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Summary 
This paper deals with observer-based synchronization of new 

discrete-time chaotic multimodels and its application to secured 

communication. Based on Borne and Gentina practical criterion 

for the stability study associated to the arrow form matrix for 

systems description, sufficient conditions for the synchronization 

between a chaotic multimodel considered as a transmitter and a 

chaotic multi-observer designed as a receiver, are proposed . A 

new hyperchaotic multimodel, designed from two 3D Hénon 

maps is considered as an illustrative example of the proposed 

approach. The bifurcation diagrams show that the new 

multimodel has a larger range of parameters values that generates 

chaotic behavior as compared to the 3D Hénon map. This 

enlarges the key space and thus enhances the robustness of the 

communication scheme. The obtained results are applied with 

success to a two-channel communication scheme. 

Key words: 
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1. Introduction 

During the last decades, chaos-based techniques have been 

widely used to perform secure communication schemes [1-

4]. In fact, chaotic systems are considered as a very 

promising solution for cryptosystem designers due to their 

specific features, such as the noise-like time series, the 

sensitive dependence on initial conditions and parameters 

and the ergodicity [5, 6]. 

Pecora and Caroll have theoretically and experimentally 

shown that the synchronization of such systems is actually 

possible under certain conditions. [7] 

Their pioneering work has received a great deal of 

attention, especially in the secure communication field [8- 

13]. 

In [14], it was shown that the synchronization problem can 

be reduced to a standard non-linear state estimation 

problem where the slave system is designed as an observer 

of the master system and the synchronization is achieved 

by stabilizing the error dynamics between the master and 

the slave systems. 

However, chaos-based communication schemes are still 

vulnerable to many attack techniques despite the 

motivating results. It has been shown that chaotic attractors 

can be identified and approximately reconstructed due to 

their characteristic shapes [15- 19]. 

This reconstruction can give information about the family 

of the chaotic systems and the corresponding dynamic 

models, thus allowing the parameters to be easily identified. 

As a solution to this problem, in [20], is proposed a class 

of continuous nonlinear multimodels designed from two or 

more chaotic systems. The authors showed that the 

resulting multimodel has one more bifurcation parameter 

that can be used as a key for encryption to extend the key 

space and enhance the robustness of the communication 

scheme.[21]. 

In this paper, the multimodel approach, proposed in [20], 

is extended to the case of discrete-time chaotic systems. 

The mutimodel described by (1) is built from p discrete-

time chaotic sub-models, such that 

 

where ( )x k is the state vector, 
n

x R , ( )y k is the output 

vector,
q

y R , iA and C are constant matrices with 

appropriate sizes, f
i

are nonlinear discrete-time functions 

and i  , 1, ...,i p are weighting functions that ensure a 

kind of mixing between the p sub-models defined such that 
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 is a state vector that may be measurable or non-

measurable. 

The obtained multimodel is then used as a transmitter in a 

communication scheme and the receiver is a multi-

observer designed to achieve synchronization by using the 

Borne and Gentina criterion for stability study [22- 24] 

associated to the arrow form for systems description [25- 

27, 37, 38]. 

After the design of the multimodel using two hyperchaotic 

systems in Section II, sufficient stabilization conditions are 

proposed to achieve the observer-based synchronization 

between two identical discrete-time chaotic multimodels. 

In section III, a cryptographic system is considered as an 

application to secured communication using a new 

multimodel designed from two 3D Hyper-chaotic Hénon 

maps to illustrate the efficiency of the proposed approach. 

2. Proposed discrete-time chaotic multimodels 

synchronization method: basic idea 

In this section, the multimodel approach is used to define a 

new class of chaotic systems built from two or more 

discrete –time chaotic attractors. Then, synchronization 

conditions between a master chaotic multimodel and a 

slave multi-observer are obtained using the practical 

stability criterion of Borne and Gentina study [22- 24] 

associated to the specific Benrejeb arrow form matrix [25-

30, 37, 38]. After achieving the synchronization, a secure 

communication scheme is considered to test the efficiency 

of the proposed approach. 

2.1 Considered discrete-time chaotic multimodels 

Let consider the two n-dimensional discrete-time chaotic 

sub-systems in Lurie form described in state space for p=2, 

by 

 

It comes the system (4), proposed as a multimodel [31], 

such that 

 

and 
2 1

(.) 1 (.).    

( )k
m

x and ( )y k
m

are respectively the state and output 

vectors,. ,  1, 2,iA i  are ( )n n constant matrices, C is a 

constant matrix with appropriate sizes and f
i

, 1, 2,i   are 

nonlinear discrete-time functions chosen such that each 

sub-system has a chaotic behavior. The multimodel (4) is 

integrated as a master system in a transmission scheme 

based on chaotic synchronization. 

The corresponding slave system, designed as a multi-

observer, is defined by  

1 1

1 2

2 2

1

( ) (
1

(

(5)

( 1) ( )( ( ) ( ( ))

             (.)( ))) (1 ( ))( ( )

             ( ( )) (.)( )))

( ) ( )

s m s s

m m m s

s m m

s s

k k

k

x k y A x k f x k

L y Cx y A x k

f x k L y Cx

y k Cx k





  

   

  








  

( )k
s

x and ( )y k
s

 are the state and output vectors of the 

slave system, respectively.  1(.) (.),..., (.)i i inL l l , i=1, 2, 

are the Luenberger discrete-time mutli-observer gain 

matrices satisfying the master-slave chaotic system’s 

synchronization conditions [8, 32, 28-30]. 

2.2 Synchronization conditions of coupled chaotic 

multimodels 

For the error vector ( )e k  defined by 

( ) ( ) ( )m se k x k x k 
    

(6) 

the error system description can be rewritten, as follows 

1 1 1 1

2 2 2 2

1

1

( 1)

( )(( (.) ) ( ) ( ) ( ))

(1 ( ))(( (.) ) ( ) ( ) ( ))   (7)

m

m m

s

s

e k

y A L C e k f x f xm

y A L C e k f x f x





 

  

    





 

To simplify the error system formulation, (7) is rewritten 

as following 
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1

1

( 1)

( ) ( ) ( ( )( ( ( ) - ( ( ))
1 1

 (1- ( ))( ( ) - ( ))) ( )                        (8)
2 2

s

e k

A KC e k y f x k f x km m

y f x f x e km m s





 

 







 

 

with 

1 21 1
( ) (.) (1 ( )) (.)m mK y L y L   

  
(9) 

and 

1 21 1
( ) (1 ( ))m mA y A y A   

   
(10) 

In [36], it is showed that the non-linearity term for several 

chaotic systems expressed by 

1 1 2 21
( )( ( ) ( )) (1 ( ))( ( ) ( ))m m s m m sy f x f x y f x f x      

can be factorized, as follows 

( ) ( )( , ) ( )                                                      (11)m sk kQ x x e k  

where )(.Q is an ( )n n  matrix with non-linear elements. 

In this case, the error system can be rewritten, as follows 

                                     ?젨 ? ? (12)c m se k A x k x k e k   

with 

         ,젨 ? ?   (13)A x k x k A KC Q x km x km ssc
    

The following theorem, based on the use of Borne and 

Gentina stability criterion [Borne et al., 1976, 1987, 

Gentina et al., 1976] associated to the specific canonical 

Benrejeb arrow form matrix [22-24] gives sufficient 

synchronization conditions between the slave system (5) 

and the master system (4) [11, 25-30, 37, 38]. 

To apply the theorem, the Luenberger discrete-time mutli-

observer gain matrices must be chosen such that the matrix 

    ,?A mx k x
c s k  be in the arrow form as follows 

    

11 12 11

11 22

11 11

,?

e e e

e e

e e

A x m ksk x
e

a a a

a a

a a



 
 
 
 
 
 
 

 (14) 

Theorem: The error vector defined by (6) and introduced 

in (12) converges towards zero, if the matrix (13) is in the 

arrow form (14), such that [28-30] 

(i) the non-linear elements of the matrix (.)eA are isolated 

in one row, 

(ii) the diagonal elements, (.)
iiea , 2, ,i n  of the 

matrix (.)eA  are expressed, such that 

(.)1 0
iiea 

     (15)
 

(iii) there exists ,   > 0, such that 

 
 

1 1

11

2

(.) (.)

1 .

(
1

1 )  .

i i

ii

n e e

i
e

e

a a

a

a




   
 

 
 
 
 
     

(16)
 

Proof: The overvaluing system based on the use of the 

vectorial norm [23] 

1 1   (17)( ( ))[| ( ) |, ..., | ( ) |] , ( ) [ ( ), ..., ( )]
T T

n np z k z k z k z k z k z k  

is defined by 

( 1)  ( (.)) ( )ez k M A z k 
    (18)

 

with 

   (.) (.). ,젨 , 1, ...,
ijij ij eM m m a i j n   

  
(19) 

The error system (12) is stabilized by the multi-observer 

(5) if the appropriate multi-observer gains , 1, 2iL i   are 

chosen such that the matrix  (.)( )eI M A is an 

M matrix; i.e if, by the application of the stability criterion 

of Borne and Gentina, there exists an ,  >0, such that 

the condition (15) is satisfied and 

det( ( (.)))eI M A  
    

(20) 

The computation of the first member of this inequality 

leads to the following expression 
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(21) 

which helps to easily achieve the proof of the theorem. 
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2.3 Application to a secure communication scheme 

The theoretical results of the synchronization approach, 

introduced in the previous section, are applied to a secure 

communication scheme. A message is transmitted using a 

chaotic multimodel as a transmitter and a multi-observer as 

a receiver designed using the proposed synchronization 

conditions. The two-channel transmission scheme is 

considered for the purpose to obtain fast synchronization 

dynamics and high security [29, 33]. 

As shown in Fig.1, the transmission process uses a channel 

different from that of the synchronization one. The chaotic 

multimodel, proposed as the transmitter, generates the 

output ( )y k and the key ( )K k
c

, used to encrypt the 

original message ( )m k  with an encryption rule (.)cv . The 

encrypted message ( )V k is transmitted to the receiver 

designed as an observer via channel 1. The ouptput ( )y k  is 

transmitted via channel2 to ensure the synchronization with 

the receiver. Once the synchronization between the master 

and the slave systems is obtained, the key generated by the 

chaotic receiver, ( )K k
d

, gets the same values as the 

key ( )K k
c

at the transmitter. Using an appropriate 

decrypting function (.),
d

v  the information ( )
r

m k can be 

recovered. 

 

Fig. 1 A two-channel hyperchaotic secure-communication system 

3. Case of a new 3D Generaliezd chaotic 

Hénon multimodel 

Two different sets of parameters, corresponding to two 

different chaotic behaviors of Hénon maps [34, 33], are 

used with appropriate activation functions to build the 

multimodel, proposed as the transmitter. The receiver is 

designed using the proposed synchronization method. 

Numerical simulations, based on the proposed transmission 

scheme Fig.1, are performed in this section. 

3.1 Master 3D Hénon chaotic multimodel design 

The considered discrete-time hyperchaotic Hénon map is 

described by [34, 33] 

2

1 2 3

2 1

3 2

( 1) ( ) ( )

( 1) ( )

( 1) ( )

i ix k a x k b x k

x k x k

x k x k

   

 

 





    (22) 

Two sets of parameters ia and ib corresponding to two 

different chaotic behaviours of (22), are chosen as follows 

Set1: 1 11.76;  = 0.1 a b  

Set2: 2 21.5;  = 0.15 a b  

The attractors corresponding to set 1 with initial conditions 

fixed to (0)  (0.1, 0.2, 1)x   and set 2 with intial conditions 

fixed to (0)  (0.1, 0.2, 1)x   have two different shapes as 

shown in Fig.2 and Fig.3, respectively. 

The activation function 
1
  satisfying the constraints (2) is 

chosen such that transition between the two sub-models is 

achieved to avoid synchronization problems [20]. It is 

expressed as follows 

))
1
( ) (1 tanh( / 2                           (23)y y    

where  0, 1   is an arbitrary parameter  chosen  to get a 

real transition. 

Fig.4 shows how 
1
  function can ensure transition for 

different values of  . 

The multimodel mixing the two corresponding sub-models, 

considered as a master system is described by 

2
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Fig. 5a and Fig. 5.b show the state variables evolution and 

the attractor of the resulting multimodel for 0.5  , 

respectively. The bifurcation diagrams, presented in 

Fig.6.a and Fig. 6.b, illustrate the chaotic behavior of the 

multimodel for
1 2 2=0.1, 1.5,  =0.15 b a b when 1a is 

variable and for
1 1 21.5,  =0.1,  =0.15a b b  when 2a is 

variable, respectively. The security of the communication 

scheme strongly depends on the size of the key space 

which contains the possible parameters generating the 

chaotic behavior [5]. 

As shown in Fig.6.a and Fig.6.b, it may be noted that the 

multimodel gets a chaotic behavior for 

   1 0.1, 0.8 1.25, 1.8a    and    2 0.2, 0.58 0.9, 1.6a    . However, 

the chaotic behaviors of Hénon map1 and Hénon map 2 

represented by the bifurcation diagrams of Fig. 7.a and Fig. 

7.b, are obtained for    1 0.8, 1.09 1.39, 1.76a   and 

   2 0.8, 1.25 1.38, 1.55  a  , respectively. 

 

Fig. 2 Hypercahotic Hénon map 1 for set 1 

The comparison of the different possible values of 1a  

and 2a generating chaotic behaviors shows that our chaotic 

multimodel has larger possible values than Hénon maps 1 

and 2, which means a much larger key space. 

 

Fig. 3 Hypercahotic Hénon map 2 for set 2 
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Fig. 4 Activation function for different values of 


 

0 0.05 0.1 0.15 0.2 0.25 0.3
-2

0

2

x
m

3
(k

)

0 0.05 0.1 0.15 0.2 0.25 0.3
-2

0

2

x
m

2
(k

)

0 0.05 0.1 0.15 0.2 0.25 0.3
-2

0

2

Time(s)

x
m

1
(k

)

 

Fig. 5.a States variables of the hyperchaotic multimodels 

 

Fig. 5.b Hyperchaotic multimodel based on  Hénon maps 1 and 2 
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3.2 Proposed coupled chaotic Hénon multimodels 

synchronization 

Consider the following chaotic multimodel (23) as the 

master system 

2

1 2 1 2 1 3
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The associated Lugenberger multi-observer receiver is 

given by the following equations 
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where ( )mx k  and ( )my k  are the master state vectors and 

the output vector, ( )sx k and ( )sy k  are the slave  state 

vectors and  1 2 3 , 1, 2
T

i i i iL l l l i  , are the 

observer gain matrices. 

The error system between (25) and (26) chaotic systems in 

the form (8) is expressed, such that 

1 10 0 ( 0.1 (1 )0.15)

1 0 0

0 1 0
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 1 2 3C c c c
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2
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The matrix Q is such that 
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(31)
 

I It comes the following matrix characterizing the error 

system introduced in (13). 

 

Fig. 6.a Bifurcation diagram of the hyperchaotic multimodel for 1a  

being variable 
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Fig 6.b Bifurcation diagram of the hyperchaotic multimodel for 2a  

being variable 



IJCSNS International Journal of Computer Science and Network Security, VOL.18 No.2, February 2018 87 

 

Fig 7.a Bifurcation diagram of Hénon map 1 

 

Fig 7.b Bifurcation diagram of Hénon map 2 

To put it simply, the multi-observer gains are chosen, such 

that 13 23l l , 
12 22l l , 

11 21l l . Then, we set 3 0c  , 

2

1

13
c

l
  to get the the matrix (.)Ae in the arrow form. 

The overvaluing system introduced in (16) and 
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Fig.5.b shows that the state variables of the chaotic multi-

models (22) are such as: 22x m   and 22xs   so we 

have ( ) 42 2 11 2 11 2x x l c l cm s     . 

By the application of the practical Borne and Gentina 

stability criterion, the characteristic matrix (32) of the error 

system in the form of (13) make the state systems variables  

converge to zero if the following conditions are satisfied: 

i. 
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As shown in Fig.8, the synchronization of the coupled 

hyperchaotic multimodels is completely achieved at nearly 

0.08 t s  

for    2,  1.8, 0.9, 0 0.2, 0.6,1.11
T T

C L    

(0)  (0.1, 0.2, 1) and (0)  (0.5,0.3, 0.1).m sx x   

3.3 Secure communication scheme based on chaotic 

multimodels 

After the synchronization of two discrete-time chaotic 

Hénon multimodels, the results obtained in the previous 

section are applied to the proposed secure communication 

scheme presented in Fig.1. 

The master and slave chaotic multimodels are used as key 

generators for encrypting and decrypting the original 

message ( )m k  and the encrypted message V(k), 

respectively. The encryption (.)v
c

 used as a r-shift cipher 

algorithm [29, 35], is expressed such as 

1 1 1 1
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mr(k) can be recovered at the receiver using a decryption 

rule given by the following expression 
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with 
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1 2 3( ) ( ) ( ) ( )c m m mK k x k x k x k  
  

(38) 

1 2 3( ) ( ) ( ) ( )           d s s sK k x k x k x k  
  

(39) 

 
1 .f  is a non-linear function defined  such that  

1

                            

( ( ), ( ))

( ) 2 , : 2 ( )

( ), ( )              (40)

( ) 2 ,  ( ) 2       

cf m k K k

s k h for h s k h

s k for h s k h

s k h for h s k h



    

  

  






 

and 

( ) ( ) ( )cs k m k K k 
    

(41) 

h is an encryption parameter chosen such that the 

transmitted message m(k) and the key ( )k
c

K lies within 

the interval [-h,h]. 
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Fig. 8 Error dynamics of coupled 3D Hénon multimodels 

The numerical results are given in Fig. 9, Fig. 10, and Fig. 

11. The encryption parameters are h =2, r=5 and the 

sampling time is T=0.01s. Once the chaotic multimodels in 

(23) and (24) are synchronized, the key ( )k
d

K  in the 

receiver gets the same values as the ( )k
c

K  in the 

transmitter, as presented in Fig.10. 
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Fig. 9 Original message ( )m k  and recovered message ( )
r

m k  

The message ( )
r

m k  is completely recovered, as shown in 

Fig.8 and Fig.9 shows the encrypted message sent in 

channel2. 
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Fig. 10 Encrypted message ( )V k  
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Fig. 11 The Key emitter key ( )
c

K k  and thereceiver key ( )
d

K k   

4. Conclusion 

In this paper, the multimodel approach is used to build a 

chaotic multi-model from two hyper-chaotic systems and 

suitable stabilization conditions are proposed for observer-

based synchronization. The obtained results show that a 

combination of two chaotic systems can give more 

advantageous chaotic features to the resulting one, which 

enhances its performances in secure communication. Also, 

results show that the synchronization can be achieved 

between master and slave chaotic multimodels by the use 

of Borne and Gentina criterion associated to the arrow 
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form matrix. The proposed approach is successfully 

applied to a secure communication scheme based on two 

transmission channels and 3D Hénon maps. 
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