
IJCSNS International Journal of Computer Science and Network Security, VOL.18 No.2, February 2018 

 

 

1 

Manuscript received February 5, 2018 

Manuscript revised February 20, 2018 

Enhancing the Security of Over-The-Air-Activation of LoRaWAN 

Using a Hybrid Cryptosystem 

Kevin Feichtinger†, Yuto Nakano††, Kazuhide Fukushima†† and Shinsaku Kiyomoto†† 

 

 
KDDI Research, Inc. 

2-1-15 Ohara, Fujimino-shi, Saitama, 356-8502 JAPAN 

 

Summary 
The Internet of Things (IoT) pursues the objective to connect 

daily used devices to the web and support humans in their 

everyday life. Most IoT devices like sensors and cameras are 

optimized for low power consumption and sometimes spread 

over many kilometers, which makes different communication 

protocols necessary than WiFi or ZigBee. Low Power Wide Area 

(LPWA) networks organize low-power devices in energy 

efficient networks while allowing these devices to be spread and 

move over an enormous geographical area. One of the 

established communication protocols for long-range 

communication in LPWANs is LoRaWAN, which is optimized 

for battery-powered end devices. In this paper, the LoRaWAN 

join procedures are investigated, and possible threats to joining 

devices are shown. This paper proposes an extension of the Over-

The-Air-Activation join procedure of LoRaWAN to enhance the 

security of the unencrypted join-request, using a hybrid 

cryptosystem. Furthermore, this paper considers advantages and 

disadvantages of possible hardware or software implementations 

and investigates the current specification of LoRaWAN and the 

payload size differences of LoRaWAN regional parameters to 

ensure the feasibility of the proposed extension. 
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1. Introduction 

The Internet of Things (IoT) describes the connection of 

everyday objects to the web to realize home and industrial 

automation or simplifying monitoring, health care and 

energy supply [1]. Engaged devices such as sensors, 

cameras and microphones collect and exchange personal 

data for supporting humans in their daily life, which makes 

secure communication the most valuable asset in IoT [1,2]. 

Most of these devices are optimized for low power 

consumption but spread over an enormous geographical 

area, which makes other communication protocols with 

different topologies than common IoT protocols like WiFi 

or ZigBee necessary. One technology which offers secure 

communication protocols and organizes wide spread 

devices in energy efficient networks is Low Power Wide 

Area (LPWA) [2-4]. For LPWA multiple communication 

protocols exist, which each is optimized for its 

applications  

[3,4]. A proven LPWA long range communication 

protocol is LoRaWAN [5], which is optimized for battery 

powered end devices and organizes participating devices 

in a star-of-stars topology. LoRaWAN is based on the 

physical LoRa protocol, which allows end devices to be 

distributed over many kilometers [2-4].  

LoRaWAN is an open specified communication protocol, 

which operates in different ISM spectra. Depending on the 

deployed area, LoRaWAN uses a different band, which 

changes the available data rates for transmission [6,7]. The 

protocol supports a symmetric cryptosystem to secure the 

communication after a successful join. LoRaWAN end 

devices have to join the network either via Over-The-Air-

Activation (OTAA) or Activation-By-Personalization 

(ABP) before they can send data through the network. 

During the join process of OTAA, the data is unencrypted, 

which exposes the join-request to malicious nodes. A 

joining end device sends a join-request to the LoRa 

network, such that the network can validate if the device is 

authorized to participate in the network. An adversary 

might eavesdrop and exploit the information in the request 

to perform certain attacks to the LoRaWAN network. A 

hybrid cryptosystem can solve this problem. 

A hybrid cryptosystem [8] provides that the advantages of 

an asymmetric cryptosystem and a symmetric 

cryptosystem be linked together. An asynchronous 

cryptosystem is much slower than a synchronous 

cryptosystem but therefore offers the best security because 

it uses two different keys for encryption and decryption. 

Most practical hybrid cryptosystems are used to distribute 

session keys and encrypt data with the symmetric 

cryptosystem. Usually, a hybrid cryptosystem includes the 

following steps: 

1) The sender obtains the public key of the receiver.  

2) The sender generates a symmetric key for encrypting 

future messages. 



IJCSNS International Journal of Computer Science and Network Security, VOL.18 No.2, February 2018 

 

2 

 

3) The sender encrypts the symmetric key with the 

public key of the receiver. 

4) The sender transfers the encrypted symmetric key to 

the receiver. 

5) The receiver decrypts the symmetric key with its 

private key. 

6) The sender and the receiver encrypt further messages 

with the now shared symmetric key. 

7) Encrypting the symmetric key by the receiver's public 

key solves the key management problem of storing the 

symmetric key somewhere on the device. By using a 

hybrid cryptosystem for key distribution, the initiator 

generates a new symmetric key (session key) whenever a 

new communication session begins and destroys it when 

the connection terminates [8]. In some implementations, 

the initiator also includes a data message in the first 

package to start the communication with the first message. 

The initiator encrypts the data by the generated session key. 

8) This paper proposes an enhancement to the OTAA 

join procedure of LoRaWAN. The proposed handshake 

uses a hybrid cryptosystem to encrypt the join-request of 

the OTAA process to counteract known threats to the 

LoRaWAN network.  

9) The rest of the paper is organized as follows. Section 

2 introduces the two join procedures of LoRaWAN and 

presents possible threats to the proceedings. Section 3 

introduces an extended OTAA handshake using a hybrid 

cryptosystem to encrypt the join-request. Section 4 

discusses the feasibility of the new handshake considering 

the current specification of LoRaWAN and its regional 

parameters and differences between hardware and 

software implementations. The proposed handshake and its 

implementation requirements are evaluated in section 5. 

Finally, section 6 concludes the paper and outlines future 

work. 

2. Join procedures in LoRaWAN 

All components of a LoRaWAN [5] network send data via 

a gateway to the receiver. A gateway has only simple tasks. 

It mainly passes the information through to the network 

server or the end device. The network server is the 

intelligent entity in the network, which validates all join-

requests and sends the personalized information to the end 

device if it is allowed to participate in the network [9,10]. 

It also gets all the data sent by the end devices and 

application servers and forwards them to the correct 

application server or end device. A symmetric encryption 

scheme secures the communication between the network 

server and the end devices after the devices successfully 

joined the network. 

End devices have to join the network by personalization 

and activation. Every end device has to repeat this 

personalization and activation process when it loses its 

personalized information, it is reset, or it confirms its 

presence in the network, which each end device does at 

least once a day [11]. During the join process, an end 

device gets equipped with a device address (DevAddr), a 

network session key (NwkSKey) and an application 

session key (AppSKey). The symmetric cryptosystem uses 

this two session keys to encrypt messages, which the 

device and the network server exchange and to compute 

the message integrity code (MIC) [12]. The network server 

uses the DevAddr to identify all packages of the same end 

device. For joining the network, two different join 

procedures are available. Over-The-Air-Activation [5] 

(OTAA) and Activation-By-Personalization [5] (ABP). 

2.1 Activation-By-Personalization (ABP) 

If a device can join a specific network via ABP, then it is 

already equipped with the DevAddr and the session keys 

when started. During ABP the two steps of personalization 

and activation are done in one step, and the device can 

start sending data from the beginning, bypassing the 

necessity of a handshake with the network server [13]. 

When the keys of an ABP device get exposed to the public 

network, an attacker can decrypt all the messages of this 

end device for the lifetime of the device. Every exposed 

session key pair may also compromise the communication 

of other ABP end devices in the network. The challenge 

for manufacturers is to derive a unique set of session keys 

and a unique DevAddr for each produced end device to 

avoid compromising the communication of other end 

devices if any key or the DevAddr gets exposed [9]. 

2.2 Over-The-Air-Activation (OTAA) 

If a device does not have the required information on 

startup, it has to initiate a handshake with the network 

server to obtain its DevAddr and the network identifier 

(NetID) from the LoRa network. With the NetID the 

device can compute the NwkSKey and an AppSKey to 

start a secure communication with the network. The 

handshake consists of a join-request and a join-accept 

message. An end device sends a join-request message via 

the gateway to the network server, which then validates 

the request. If the end device has the permission to 

participate in the LoRaWAN, the server responds with a 

join-accept message. 

The join-request message consists of an application 

identifier (AppEUI), a device identifier (DevEUI) and a 
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random nonce (DevNonce). Each end device gets shipped 

with a DevEUI and an AppEUI, which are eight-byte 

identifiers in IEEE EUI64 address space to uniquely 

identify the device and the application entity. The DevEUI 

is used to assign each join-request to the correct end 

device. The AppEUI is used to determine the application 

service which processes the join-request frame, to verify if 

the device is authorized to join the network. The 

DevNonce is a two-byte random value generated by the 

end device before initiating the OTAA protocol. Together 

with the DevEUI, 

 

Fig. 1 The structure of the join-request in OTAA [5] 

the DevNonce value identifies each join-request of the end 

device at the network server. The network server keeps 

track of the sent DevNonce for each device to find and 

reject duplicated join-requests to counteract replay attacks. 

Figure 1 shows the 18-byte join-request structure. 

Before the device sends the request to the network server, 

it signs the join-request with an AES-128 key (AppKey) to 

ensure the integrity of the join-request [13]. The join-

request message is not encrypted because the end device 

does not have the necessary session keys before sending it 

to the network server [2, 13]. The network server checks 

the integrity of the received request and validates it. The 

network server sends a join-accept message when the 

device is allowed to participate in the network. Otherwise, 

the server drops the request of the device and does not 

send a message to the end device [2]. The join-accept 

message contains the necessary information to select a 

communication channel, to derive the session keys for 

encryption and the unique DevAddr to tag messages from 

the end device. The server sends the join-accept message 

encrypted by the AppKey to the end device. 

2.3 Vulnerabilities in the OTAA handshake 

The OTAA handshake is considered a secure way to 

authenticate end devices since each end device derives a 

unique set of session keys each time the device connects to 

the network [9]. The problem with the current OTAA 

handshake is that the join request is sent unencrypted via 

the exposed network. An adversary can easily eavesdrop 

the join-request and extract the containing values perform 

any attack to the network. According to [7], an 

eavesdropper might find out how the attacked network is 

structured and perform specific attacks to the network 

because the attackers can collect and analyze all join-

requests in their target area. 

Another problem appears with the algorithm to generate 

the random identification value. In [7] the authors noticed 

that the seed pool for the random number generation gets 

smaller if the end device becomes stationary. In [11] the 

authors showed that within one year the procedure would 

generate an already used random number because an end 

device has to re-join the network once a day. Both cases 

result in an algorithm, which only generates a constant 

number after a sufficient amount of time. A constant 

number causes problems with the joining procedure 

because the network server keeps track of the last sent 

random values per end device and drops requests with the 

same random value to countermeasure a replay attack. A 

replay attack describes the re-sending of collected join-

requests to the network server to either claim to be the 

original device or to force the network server to drop the 

requests of the initial device. Moreover, a malicious node 

may collect all sent join-requests from the end device to 

hack the random number generator to generate new join-

requests, using the DevEUI and the AppEUI of the 

attacked device [11]. 

In [14] an experiment showed, how easy it is to perform a 

replay attack. Therefore, the authors eavesdropped the 

join-request, extracted the DevNonce random value and 

sent them to the network server after a sufficient amount 

of time. The problem is that there is no timing information 

available in the request package. An attacker can exploit 

the collected DevNonce values to send already used join-

request again to the network server, which cannot validate 

the time of the message and processes them again.  If the 

attacker collected enough join-requests, the attack might 

cause a DoS for the original device, or the attacker joins 

the network replacing the original device [9, 14]. 

A similar attack is a wormhole attack [15], where an 

adversary forwards packages to another node, which is 

located in a different part of the network. In LoRa 

networks this attack can be used to replace a valid end 

device with a malicious one from a different part of the 

network or to perform a replay attack to cause a DoS to the 

original device without replacing it. According to [9], two 

devices are used to realize a wormhole attack. The first 

node pretends to be a gateway to a certain network and 

collects all join-requests of an attacked device and 

forwards them to the second node. This second node sends 

the received join-requests to the network server, via a real 

gateway and connects to the network. The original device 

does not receive any messages and sends the request again 

to the network. The malicious gateway again collects the 

sent request to extend the DoS and forwards them to the 

second node. The second node then uses the requests to 

reconnect to the real network. 

The described threats to the OTAA join procedure exploit 

the unencrypted join-request to either disconnect devices 
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from the network or to smuggle malicious nodes into the 

network. Most deployed end devices join a LoRa network 

via OTAA, therefore encrypting the join-request message 

would enhance the security of OTAA and LoRaWAN. 

3. Paragraphs and Itemizations 

LoRaWAN devices already implement an AES algorithm, 

which the end devices and the network server use to 

decrypt respectively encrypt the join-accept message and 

to encrypt messages after a successful join to the network. 

When the end device and the network server also 

implement an asynchronous cryptosystem, it can be 

combined with the existing synchronous cryptosystem to 

enable a hybrid cryptosystem. The proposed extension 

uses a hybrid cryptosystem to encrypt the join-request of 

OTAA before the end device transfers the request to the 

network server for validation. Similar to the current join 

procedure, the new handshake then is executed between 

the end device and the network server. The gateway has 

the same responsibilities as before and passes the 

messages through to the network server or the end device. 

The network server implements the decryption function 

and generates the key pair for the asynchronous 

cryptosystem. The network server provides the public key 

to all end devices, which want to join the LoRa network. 

End devices implement a corresponding encryption 

function to encrypt packages with the public key to 

complete the hybrid cryptosystem. An end device must 

obtain the public key from the network server to start the 

new handshake. Each end device is equipped with a 

unique 128-bit AES key (AppKey), which end devices use 

to encrypt the generated join-request. The devices use the 

public key of the network server to encrypt the AppKey. 

After the network server received these two encrypted 

messages, it decrypts the join-request and validates it 

according to the OTAA process. The new join procedure 

now includes the following steps to connect to a LoRa 

network: 

1) The end device connects to the network server to 

request the public key of the server (communication-

request). 

2) The network server transfers the public key to the end 

device (communication-accept). 

3) The end device creates the join-request for OTAA and 

encrypts the request with its AppKey and the AppKey 

with the received public key from the network server. 

4) The end device transfers the encrypted join-request 

and the encrypted AppKey separately to the network 

server. 

5) The network server decrypts the AppKey using its 

private key and decrypts the join-request with the just 

decrypted AppKey. 

6) The network server validates the join-request and 

creates a join-accept message if applicable and sends 

it encrypted by the AppKey to the end device. 

Figure 2 shows the extended handshake between the end 

device and the network server. Grey shaded boxes 

highlight additional or altered messages of the new 

handshake. 

The handshake adds the communication-request, the 

communication-accept and the encrypted AppKey 

message to the join procedure. The join-request message is 

now transferred encrypted to the network server. The 

communication-request is a small package from the end 

device, which the network server acknowledges by 

sending the public key in the communication-accept 

package. The end device again confirms the receipt of the 

public key, when it sends the encrypted join-request. The 

requested acknowledgements ensure that each end device 

receives the  

 

Fig. 2 The new join procedure using a hybrid cryptosystem 

public key of the network server. The new handshake 

enhances the security of the join-request and the AppKey 

by encrypting them by different keys and sending them 

separately to the network server. Simultaneously the 

handshake reduces the number of exchanged messages 

between the end devices and the network server, by 

sending the encrypted join-request and the encrypted 

AppKey without requesting an acknowledgement to the 

network server because the end device will receive a join-

accept message if it is allowed to participate in the 

network. End devices use the AppKey as the symmetric 

key for the new handshake to bypass the need for 

generating a new symmetric key, which benefits power 

and computational constrained end devices. 
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4. Implementation Requirements 

While executing the new handshake the end device and the 

network server exchange the encrypted join-request, the 

encrypted symmetric key and the public key, using the 

communication-request and communication-accept 

messages. These communication packages must satisfy the 

specification of LoRaWAN and should be as small as 

possible to transfer these packages with any data rate 

offered by the regional ISM band used by LoRaWAN. 

Each end device and the network server must also 

implement an asynchronous cryptosystem to complete the 

hybrid cryptosystem to enable the proposed handshake. 

4.1 The LoRaWAN package specification 

LoRaWAN [5] distinguishes between uplink messages, 

where the end device sends messages to the network server, 

and downlink messages, where the network server sends 

messages to the end device. Following each uplink 

transmission, the end device opens two short receive 

windows for downlink transmissions. If the network server 

plans to send data to the end device, it will always initiate 

the transmission at the beginning of one of those two 

transmission windows. The frequency and the used data 

rate can be modified through MAC commands. Uplink and 

downlink messages use the LoRa radio packet explicit 

 

Fig. 3 The package format of LoRaWAN for uplink messages [5] 

mode, where the LoRa physical header (PHDR) and a 

header CRC (PHDR CRC) are included in each packet. 

Figure 3 shows the packet specification of LoRaWAN for 

uplink messages, which all messages from the end device 

must satisfy. 

Uplink messages add a payload CRC at the end of each 

message to ensure the integrity of the transferred physical 

payload (PHYPayload). Downlink messages do not 

contain a payload CRC in the physical layer (PHY Layer) 

to keep messages from the network server as short as 

possible. The payload of the physical layer (PHYPayload) 

contains a MAC message header (MHDR), the payload 

(MACPayload) and a message integrity code (MIC). The 

length of the MACPayload is region specific and contains 

the frame header (FHDR), an optional port field (FPort) 

and the application payload (FRMPayload). The FHDR 

contains the device address (DevAddr), a frame control 

field (FCtrl), a frame counter (FCnt) and an optional frame 

options field (FOpts). 

The FHDR is used to identify the sender of the package, to 

number the packages and to administrate the connection 

by setting control bits and exchanging MAC commands. 

MAC commands are never visible to the application of the 

end device or the application server and exchanged either 

piggybacked in the FOpts field or instead of the 

FRMPayload between the end device and the network 

server. If the FHDR contains a FRMPayload, the FPort 

field is set to an application specific non-zero value. If the 

FRMPayload only contains MAC commands the FPort 

field must be zero. The MHDR defines the message type 

of the package. LoRaWAN knows seven different message 

types: join-request, join-accept, unconfirmed data for 

uplink and downlink messages, confirmed data for uplink 

and downlink messages and proprietary messages. 

Proprietary messages are used to support message formats, 

which cannot be realized with the other message types. 

The network server and the end device must have a 

common understanding of the message format extension to 

use this message type. For the encrypted join-request and 

the encrypted symmetric key, an unconfirmed data 

package offers the proposed behavior of reducing the 

number of exchanged messages. For transferring the 

communication-request and the public key 

(communication-accept), a confirmed data package offers 

the best security and triggers the intended 

acknowledgement messages by the receiver. To create an 

acknowledgement, message the receiver sets the 

acknowledgement bit (ACK) in the FCtrl in the next 

message it sends to the sender. An acknowledgement 

message is only sent once in response to the latest message 

and never retransmitted. 

End devices and network servers follow different policies 

if they do not receive an acknowledge package for their 

messages. An end-device might have lost the connection to 

the network, which means that it has to lower its data rate 

to regain connectivity to the network and resend the lost 

packet. The network server considers the end device as 

unreachable and does not apply any further actions and 

resends the packet. If the maximum number of 

retransmissions is reached, the end device and the network 

server can decide if the message in question is 

retransmitted again or forfeit. During the new handshake, 

the end device transfers the communication-request as a 

confirmed package to the network server, which means 

that the network server has to transfer the public key as an 

acknowledge package to each end device. If the end device 

does not receive the public key, the device resends the 

communication-request. The end device confirms the 

receipt of the public key, by sending the encrypted join-

request as an acknowledge package. The network server 
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cancels the connection process if it does not receive an 

acknowledgement, and the end device has to restart the 

handshake. 

The engaged devices must recognize the new involved 

messages as valid LoRa packages. Therefore, the newly 

introduced messages are transferred either as the 

MACPayload of a message or as the FRMPayload of a 

container message. The receiver of the message must be 

able to distinguish between the different messages either 

from the package header or by the total amount of 

transmitted data. In the current LoRaWAN specification 

the message type code 110 is not used. The new handshake 

uses it to identify the communication-request at the 

network server and the communication-accept at the end 

device. The new message type is named communication-

start and triggers the same behavior as a confirmed data 

package to force the receiver to confirm the receipt of the 

message by the next package of the handshake. The 

network server has to assign a temporary DevAddr to each 

end device, which wants to join the network because it has 

to recognize related packages of the same end device. The 

device will receive the real DevAddr for the 

communication in the join-accept message. Each message 

which contains a FPort field must set it to a non-zero value 

to indicate a non-empty FRMPayload. The different fields 

of the packet structure for each new packet are set as 

follows: 

communication-request: The communication-request 

message uses the new message type communication-start 

to let the network server recognize the sender as a new end 

device. The MACPayload of the package contains an 

eight-byte random value and the DevEUI of the device, to 

identify the request and to give the network server a 

possibility to counteract replay attacks by keeping track of 

the DevEUI and the random values. The MIC value for the 

PHYPayload is computed as listed in the equations (1) and 

(2) to ensure the integrity of the message. 

mic =  (DevEUI | MHDR)  ⊕  random  (1) 

MIC =  mic[0. .3]    (2) 

communication-accept: The communication-accept 

message type is communication-start to identify the 

response of the network server. The FRMPayload contains 

the public key of the network server, and the FHDR 

includes a temporary DevAddr, which the network server 

uses to assign the next messages to this end device. The 

ACK bit in the FHDR is set to acknowledge the receipt of 

the communication-request. The MIC value for the accept 

is computed as listed in the equation (3), using the first 16 

bytes of the public key (pk) to ensure the integrity of the 

communication-accept. As in the request, four bytes are 

used for the MIC field, as displayed in equation (2). 

cmac = aes128cmac(pk[0. .15], MHDR | FHDR |  

FPort | FRMPayload)    (3) 

encrypted join-request: The end device generates a join-

request, which it encrypts with the AppKey. A container 

package carries the encrypted join-request as the 

FRMPayload to the network server. The message type in 

the MHDR of the container message is set to an 

unconfirmed uplink message and the DevAddr field in the 

FHDR is set to the received temporary DevAddr. The 

ACK bit in the FCtrl field of FHDR is set to one to 

confirm the receipt of the public key. The MIC of the 

container message is computed as in equation (3) and set 

as in equation (2). 

encrypted AppKey: The encrypted AppKey is transferred 

as the FRMPayload of another container message. The 

message type in the MHDR is again an unconfirmed 

uplink message, and the DevAddr field in the FHDR is set 

to the temporary address. The ACK bit is set to zero 

because the encrypted join-request confirmed the last 

message from the network server. The MIC of the message 

is computed and set as in the equations (3) and equation 

(2). 

4.2 Regional data rate and payload differences 

LoRaWAN supports various data rates for each supported 

ISM band. The data rate defines the maximal 

MACPayload size transmitted in each packet [6]. In the 

beginning, the LoRa network enables end devices to 

choose any available data rate for their connection, and the 

network tries to use the fastest possible data rate to 

connect to an end device. To manage the data rates to 

different end devices and to optimize the communication 

channels, the network can adapt the data rates, by a 

technique called adaptive data rate (ADR). When ADR is 

enabled, each end device can request an evaluation of the 

connection by setting the ADR field in the FCtrl field of 

the FHDR. The network server then may 

Table 1: Minimal and Maximal MACPayload size in different regions [6] 

Band 
Min MACPayload Max MACPayload 
Size 

[byte] 
Data 
Rates 

Size 
[byte] 

Data 
Rates 

EU 433 MHz 59 0, 1, 2 230 4, 5, 6, 7 
EU 863-870 MHz 59 0, 1, 2 230 4, 5, 6, 7 
US 902-928 MHz 19 0 250 3, 4 
CN 470-510 MHz 59 0, 1, 2 230 4, 5 
CN 779-787 MHz 59 0, 1, 2 250 6 
KR 920-923 MHz 73 0 250 2, 3, 4, 5 

AS 203 MHz 59 0, 1, 2 230 5, 6, 7 
AU 915-928 MHz 19 0 250 3, 4 

 

adapt the current data rate to a lower or higher data rate. 

Lower data rates benefit the battery life of the end device 

but also lowers the amount of data transferred at each 

connection. Faster data rates enable bigger data packets, 

but therefore reduces the reliability of the connection and 
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may cause retransmissions. Table 1 shows the minimal and 

maximal MACPayload size in bytes and the corresponding 

data rates for each ISM band defined in [6]. 

The available space for the FRMPayload in the 

MACPayload depends on the FHDR and the FPort. The 

size of the FHDR varies between seven and 22 bytes 

because it contains the piggybacked MAC commands in 

the FOpts field. The size of the FPort is fixed to one byte. 

The rest is available for the FRMPayload. If the total size 

of the MACPayload exceeds the maximal transmission 

load of the applied data rate, the package must be split into 

multiple packages before it can be transferred to the 

receiver. For downlink messages, LoRaWAN supports a 

mechanism to divide the package into multiple smaller 

ones. Therefore, the network server sets the frame-pending 

bit in the FCtrl field of the FHDR to notify the end device 

that it has to open another receive window as soon as 

possible to receive the next data packet from the network 

server. For uplink messages, no such mechanism is 

available, which makes an adoption to a higher data rate 

necessary to transfer the data in one packet to the network 

server. 

The total size of the new message packages depends on the 

transferred MAC commands and the key size of the 

implemented asynchronous cryptosystem. The security of 

the used cryptosystem depends on the used key size, which 

causes a tradeoff between security and package size 

because a too small key size may cause problems for the 

safety of the LoRa network, but a to big key size may be 

impossible to transfer via a lower data rate. According to 

[16] the minimal key size for secure communication is 

2048 bit for RSA encryption, and 224 bit for Elliptic 

Curve Cryptography (ECC). ECC enables the same 

security as RSA with shorter keys, which makes it a great 

alternative for resource constrained applications. To ensure 

the same level of security as AES-128, a key length of 

3072 bit for RSA and 256 bit for ECC are necessary [16, 

17]. RSA-2048, RSA-3072, ECC-224 and ECC-256, are 

used to approximate the MACPayload size of the new 

messages for different cryptosystems. The findings of [17] 

are used to approximate the length of the resulting chipper 

text for each  

Table 2: MACPayload size range in bytes for different cryptosystems 

 RSA-
3072 

ECC-
256 

RSA-
2048 

ECC-
224 

communication-
request 16 16 16 16 

communication-
accept 264-279 36-51 392-407 40-55 

encrypted join-
request 40-55 40-55 40-55 40-55 

Encrypted 
AppKey 264-279 63-78 392-407 70-85 

 

cryptosystem. Table 2 lists the resulting package size 

range in bytes for each cryptosystem and each packet. 

The communication-request has a constant length because 

the request itself is transferred as the MACPayload and no 

FHDR is present. The encrypted join-request does not 

depend on the used asynchronous cryptosystem, so the size 

range is constant for all four cryptosystems because the 

join-request gets encrypted by the 128-bit AES key of the 

end device. The total payload size of the communication-

accept and the encrypted AppKey varies because of the 

key size differences of the four asymmetric cryptosystems. 

As seen in table 2, LoRaWAN has to split the packets of 

the RSA algorithm to transfer the public key and the 

encrypted AppKey. Since uplink messages cannot be 

divided, it is impossible to transfer the encrypted AppKey 

to the network server, which makes RSA inapplicable for 

the extension. Because of the required security strength, 

which should be comparable with AES-128, and the 

limited MACPayload length, an ECC-256 algorithm is the 

only available algorithm to implement the asynchronous 

cryptosystem for the new handshake. 

4.3 Implementing the asynchronous cryptosystem 

The asynchronous cryptosystem extension for the end 

devices and the network server can be implemented either 

in hardware or software. The end devices must only 

implement the encryption function and the network server 

only the key generation and the decryption function of the 

asynchronous cryptosystem because it is only used to 

transfer the symmetric key from the end device to the 

network server. In [18], the authors implemented a hybrid 

cryptosystem as a blend of hardware and software. They 

implemented the asynchronous encryption scheme as 

software and the symmetric cryptosystem as hardware to 

enhance the performance of the hybrid cryptosystem. In 

[19], an efficient hybrid cryptosystem using AES and ECC 

was implemented using hardware and software. The 

authors optimized the most complex operations to 

hardware and implemented the rest in software to enhance 

the performance of the cryptosystem. However, in [20] the 

authors analyzed performance and energy consumption 

differences between a hardware and a software 

implementation of RSA. They found that the hardware 

solution is approximately 88 times faster and up to 70 

times less energy consuming than the software 

implementation when the algorithm uses a 2048-bit key. In 

[21] the performance differences between ECC and RSA 

are investigated, and the authors found that ECC is faster 

as RSA when the manner of implementation is the same. 

Since LoRaWAN is a LPWAN communication protocol, 

and some end devices have computational constraints, 

which must remain fulfilled, further deployed end devices 
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should be extended with a hardware implementation of the 

asynchronous encryption function. Several hardware 

implementations of ECC exist on the market and fit the 

requirements of the new handshake [22]. The problem is 

that a hardware extension is expensive and it hardly can be 

ported to already deployed end devices. A software 

extension for already deployed end devices solves that 

problem. For the network server, a hardware and a 

software extension are acceptable because the network 

server does not have those high computational constraints, 

and should have enough processing power to perform the 

additional overhead of decrypting the encrypted join-

requests and the symmetric key. Nevertheless, a hardware 

implementation should be preferred because a hardware 

solution can be encapsulated into a tamper resistant box to 

secure the decryption function and the key pair [20]. 

5. Evaluation 

The proposed extension encrypts the join-request of the 

OTAA procedure before a joining end device transfers it to 

the network server for validation. Encrypting the join-

request enhances the robustness of LoRaWAN against 

replay or wormhole attacks because it makes malicious 

nodes unable to eavesdrop the identifiers and random 

values in the join-request or to decrypt the join-accept 

message. During a wormhole attack, a malicious node can 

still transfer eavesdropped requests in a different part of 

the network, but the second node cannot decrypt the 

encrypted join-request because of the missing key, which 

makes wormhole attacks much more unappealing. During 

the communication-request, the handshake transfers the 

DevEUI unencrypted through the network. When the node 

would eavesdrop the communication-request and forward 

it to a second node or the network server, the attacker 

would receive the public key of the network server, but the 

attacker would not be able to create a valid join-request 

because the adversary also needs the AppEUI to create a 

valid join-request. The AppEUI is kept a secret on the 

device and only transferred encrypted to the network 

server, which makes it impossible to misuse the identifier 

for any attack. A drawback of encrypting the join-request 

is that the new join-request is approximately 2.2 to 3.05 

times bigger than the original request, and more data has to 

be transferred until the device can participate in the 

network, but the benefit of a secure authentication for 

OTAA surpasses this drawback. 

6. Conclusion 

In this paper, the two join procedures of LoRaWAN were 

investigated, and potential threats to both proceedings 

were presented. An extension to the existing Over-The-

Air-Activation (OTAA) authentication process was 

introduced which uses a hybrid cryptosystem to encrypt 

the join-request. The hybrid cryptosystem uses the already 

implemented symmetric cryptosystem and the existing 

AppKey to encrypt the join-request of OTAA. The 

asynchronous cryptosystem is used to share the symmetric 

key with the network server. The handshake got evaluated, 

and further investigations of the specifications of 

LoRaWAN were made to ensure the technical feasibility 

of the extension. Also, the regional differences of 

LoRaWAN were taken into account to ensure that the 

extension can be deployed in all supported ISM bands. For 

the future, the presented handshake must be implemented 

and evaluated in a test scenario to compare its performance, 

and its security properties to the current OTAA join 

procedure. Furthermore, a replacement of the DevEUI in 

the initial communication-request and extending the join-

request with timing information is subject to further 

research. 
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