paper, the LoRaWAN

join procedures are investigated, and possible threats to joining

devices are shown. This paper proposes an extension of the Over-

The-Air-Activation join procedure of LoRaWAN to enhance the

security of the unencrypted join-request, using a hybrid

cryptosystem. Furthermore, this paper considers advantages and

disadvantages of possible hardware or software implementations

and investigates the current specification of LoRaWAN and the

payload size differences of LoRaWAN regional parameters to

ensure the feasibility of the proposed extension.

Key words:
Internet of Things (IoT), Low Power Wide Area Networks

(LPWAN), LoraWAN, Over-The-Air-Activation (OTAA), Hybrid

Cryptography

1. Introduction

The Internet of Things (IoT) describes the connection of

everyday objects to the web to realize home and industrial

automation or simplifying monitoring, health care and

energy supply [1]. Engaged devices such as sensors,

cameras and microphones collect and exchange personal

data for supporting humans in their daily life, which makes

secure communication the most valuable asset in IoT [1,2].

Most of these devices are optimized for low power

consumption but spread over an enormous geographical

area, which makes other communication protocols with

different topologies than common IoT protocols like WiFi

or ZigBee necessary. One technology which offers secure

communication protocols and organizes wide spread

devices in energy efficient networks is Low Power Wide

Area (LPWA) [2-4]. For LPWA multiple communication

protocols exist, which each is optimized for its

applications

[3,4]. A proven LPWA long range communication

protocol is LoRaWAN [5], which is optimized for battery

powered end devices and organizes participating devices

in a star-of-stars topology. LoRaWAN is based on the

physical LoRa protocol, which allows end devices to be

distributed over many kilometers [2-4].

LoRaWAN is an open specified communication protocol,

which operates in different ISM spectra. Depending on the

deployed area, LoRaWAN uses a different band, which

changes the available data rates for transmission [6,7]. The

protocol supports a symmetric cryptosystem to secure the

communication after a successful join. LoRaWAN end

devices have to join the network either via Over-The-Air-

Activation (OTAA) or Activation-By-Personalization

(ABP) before they can send data through the network.

During the join process of OTAA, the data is unencrypted,

which exposes the join-request to malicious nodes. A

joining end device sends a join-request to the LoRa

network, such that the network can validate if the device is

authorized to participate in the network. An adversary

might eavesdrop and exploit the information in the request

to perform certain attacks to the LoRaWAN network. A

hybrid cryptosystem can solve this problem.

A hybrid cryptosystem [8] provides that the advantages of

an asymmetric cryptosystem and a symmetric

cryptosystem be linked together. An asynchronous

cryptosystem is much slower than a synchronous

cryptosystem but therefore offers the best security because

it uses two different keys for encryption and decryption.

Most practical hybrid cryptosystems are used to distribute

session keys and encrypt data with the symmetric

cryptosystem. Usually, a hybrid cryptosystem includes the

following steps:

1) The sender obtains the public key of the receiver.

2) The sender generates a symmetric key for encrypting

future messages.

IJCSNS International Journal of Computer Science and Network Security, VOL.18 No.2, February 2018

2

3) The sender encrypts the symmetric key with the

public key of the receiver.

4) The sender transfers the encrypted symmetric key to

the receiver.

5) The receiver decrypts the symmetric key with its

private key.

6) The sender and the receiver encrypt further messages

with the now shared symmetric key.

7) Encrypting the symmetric key by the receiver's public

key solves the key management problem of storing the

symmetric key somewhere on the device. By using a

hybrid cryptosystem for key distribution, the initiator

generates a new symmetric key (session key) whenever a

new communication session begins and destroys it when

the connection terminates [8]. In some implementations,

the initiator also includes a data message in the first

package to start the communication with the first message.

The initiator encrypts the data by the generated session key.

8) This paper proposes an enhancement to the OTAA

join procedure of LoRaWAN. The proposed handshake

uses a hybrid cryptosystem to encrypt the join-request of

the OTAA process to counteract known threats to the

LoRaWAN network.

9) The rest of the paper is organized as follows. Section

2 introduces the two join procedures of LoRaWAN and

presents possible threats to the proceedings. Section 3

introduces an extended OTAA handshake using a hybrid

cryptosystem to encrypt the join-request. Section 4

discusses the feasibility of the new handshake considering

the current specification of LoRaWAN and its regional

parameters and differences between hardware and

software implementations. The proposed handshake and its

implementation requirements are evaluated in section 5.

Finally, section 6 concludes the paper and outlines future

work.

2. Join procedures in LoRaWAN

All components of a LoRaWAN [5] network send data via

a gateway to the receiver. A gateway has only simple tasks.

It mainly passes the information through to the network

server or the end device. The network server is the

intelligent entity in the network, which validates all join-

requests and sends the personalized information to the end

device if it is allowed to participate in the network [9,10].

It also gets all the data sent by the end devices and

application servers and forwards them to the correct

application server or end device. A symmetric encryption

scheme secures the communication between the network

server and the end devices after the devices successfully

joined the network.

End devices have to join the network by personalization

and activation. Every end device has to repeat this

personalization and activation process when it loses its

personalized information, it is reset, or it confirms its

presence in the network, which each end device does at

least once a day [11]. During the join process, an end

device gets equipped with a device address (DevAddr), a

network session key (NwkSKey) and an application

session key (AppSKey). The symmetric cryptosystem uses

this two session keys to encrypt messages, which the

device and the network server exchange and to compute

the message integrity code (MIC) [12]. The network server

uses the DevAddr to identify all packages of the same end

device. For joining the network, two different join

procedures are available. Over-The-Air-Activation [5]

(OTAA) and Activation-By-Personalization [5] (ABP).

2.1 Activation-By-Personalization (ABP)

If a device can join a specific network via ABP, then it is

already equipped with the DevAddr and the session keys

when started. During ABP the two steps of personalization

and activation are done in one step, and the device can

start sending data from the beginning, bypassing the

necessity of a handshake with the network server [13].

When the keys of an ABP device get exposed to the public

network, an attacker can decrypt all the messages of this

end device for the lifetime of the device. Every exposed

session key pair may also compromise the communication

of other ABP end devices in the network. The challenge

for manufacturers is to derive a unique set of session keys

and a unique DevAddr for each produced end device to

avoid compromising the communication of other end

devices if any key or the DevAddr gets exposed [9].

2.2 Over-The-Air-Activation (OTAA)

If a device does not have the required information on

startup, it has to initiate a handshake with the network

server to obtain its DevAddr and the network identifier

(NetID) from the LoRa network. With the NetID the

device can compute the NwkSKey and an AppSKey to

start a secure communication with the network. The

handshake consists of a join-request and a join-accept

message. An end device sends a join-request message via

the gateway to the network server, which then validates

the request. If the end device has the permission to

participate in the LoRaWAN, the server responds with a

join-accept message.

The join-request message consists of an application

identifier (AppEUI), a device identifier (DevEUI) and a

IJCSNS International Journal of Computer Science and Network Security, VOL.18 No.2, February 2018

3

random nonce (DevNonce). Each end device gets shipped

with a DevEUI and an AppEUI, which are eight-byte

identifiers in IEEE EUI64 address space to uniquely

identify the device and the application entity. The DevEUI

is used to assign each join-request to the correct end

device. The AppEUI is used to determine the application

service which processes the join-request frame, to verify if

the device is authorized to join the network. The

DevNonce is a two-byte random value generated by the

end device before initiating the OTAA protocol. Together

with the DevEUI,

Fig. 1 The structure of the join-request in OTAA [5]

the DevNonce value identifies each join-request of the end

device at the network server. The network server keeps

track of the sent DevNonce for each device to find and

reject duplicated join-requests to counteract replay attacks.

Figure 1 shows the 18-byte join-request structure.

Before the device sends the request to the network server,

it signs the join-request with an AES-128 key (AppKey) to

ensure the integrity of the join-request [13]. The join-

request message is not encrypted because the end device

does not have the necessary session keys before sending it

to the network server [2, 13]. The network server checks

the integrity of the received request and validates it. The

network server sends a join-accept message when the

device is allowed to participate in the network. Otherwise,

the server drops the request of the device and does not

send a message to the end device [2]. The join-accept

message contains the necessary information to select a

communication channel, to derive the session keys for

encryption and the unique DevAddr to tag messages from

the end device. The server sends the join-accept message

encrypted by the AppKey to the end device.

2.3 Vulnerabilities in the OTAA handshake

The OTAA handshake is considered a secure way to

authenticate end devices since each end device derives a

unique set of session keys each time the device connects to

the network [9]. The problem with the current OTAA

handshake is that the join request is sent unencrypted via

the exposed network. An adversary can easily eavesdrop

the join-request and extract the containing values perform

any attack to the network. According to [7], an

eavesdropper might find out how the attacked network is

structured and perform specific attacks to the network

because the attackers can collect and analyze all join-

requests in their target area.

Another problem appears with the algorithm to generate

the random identification value. In [7] the authors noticed

that the seed pool for the random number generation gets

smaller if the end device becomes stationary. In [11] the

authors showed that within one year the procedure would

generate an already used random number because an end

device has to re-join the network once a day. Both cases

result in an algorithm, which only generates a constant

number after a sufficient amount of time. A constant

number causes problems with the joining procedure

because the network server keeps track of the last sent

random values per end device and drops requests with the

same random value to countermeasure a replay attack. A

replay attack describes the re-sending of collected join-

requests to the network server to either claim to be the

original device or to force the network server to drop the

requests of the initial device. Moreover, a malicious node

may collect all sent join-requests from the end device to

hack the random number generator to generate new join-

requests, using the DevEUI and the AppEUI of the

attacked device [11].

In [14] an experiment showed, how easy it is to perform a

replay attack. Therefore, the authors eavesdropped the

join-request, extracted the DevNonce random value and

sent them to the network server after a sufficient amount

of time. The problem is that there is no timing information

available in the request package. An attacker can exploit

the collected DevNonce values to send already used join-

request again to the network server, which cannot validate

the time of the message and processes them again. If the

attacker collected enough join-requests, the attack might

cause a DoS for the original device, or the attacker joins

the network replacing the original device [9, 14].

A similar attack is a wormhole attack [15], where an

adversary forwards packages to another node, which is

located in a different part of the network. In LoRa

networks this attack can be used to replace a valid end

device with a malicious one from a different part of the

network or to perform a replay attack to cause a DoS to the

original device without replacing it. According to [9], two

devices are used to realize a wormhole attack. The first

node pretends to be a gateway to a certain network and

collects all join-requests of an attacked device and

forwards them to the second node. This second node sends

the received join-requests to the network server, via a real

gateway and connects to the network. The original device

does not receive any messages and sends the request again

to the network. The malicious gateway again collects the

sent request to extend the DoS and forwards them to the

second node. The second node then uses the requests to

reconnect to the real network.

The described threats to the OTAA join procedure exploit

the unencrypted join-request to either disconnect devices

IJCSNS International Journal of Computer Science and Network Security, VOL.18 No.2, February 2018

4

from the network or to smuggle malicious nodes into the

network. Most deployed end devices join a LoRa network

via OTAA, therefore encrypting the join-request message

would enhance the security of OTAA and LoRaWAN.

3. Paragraphs and Itemizations

LoRaWAN devices already implement an AES algorithm,

which the end devices and the network server use to

decrypt respectively encrypt the join-accept message and

to encrypt messages after a successful join to the network.

When the end device and the network server also

implement an asynchronous cryptosystem, it can be

combined with the existing synchronous cryptosystem to

enable a hybrid cryptosystem. The proposed extension

uses a hybrid cryptosystem to encrypt the join-request of

OTAA before the end device transfers the request to the

network server for validation. Similar to the current join

procedure, the new handshake then is executed between

the end device and the network server. The gateway has

the same responsibilities as before and passes the

messages through to the network server or the end device.

The network server implements the decryption function

and generates the key pair for the asynchronous

cryptosystem. The network server provides the public key

to all end devices, which want to join the LoRa network.

End devices implement a corresponding encryption

function to encrypt packages with the public key to

complete the hybrid cryptosystem. An end device must

obtain the public key from the network server to start the

new handshake. Each end device is equipped with a

unique 128-bit AES key (AppKey), which end devices use

to encrypt the generated join-request. The devices use the

public key of the network server to encrypt the AppKey.

After the network server received these two encrypted

messages, it decrypts the join-request and validates it

according to the OTAA process. The new join procedure

now includes the following steps to connect to a LoRa

network:

1) The end device connects to the network server to

request the public key of the server (communication-

request).

2) The network server transfers the public key to the end

device (communication-accept).

3) The end device creates the join-request for OTAA and

encrypts the request with its AppKey and the AppKey

with the received public key from the network server.

4) The end device transfers the encrypted join-request

and the encrypted AppKey separately to the network

server.

5) The network server decrypts the AppKey using its

private key and decrypts the join-request with the just

decrypted AppKey.

6) The network server validates the join-request and

creates a join-accept message if applicable and sends

it encrypted by the AppKey to the end device.

Figure 2 shows the extended handshake between the end

device and the network server. Grey shaded boxes

highlight additional or altered messages of the new

handshake.

The handshake adds the communication-request, the

communication-accept and the encrypted AppKey

message to the join procedure. The join-request message is

now transferred encrypted to the network server. The

communication-request is a small package from the end

device, which the network server acknowledges by

sending the public key in the communication-accept

package. The end device again confirms the receipt of the

public key, when it sends the encrypted join-request. The

requested acknowledgements ensure that each end device

receives the

Fig. 2 The new join procedure using a hybrid cryptosystem

public key of the network server. The new handshake

enhances the security of the join-request and the AppKey

by encrypting them by different keys and sending them

separately to the network server. Simultaneously the

handshake reduces the number of exchanged messages

between the end devices and the network server, by

sending the encrypted join-request and the encrypted

AppKey without requesting an acknowledgement to the

network server because the end device will receive a join-

accept message if it is allowed to participate in the

network. End devices use the AppKey as the symmetric

key for the new handshake to bypass the need for

generating a new symmetric key, which benefits power

and computational constrained end devices.

IJCSNS International Journal of Computer Science and Network Security, VOL.18 No.2, February 2018

5

4. Implementation Requirements

While executing the new handshake the end device and the

network server exchange the encrypted join-request, the

encrypted symmetric key and the public key, using the

communication-request and communication-accept

messages. These communication packages must satisfy the

specification of LoRaWAN and should be as small as

possible to transfer these packages with any data rate

offered by the regional ISM band used by LoRaWAN.

Each end device and the network server must also

implement an asynchronous cryptosystem to complete the

hybrid cryptosystem to enable the proposed handshake.

4.1 The LoRaWAN package specification

LoRaWAN [5] distinguishes between uplink messages,

where the end device sends messages to the network server,

and downlink messages, where the network server sends

messages to the end device. Following each uplink

transmission, the end device opens two short receive

windows for downlink transmissions. If the network server

plans to send data to the end device, it will always initiate

the transmission at the beginning of one of those two

transmission windows. The frequency and the used data

rate can be modified through MAC commands. Uplink and

downlink messages use the LoRa radio packet explicit

Fig. 3 The package format of LoRaWAN for uplink messages [5]

mode, where the LoRa physical header (PHDR) and a

header CRC (PHDR CRC) are included in each packet.

Figure 3 shows the packet specification of LoRaWAN for

uplink messages, which all messages from the end device

must satisfy.

Uplink messages add a payload CRC at the end of each

message to ensure the integrity of the transferred physical

payload (PHYPayload). Downlink messages do not

contain a payload CRC in the physical layer (PHY Layer)

to keep messages from the network server as short as

possible. The payload of the physical layer (PHYPayload)

contains a MAC message header (MHDR), the payload

(MACPayload) and a message integrity code (MIC). The

length of the MACPayload is region specific and contains

the frame header (FHDR), an optional port field (FPort)

and the application payload (FRMPayload). The FHDR

contains the device address (DevAddr), a frame control

field (FCtrl), a frame counter (FCnt) and an optional frame

options field (FOpts).

The FHDR is used to identify the sender of the package, to

number the packages and to administrate the connection

by setting control bits and exchanging MAC commands.

MAC commands are never visible to the application of the

end device or the application server and exchanged either

piggybacked in the FOpts field or instead of the

FRMPayload between the end device and the network

server. If the FHDR contains a FRMPayload, the FPort

field is set to an application specific non-zero value. If the

FRMPayload only contains MAC commands the FPort

field must be zero. The MHDR defines the message type

of the package. LoRaWAN knows seven different message

types: join-request, join-accept, unconfirmed data for

uplink and downlink messages, confirmed data for uplink

and downlink messages and proprietary messages.

Proprietary messages are used to support message formats,

which cannot be realized with the other message types.

The network server and the end device must have a

common understanding of the message format extension to

use this message type. For the encrypted join-request and

the encrypted symmetric key, an unconfirmed data

package offers the proposed behavior of reducing the

number of exchanged messages. For transferring the

communication-request and the public key

(communication-accept), a confirmed data package offers

the best security and triggers the intended

acknowledgement messages by the receiver. To create an

acknowledgement, message the receiver sets the

acknowledgement bit (ACK) in the FCtrl in the next

message it sends to the sender. An acknowledgement

message is only sent once in response to the latest message

and never retransmitted.

End devices and network servers follow different policies

if they do not receive an acknowledge package for their

messages. An end-device might have lost the connection to

the network, which means that it has to lower its data rate

to regain connectivity to the network and resend the lost

packet. The network server considers the end device as

unreachable and does not apply any further actions and

resends the packet. If the maximum number of

retransmissions is reached, the end device and the network

server can decide if the message in question is

retransmitted again or forfeit. During the new handshake,

the end device transfers the communication-request as a

confirmed package to the network server, which means

that the network server has to transfer the public key as an

acknowledge package to each end device. If the end device

does not receive the public key, the device resends the

communication-request. The end device confirms the

receipt of the public key, by sending the encrypted join-

request as an acknowledge package. The network server

IJCSNS International Journal of Computer Science and Network Security, VOL.18 No.2, February 2018

6

cancels the connection process if it does not receive an

acknowledgement, and the end device has to restart the

handshake.

The engaged devices must recognize the new involved

messages as valid LoRa packages. Therefore, the newly

introduced messages are transferred either as the

MACPayload of a message or as the FRMPayload of a

container message. The receiver of the message must be

able to distinguish between the different messages either

from the package header or by the total amount of

transmitted data. In the current LoRaWAN specification

the message type code 110 is not used. The new handshake

uses it to identify the communication-request at the

network server and the communication-accept at the end

device. The new message type is named communication-

start and triggers the same behavior as a confirmed data

package to force the receiver to confirm the receipt of the

message by the next package of the handshake. The

network server has to assign a temporary DevAddr to each

end device, which wants to join the network because it has

to recognize related packages of the same end device. The

device will receive the real DevAddr for the

communication in the join-accept message. Each message

which contains a FPort field must set it to a non-zero value

to indicate a non-empty FRMPayload. The different fields

of the packet structure for each new packet are set as

follows:

communication-request: The communication-request

message uses the new message type communication-start

to let the network server recognize the sender as a new end

device. The MACPayload of the package contains an

eight-byte random value and the DevEUI of the device, to

identify the request and to give the network server a

possibility to counteract replay attacks by keeping track of

the DevEUI and the random values. The MIC value for the

PHYPayload is computed as listed in the equations (1) and

(2) to ensure the integrity of the message.

mic = (DevEUI | MHDR) ⊕ random (1)

MIC = mic[0. .3] (2)

communication-accept: The communication-accept

message type is communication-start to identify the

response of the network server. The FRMPayload contains

the public key of the network server, and the FHDR

includes a temporary DevAddr, which the network server

uses to assign the next messages to this end device. The

ACK bit in the FHDR is set to acknowledge the receipt of

the communication-request. The MIC value for the accept

is computed as listed in the equation (3), using the first 16

bytes of the public key (pk) to ensure the integrity of the

communication-accept. As in the request, four bytes are

used for the MIC field, as displayed in equation (2).

cmac = aes128cmac(pk[0. .15], MHDR | FHDR |

FPort | FRMPayload) (3)

encrypted join-request: The end device generates a join-

request, which it encrypts with the AppKey. A container

package carries the encrypted join-request as the

FRMPayload to the network server. The message type in

the MHDR of the container message is set to an

unconfirmed uplink message and the DevAddr field in the

FHDR is set to the received temporary DevAddr. The

ACK bit in the FCtrl field of FHDR is set to one to

confirm the receipt of the public key. The MIC of the

container message is computed as in equation (3) and set

as in equation (2).

encrypted AppKey: The encrypted AppKey is transferred

as the FRMPayload of another container message. The

message type in the MHDR is again an unconfirmed

uplink message, and the DevAddr field in the FHDR is set

to the temporary address. The ACK bit is set to zero

because the encrypted join-request confirmed the last

message from the network server. The MIC of the message

is computed and set as in the equations (3) and equation

(2).

4.2 Regional data rate and payload differences

LoRaWAN supports various data rates for each supported

ISM band. The data rate defines the maximal

MACPayload size transmitted in each packet [6]. In the

beginning, the LoRa network enables end devices to

choose any available data rate for their connection, and the

network tries to use the fastest possible data rate to

connect to an end device. To manage the data rates to

different end devices and to optimize the communication

channels, the network can adapt the data rates, by a

technique called adaptive data rate (ADR). When ADR is

enabled, each end device can request an evaluation of the

connection by setting the ADR field in the FCtrl field of

the FHDR. The network server then may

Table 1: Minimal and Maximal MACPayload size in different regions [6]

Band
Min MACPayload Max MACPayload
Size

[byte]
Data
Rates

Size
[byte]

Data
Rates

EU 433 MHz 59 0, 1, 2 230 4, 5, 6, 7
EU 863-870 MHz 59 0, 1, 2 230 4, 5, 6, 7
US 902-928 MHz 19 0 250 3, 4
CN 470-510 MHz 59 0, 1, 2 230 4, 5
CN 779-787 MHz 59 0, 1, 2 250 6
KR 920-923 MHz 73 0 250 2, 3, 4, 5

AS 203 MHz 59 0, 1, 2 230 5, 6, 7
AU 915-928 MHz 19 0 250 3, 4

adapt the current data rate to a lower or higher data rate.

Lower data rates benefit the battery life of the end device

but also lowers the amount of data transferred at each

connection. Faster data rates enable bigger data packets,

but therefore reduces the reliability of the connection and

IJCSNS International Journal of Computer Science and Network Security, VOL.18 No.2, February 2018

7

may cause retransmissions. Table 1 shows the minimal and

maximal MACPayload size in bytes and the corresponding

data rates for each ISM band defined in [6].

The available space for the FRMPayload in the

MACPayload depends on the FHDR and the FPort. The

size of the FHDR varies between seven and 22 bytes

because it contains the piggybacked MAC commands in

the FOpts field. The size of the FPort is fixed to one byte.

The rest is available for the FRMPayload. If the total size

of the MACPayload exceeds the maximal transmission

load of the applied data rate, the package must be split into

multiple packages before it can be transferred to the

receiver. For downlink messages, LoRaWAN supports a

mechanism to divide the package into multiple smaller

ones. Therefore, the network server sets the frame-pending

bit in the FCtrl field of the FHDR to notify the end device

that it has to open another receive window as soon as

possible to receive the next data packet from the network

server. For uplink messages, no such mechanism is

available, which makes an adoption to a higher data rate

necessary to transfer the data in one packet to the network

server.

The total size of the new message packages depends on the

transferred MAC commands and the key size of the

implemented asynchronous cryptosystem. The security of

the used cryptosystem depends on the used key size, which

causes a tradeoff between security and package size

because a too small key size may cause problems for the

safety of the LoRa network, but a to big key size may be

impossible to transfer via a lower data rate. According to

[16] the minimal key size for secure communication is

2048 bit for RSA encryption, and 224 bit for Elliptic

Curve Cryptography (ECC). ECC enables the same

security as RSA with shorter keys, which makes it a great

alternative for resource constrained applications. To ensure

the same level of security as AES-128, a key length of

3072 bit for RSA and 256 bit for ECC are necessary [16,

17]. RSA-2048, RSA-3072, ECC-224 and ECC-256, are

used to approximate the MACPayload size of the new

messages for different cryptosystems. The findings of [17]

are used to approximate the length of the resulting chipper

text for each

Table 2: MACPayload size range in bytes for different cryptosystems

 RSA-
3072

ECC-
256

RSA-
2048

ECC-
224

communication-
request 16 16 16 16

communication-
accept 264-279 36-51 392-407 40-55

encrypted join-
request 40-55 40-55 40-55 40-55

Encrypted
AppKey 264-279 63-78 392-407 70-85

cryptosystem. Table 2 lists the resulting package size

range in bytes for each cryptosystem and each packet.

The communication-request has a constant length because

the request itself is transferred as the MACPayload and no

FHDR is present. The encrypted join-request does not

depend on the used asynchronous cryptosystem, so the size

range is constant for all four cryptosystems because the

join-request gets encrypted by the 128-bit AES key of the

end device. The total payload size of the communication-

accept and the encrypted AppKey varies because of the

key size differences of the four asymmetric cryptosystems.

As seen in table 2, LoRaWAN has to split the packets of

the RSA algorithm to transfer the public key and the

encrypted AppKey. Since uplink messages cannot be

divided, it is impossible to transfer the encrypted AppKey

to the network server, which makes RSA inapplicable for

the extension. Because of the required security strength,

which should be comparable with AES-128, and the

limited MACPayload length, an ECC-256 algorithm is the

only available algorithm to implement the asynchronous

cryptosystem for the new handshake.

4.3 Implementing the asynchronous cryptosystem

The asynchronous cryptosystem extension for the end

devices and the network server can be implemented either

in hardware or software. The end devices must only

implement the encryption function and the network server

only the key generation and the decryption function of the

asynchronous cryptosystem because it is only used to

transfer the symmetric key from the end device to the

network server. In [18], the authors implemented a hybrid

cryptosystem as a blend of hardware and software. They

implemented the asynchronous encryption scheme as

software and the symmetric cryptosystem as hardware to

enhance the performance of the hybrid cryptosystem. In

[19], an efficient hybrid cryptosystem using AES and ECC

was implemented using hardware and software. The

authors optimized the most complex operations to

hardware and implemented the rest in software to enhance

the performance of the cryptosystem. However, in [20] the

authors analyzed performance and energy consumption

differences between a hardware and a software

implementation of RSA. They found that the hardware

solution is approximately 88 times faster and up to 70

times less energy consuming than the software

implementation when the algorithm uses a 2048-bit key. In

[21] the performance differences between ECC and RSA

are investigated, and the authors found that ECC is faster

as RSA when the manner of implementation is the same.

Since LoRaWAN is a LPWAN communication protocol,

and some end devices have computational constraints,

which must remain fulfilled, further deployed end devices

IJCSNS International Journal of Computer Science and Network Security, VOL.18 No.2, February 2018

8

should be extended with a hardware implementation of the

asynchronous encryption function. Several hardware

implementations of ECC exist on the market and fit the

requirements of the new handshake [22]. The problem is

that a hardware extension is expensive and it hardly can be

ported to already deployed end devices. A software

extension for already deployed end devices solves that

problem. For the network server, a hardware and a

software extension are acceptable because the network

server does not have those high computational constraints,

and should have enough processing power to perform the

additional overhead of decrypting the encrypted join-

requests and the symmetric key. Nevertheless, a hardware

implementation should be preferred because a hardware

solution can be encapsulated into a tamper resistant box to

secure the decryption function and the key pair [20].

5. Evaluation

The proposed extension encrypts the join-request of the

OTAA procedure before a joining end device transfers it to

the network server for validation. Encrypting the join-

request enhances the robustness of LoRaWAN against

replay or wormhole attacks because it makes malicious

nodes unable to eavesdrop the identifiers and random

values in the join-request or to decrypt the join-accept

message. During a wormhole attack, a malicious node can

still transfer eavesdropped requests in a different part of

the network, but the second node cannot decrypt the

encrypted join-request because of the missing key, which

makes wormhole attacks much more unappealing. During

the communication-request, the handshake transfers the

DevEUI unencrypted through the network. When the node

would eavesdrop the communication-request and forward

it to a second node or the network server, the attacker

would receive the public key of the network server, but the

attacker would not be able to create a valid join-request

because the adversary also needs the AppEUI to create a

valid join-request. The AppEUI is kept a secret on the

device and only transferred encrypted to the network

server, which makes it impossible to misuse the identifier

for any attack. A drawback of encrypting the join-request

is that the new join-request is approximately 2.2 to 3.05

times bigger than the original request, and more data has to

be transferred until the device can participate in the

network, but the benefit of a secure authentication for

OTAA surpasses this drawback.

6. Conclusion

In this paper, the two join procedures of LoRaWAN were

investigated, and potential threats to both proceedings

were presented. An extension to the existing Over-The-

Air-Activation (OTAA) authentication process was

introduced which uses a hybrid cryptosystem to encrypt

the join-request. The hybrid cryptosystem uses the already

implemented symmetric cryptosystem and the existing

AppKey to encrypt the join-request of OTAA. The

asynchronous cryptosystem is used to share the symmetric

key with the network server. The handshake got evaluated,

and further investigations of the specifications of

LoRaWAN were made to ensure the technical feasibility

of the extension. Also, the regional differences of

LoRaWAN were taken into account to ensure that the

extension can be deployed in all supported ISM bands. For

the future, the presented handshake must be implemented

and evaluated in a test scenario to compare its performance,

and its security properties to the current OTAA join

procedure. Furthermore, a replacement of the DevEUI in

the initial communication-request and extending the join-

request with timing information is subject to further

research.

References
[1] A. Zanella, N. Bui, A. Castellani, L. Vangelista, and M.

Zorzi, “Internetof things for smart cities,” IEEE Internet of

Things Journal, vol. 1, no. 1, pp. 22–32, Feb 2014.

[2] D. Dragomir, L. Gheorghe, S. Costea, and A. Radovici, “A

survey on secure communication protocols for IoT systems,”

in 2016 International Workshop on Secure Internet of

Things (SIoT), Sept 2016, pp. 47–62.

[3] U. Raza, P. Kulkarni, and M. Sooriyabandara, “Low power

wide area networks: An overview,” IEEE Communications

Surveys Tutorials, vol. 19, no. 2, pp. 855–873,

Secondquarter 2017.

[4] “LoraWAN what is it? - a technical overview of LoRa and

LoRaLAN,” LoRa Alliance, Tech. Rep., 11 2015. [Online].

Available: https://www.lora-alliance.org/lorawan-white-

papers

[5] LoRaWAN Specification, LoRa Alliance, Inc., 7 2016,

v1.0.2.

[6] LoRaWAN Regional Parameters, LoRa Alliance, Inc., 7

2016, v1.0.

[7] G. Margelis, R. Piechocki, D. Kaleshi, and P. Thomas,

“Low throughput networks for the IoT: Lessons learned

from industrial implementations,” in 2015 IEEE 2nd World

Forum on Internet of Things (WF-IoT), Dec 2015, pp. 181–

186.

[8] B. Schneier, Applied Cryptography: Protocols, Algorithms

and Source Code in C. Wiley, 2017. [Online]. Available:

https://books.google.co.jp/books?id=Ok0nDwAAQBAJ

[9] E. Aras, G. S. Ramachandran, P. Lawrence, and D. Hughes,

“Exploring the security vulnerabilities of LoRa,” in 2017

3rd IEEE International Conference on Cybernetics

(CYBCON), June 2017, pp. 1–6.

[10] S. Naoui, M. E. Elhdhili, and L. A. Saidane, “Enhancing the

security of the IoT LoRaWAN architecture,” in 2016

International Conference on Performance Evaluation and

Modeling in Wired and Wireless Networks (PEMWN), Nov

2016, pp. 1–7.

https://www.lora-alliance.org/lorawan-white-papers
https://www.lora-alliance.org/lorawan-white-papers
https://books.google.co.jp/books?id=Ok0nDwAAQBAJ

IJCSNS International Journal of Computer Science and Network Security, VOL.18 No.2, February 2018

9

[11] S. Tomasin, S. Zulian, and L. Vangelista, “Security analysis

of LoRaWAN join procedure for internet of things

networks,” in 2017 IEEE Wireless Communications and

Networking Conference Workshops (WCNCW), March

2017, pp. 1–6.

[12] “LoraWAN security full end-to-end encryption for IoT

application providers,” Alliance, Tech. Rep., 02 2017.

[Online]. Available: https://www.lora-alliance.org/lorawan-

white-papers

[13] R. Miller, “Lora security: Building a secure LoRa solution,”

MWR InfoSecurity, Tech. Rep., 03 2016. [Online].

Available:

https://labs.mwrinfosecurity.com/assets/BlogFiles/mwri-

LoRa-security-guide-1.2-2016-03-22.pdf

[14] S. Na, D. Hwang, W. Shin, and K.-H. Kim, “Scenario and

countermeasure for replay attack using join request

messages in LoRaWAN,” in 2017 International Conference

on Information Networking (ICOIN), Jan 2017, pp. 718–

720.

[15] T. Giannetsos, T. Dimitriou, and N. R. Prasad, “State of the

art on defenses against wormhole attacks in wireless sensor

networks,” in 2009 1st International Conference on Wireless

Communication, Vehicular Technology, Information

Theory and Aerospace Electronic Systems Technology,

May 2009, pp. 313–318

[16] E. Barker, “Recommendation for key management,”

National Institute of Standards and Technology, Tech. Rep.,

01 2016. [Online]. Available:

http://dx.doi.org/10.6028/NIST.SP.800-57pt1r4

[17] B. Alese and E. D Falaki, “Comparative analysis of public-

key encryption schemes,” International Journal of

Engineering and Technology, vol. 2, pp. 1552–1568, 10

2012.

[18] A. Nadjia and A. Mohamed, “AES IP for hybrid

cryptosystem RSA-AES,” in 2015 IEEE 12th International

Multi-Conference on Systems, Signals Devices (SSD15),

March 2015, pp. 1–6.

[19] A. Hafsa, N. Alimi, A. Sghaier, M. Zeghid, and M.

Machhout, “A hardware-software co-designed AES-ECC

cryptosystem,” in 2017 International Conference on

Advanced Systems and Electric Technologies (IC ASET),

Jan 2017, pp. 50–54.

[20] A. S. Alkalbani, T. Mantoro, and A. O. M. Tap,

“Comparison between RSA hardware and software

implementation for WSNS security schemes,” in Proceeding

of the 3rd International Conference on Information and

Communication Technology for the Moslem World

(ICT4M) 2010, Dec 2010, pp. E84–E89.

[21] N. Thiranant, Y. S. Lee, and H. Lee, “Performance

comparison between RSA and elliptic curve cryptography-

based QR code authentication,” in 2015 IEEE 29th

International Conference on Advanced Information

Networking and Applications Workshops, March 2015, pp.

278–282.

[22] H. Houssain, M. Badra, and T. F. Al-Somani, “Hardware

implementations of elliptic curve cryptography in wireless

sensor networks,” in 2011 International Conference for

Internet Technology and Secured Transactions, Dec 2011,

pp. 1–6.

Kevin Feichtinger received the B.Sc.

degree in Computer Science from Johannes

Kepler University in 2016. Currently, he

studies computer science (M.Sc.) at

Johannes Kepler University Linz in Austria.

His major is software engineering.

Yuto Nakano received B.E. and M.E in

Electrical and Electronic Engineering from

Kobe University, Japan in 2006 and 2008,

respectively. He joined KDDI and has been

engaged in the

research on hash functions and stream

ciphers. He is currently a researcher at the

Information Security Lab. of KDDI

Research, Inc.

Kazuhide Fukushima received his M.E. in

Information Engineering from Kyushu

University, Japan, in 2004. He joined

KDDI and has been engaged in the research

on digital rights management technologies,

including software obfuscation and key

management schemes. He received his

Doctorate in Engineering from Kyushu

University in 2009. He worked for NFC

service planning division of KDDI

Corporation during 2012 and 2015. He is currently a research

manager at KDDI Research, Inc. He received the IEICE Young

Engineer Award in 2012. He is a member of Institute of

Electronics, Information and Communication Engineers,

Information Processing Society of Japan, and ACM.

Shinsaku Kiyomoto received his B.E. in

engineering sciences and his M.E. in

Materials Science from Tsukuba University,

Japan, in 1998 and 2000, respectively. He

joined KDD (now KDDI) and has been

engaged in research on stream ciphers,

cryptographic protocols, and mobile

security. He is currently a senior manager at

the Information Security Laboratory of

KDDI Research, Inc. He was a visiting

researcher of the Information Security Group, Royal Holloway

University of London from 2008 to 2009. He received his

doctorate in engineering from Kyushu University in 2006. He

received the IEICE Young Engineer Award in 2004 and IEICE

Achievement Award in 2016, respectively. He is members of JPS

and IEICE.

https://www.lora-alliance.org/lorawan-white-papers
https://www.lora-alliance.org/lorawan-white-papers
https://labs.mwrinfosecurity.com/assets/BlogFiles/mwri-LoRa-security-guide-1.2-2016-03-22.pdf
https://labs.mwrinfosecurity.com/assets/BlogFiles/mwri-LoRa-security-guide-1.2-2016-03-22.pdf
http://dx.doi.org/10.6028/NIST.SP.800-57pt1r4

