
IJCSNS International Journal of Computer Science and Network Security, VOL.18 No.2, February 2018

112

Manuscript received February 5, 2018

Manuscript revised February 20, 2018

Overview of Software Testing Standard ISO/IEC/IEEE 29119

Hesham Alaqail Shakeel Ahmed

King Faisal University, College of Computer Science and Information Technology,

Department of Computer Science, Saudi Arabia

Summary
Software testing is an essential part of software development

cycle. It is considered an important activity where software is

validated in compliance to requirements and specifications.

Mostly, software testing is relevant to poor execution and

documentation, causing additional burden on software companies

or purchasers. Estimates show that 20% to 80% of total cost of

software projects is spent on testing activities. Since no software

can be perfect, the cost spent on testing activities is worthy

especially in safety-critical systems. This paper provides an

overview of ISO/IEC/IEEE 29119 software testing standard. The

included parts of the standard are: concepts and definitions, test

processes, test documentation, test techniques and keyword-

driven test.

Keywords:
software testing; ISO standard; test process; ISO/IEC/IEEE

29119.

1. Introduction

Software testing is an essential part of software

development cycle. Normally, to ensure the operation of

any written piece of code, there must be a testing phase to

discover whether the code reacts as intended [1]. The

main aim of software testing is to detect defects. As per

IEEE Standard 610.12-1990, software testing is defined as

“The process of analyzing a software item to detect the

differences between existing and required conditions (that

is, bugs) and to evaluate the features of the software items”

[2]. In spite of the definition, testing cannot be a separate

process from software development cycle. However, it is

believed that software testing existed before the

establishment of development life cycles. According to

references, the early software testing activity was made at

1954. In reference to today’s estimates, the cost spent on

testing phase vary from 20% up to 80% particularly for

critical-safety systems. The estimates are assumed to be

for the full life cycle of the software systems. Historically,

software testing was attached with high cost and poor

coverage of testing standards professionally and

academically.

New international software testing standard was formed by

International standardization organization (ISO) and

International Electrotechnical Commission (IEC) in the

year 2013 [1]. ISO/IEC/IEEE 29119 is a standardization

series novel which covers systems and software

engineering testing. The first aim of such series is to create

a set of standards that agreed internationally. The second

aim is to have adaptable standards for different

organizational scenarios that cope up with current

technological advancement in software development [3].

The new international standard is envisioned to be more

comprehensive by covering various level of testing

processes. I addition, it is meant to cover documentation,

design test techniques, testing vocabulary and concepts [1].

In this paper, an overview of ISO/IEC/IEEE 29119

pertaining software testing is given which focuses on some

aspects such as concepts and definitions, testing processes,

testing documentation, test design techniques and

keyword-driven test. The rest of the paper is constructed as

follow: fundamental software testing model, concepts and

definitions, testing processes, testing documentation, test

design techniques and keyword-driven test and conclusion.

2. Fundamental Software Testing Model

The new software testing model is based on a fundamental

testing model where processes testing form the core of the

model in addition to three more basic entities illustrated

below in Figure 1. Documentation is generated as final

result of performing processes test cases providing

description of the output. Techniques entity is derived

from requirements to be used for designing test cases. The

used terminologies by other model’s part are labeled as

concepts and definitions.

Fig. 1 New fundamental testing model.

The covered test process of the fundamental model

executes at three different levels, those levels are

illustrated at Figure 2 [1]. The organizational test process

refers to the activities among several projects across the

organization. Therefore, it contributes to the creation,

IJCSNS International Journal of Computer Science and Network Security, VOL.18 No.2, February 2018 113

development and implementation of organizational test

policy. The test policy states management expectations of

the organization as well as serving as direct approach for

software testing in business terms.

Fig. 2 Multilayer relationship diagram for test processes.

Requirements and constraints are dictated by the

organizational test process to test management processes

and dynamic test processes to engage with the

organizational test process in all projects belonging to

same organization. Formulation of new organizational test

process is possible with different project natures that do

not comply with the designed test processes. The

comprehensive test stated by organizational test policy is

divided into number of sub-processes of testing e.g.

component, system, usability and performance testing.

Test Management processes can be also applied to testing

sub-processes. Different management plans can be used

with testing sub-processes such as system, acceptance and

performance test plans. Static and dynamic testing can be

both included in testing the sub-processes [4].

3. Concepts and Definitions ISO/IEC/IEEE

29119-1

This is the first part of the ISO/IEC/IEEE 29119 standard.

It focuses on key definitions and concepts of software

testing for better understanding of the international

standards. Software testing as concept is important for

many reasons such as information regarding quality of the

item being tested usually required by decision makers, the

item under testing may not perform as expected and need

to be verified and validated, evaluation should occur

throughout the life cycle of the software being developed.

Generally, it is acceptable that perfect software is

impossible to achieve. Therefore, software continuous

testing and evaluation is required. The main goal of testing

is to provide information about the quality of items under

testing. This information can be useful at following;

removal of defects to improve the test item, improve

decision made by management by considering the risk

attached with items, enhance the organizational

approaches and highlight the effective ones that reveal the

defects [4].

4. Test Processes ISO/IEC/IEEE 29119-2

This part includes more details about test processes

illustrated in Figure 2. It identifies the test processes that

can be used for managing, governing and implementing

software testing in organizations. It provides common

descriptions of testing processes along with descriptive

diagrams which applicable for all software testing models

[5]. Figure 3 summarizes the processes and sub-processes

involved in the multilayer relationship diagram. The

organizational test is represented twice in Figure 3, once

for the creation and maintenance of test policy and second

for the organizational test strategy. Moreover, the test

management process is commenced for the development

and implementation of the test plan. The lower layer is

dedicated for dynamic testing whenever needed by test

plan. The dynamic testing for instance includes unit testing,

system testing and performance testing, etc. [1].

Fig. 3 Example use of multilayer model [1].

4.1 Test Monitoring and Control Process

Test monitoring and control process examines whether the

progress of testing is in alignment with the organizational

test plan and the test policy of the organization. If

variance is detected, correction plan should be executed to

remove the variance. This process can be assigned for the

management of the project or the management of single

testing phase or type e.g. System testing or performance

testing. If the variance is detected at later stages, it would

be applied as a part of dynamic testing. The person in

charge of implementing test plan should implement the

following activities and tasks in Table 1 [5].

IJCSNS International Journal of Computer Science and Network Security, VOL.18 No.2, February 2018

114

Table 1: Activities and tasks example for test monitoring and control

process.

Code
Activity
Name Task

TMC1 Set-Up Create suitable measures and means to
update risks with the new changes.

TMC2 Monitor
Collect and record measures, compare
progress against test plan using measures
collected.

TMC3 Control Ensure implementing the activities
required for test plan.

TMC4 Report

Test progress against test plan and
communicate results to stakeholder
within specific period of time, update and
report new risks to stakeholders.

4.2 Test completion Process

Test completion process is a verification test to be

performed when the test of activities is complete. It is used

as verification test to carry out the testing done on system

testing or performance testing to test the overall project. It

is considered as satisfactory test leaving the testing

environment in good situation. Communication to

stakeholder should occur when overall testing is complete.

Table 2 below summarizes the activities and tasks

involved in this process [5].

Table 2: Activities and tasks example for test completion process.
Code Activity Name Task

TC1 Archive Test Assets Properly identify and store useful
test cases for later use.

TC2
Clean Up Test
Environment

Restoration of test environment
to pre-defined state upon
completion of testing activities.

TC3
Identify Lessons

Learned
Record lesson learned during the
project.

TC4 Report Test
Completion

Relevant information such as test
plan, test results, test status report
and test completion report should
be collected and reported to
stakeholders.

4.3 Dynamic Test Processes

This type of testing is used to carry out the dynamic testing

in specific phase of testing e.g. unit, system, integration

and acceptance testing. Four types of dynamic test process

are available; test design and implementation, test

environment set-up and maintenance, test execution and

test incident reporting. These processes is normally

considered as a part of test strategy implementation within

test plan in the test phase e.g. System testing or type

testing e.g. performance testing [5].

4.4 Test Design and Implementation Process

In this process, test cases and procedures are derived.

Normally, documented in test specifications, but can be

executed immediately. Possibly, stored test assets can be

used during this process as regression test. This process

can stop or reinitiate again in case of reporting new

incident. Also, it requires tester to apply one or more

testing techniques to derive test cases or test procedures

aiming to attain test completion criteria. Moreover,

iteration may occur among the activities. Table 3

summarizes the activities and tasks of this process [5].

4.5 Test Environment Set-Up & Maintenance Process

This process is used to create and maintain the

environment where tests are performed. It may involve

changes to test environment based on the result of the

previous tests. The test environment may change

depending on the configuration management processes.

The tasks and activities within this process are;

establishment of test environment and maintaining test

environment [5].

4.6 Test Execution Process

This process is utilized to run the test procedures that are

generated as result of test design and implementation

process. Test execution process may require running

several times since all available test procedures cannot run

at single iteration. Furthermore, when an issue is fixed, the

test execution process should be performed again. The

activities involved within this process are; Test procedure

execution, test results comparison and test execution

recording [5].

Table 3: Activities and tasks for test design and implementation process.

Code
Activity
Name Task

TD1 Identify
Feature Sets

Analyze test basis to understand the
test item requirements, combine test
features into test set and prioritize by
risk value, document the feature set
and communicate it to stakeholders.

TD2 Derive Test
Conditions

Determine the test condition for each
test case; prioritize the best condition
based on risk, record test condition in
test design specification.

TD3
Derive Test
Coverage

Items

Derive test coverage items through
applying test design techniques;
prioritize test coverage items based on
risk, record test coverage items in test
design specification. Record the
traceability.

TD4 Derive Test
Cases

Determine pre-condition and input
values for one or more test cases and
expected result prioritize by risk
value, record test cases items in test
design specification. Record the
traceability, get approval of
stakeholder.

TD5
Assemble
Test Sets

Distribute test cases into one or more
test sets based on constraints and
execution, record test case in
procedure specification, record the
traceability.

TD6
Derive Test
Procedures

Derive test procedures from ordered
test set based on pre-condition, post-
condition and dependencies, Identify
excluded test data, prioritize test
procedures based on risk, record test
procedures in procedure specification,
record the traceability, get approval of
stakeholder.

IJCSNS International Journal of Computer Science and Network Security, VOL.18 No.2, February 2018 115

4.7 Test Incident Reporting Process

This process is used for test incident reporting as a result

of failure detection, items with unexpected or unusual

behavior while executing the test or in case of retest. The

activities involved are; analyzing test result and create or

update incident results [5].

5. Test Documentation ISO/IEC/IEEE 29119-

3

Test documentation part determines the software test

forms and templates that can be used by organizations,

specific project or single activity of testing. It contains

definite documents that considered as an output of test

processes. These documents can have multiple versions;

such issue is related to configuration management [6]. The

set of documentation is useful for test practitioners, below

Table 4 list available documents in this part.

First two templates belong to organizational test process;

the three proceedings belong to management test processes

while the rest correspondent to dynamic test processes [1].

Table 4: Test documentation template list.
Seq. Documentation name Seq. Documentation name

1 Test policy 8
Test procedure
specification

2 Organizational test
strategy 9 Test data requirement

3 Test Plan 10
Test environment
requirement

4 Test status report 11 Test data readiness
report

5 Test completion report 12
Test environment
readiness report

6 Test design
specification 13 Test execution log

7 Test case specification 14 Test incident report

6. Test Techniques ISO/IEC/IEEE 29119-4

This part specifies and identifies test techniques that can

be used with test processes in part 2. The targeted audience

of this part is testers, test managers and developers

especially those who are in charge of software

management and implementation. In this part, test design

techniques are defined for specification-based testing,

structure-based testing, and experience-based testing. In

specification-based testing, the main source of information

used to design test cases is test basis, for instance user

needs, requirements, specification and models. In

structure-based testing the source code or model structure

is used as the source of information to develop test cases.

In experience-based testing, the primary source of

information is the experience and knowledge of testers.

Moreover, all these types of tests are used to generate the

expected end results. Those test design techniques are not

essential but considered complementary. However, they

are effective if applied in combination.

The terms specification-based testing, structure-based

testing are also known as black-box testing and white-box

testing (also named as clear-box testing), both black-box

testing and white-box testing are related to the visibility of

test items in software structure. In black-box testing, test

item’s visibility of the internal structure is not present

while in white-box testing the internal structure of test

items is visible. Grey-box testing is used as a term when

knowledge of test items is utilized from specification and

structure as well. Below Table 5 shows all techniques

pertaining specification-based testing, structure-based

testing and experience-based testing [7].

7. Keyword-Driven Testing ISO/IEC/IEEE

29119-5

Keyword-driven test is an approach of test specification

which is generally used to aid test automation and creation

of test automation framework. It can be used if no test

automation approach is planned or exist. This type of

testing can be applied to all level of testing such as

component testing and system testing or even for test types

like functional testing and reliability testing. The

advantages of applying keyword-driven testing for system

are; making system easier to use, understandable,

maintainable, reusable, automation supportive, and money

saver.

Table 5: Test techniques for specification and structure based testing.
Specification-
based testing
Techniques

Structure-based
Testing Techniques

Experience-
based Testing
Techniques

Equivalence
Partitioning

Branch / Decision
Testing

Error Guessing

Boundary Value
Analysis

Branch Condition
Testing

Cause-effect
Graphing

Branch Condition
Combination Testing

Classification Tree
Method Data Flow Testing

Combinatorial Test
Techniques

Modified Condition
Decision Coverage
(MCDC) Testing

Decision Table
Testing

Statement Testing
Random Testing
Scenario Testing
State Transition

Testing
Syntax Testing

This part provides efficient definition and constraints for

keyword-driven testing. It offers introduction and

reference approaches to implement keyword-driven testing.

Also, requirement definition for framework of keyword-

driven testing is given. This enables testers to share their

work items, test cases, test data, keywords or test

IJCSNS International Journal of Computer Science and Network Security, VOL.18 No.2, February 2018

116

specifications. Moreover, this part provides interfaces

definitions and data exchange format from different

vendors to ensure different system integration.

Furthermore, it includes definitions of different level of

hierarchical keywords with explanation and advice on how

to use them. Lastly, list of examples and technical low

level keywords is provided e.g. “inputData” or

“checkValue” to determine test case on any particular

technical level. It can be also combined to from business-

level keyword if needed [8].

8. Conclusion

Software testing is an essential part of software

development cycle that cannot be neglected. Actually, it is

an activity that should start upon the creation of software

specifications until software deployment and further with

changes and maintenance. The cost of adopting software

testing approaches and practices is considerably high, but

the final cost would be much higher in case the system

encounters failure especially in enterprise and safety-

critical systems. The awareness of testing standard is also

beneficial to purchasers, businesses and governments to

verify the quality of the market’s products on well-studied

and measured basis.

Acknowledgment

I would like to thank my instructor Dr. Shakeel Ahmed for

his assistance in understanding the testing firm in software

quality during the academic course. Also, special thanks to

my college at King Faisal University, College of Computer

Science and Information Technology for facilitating all

educational means to gain knowledge and excel.

References
[1] Reid S. 2012. “The New Software Testing Standard”. In:

Dale C., Anderson T. (eds) Achieving Systems Safety. pp

237-255. Springer, London.

[2] Majchrzak T.A. 2012. “Software Testing”. In: Improving

Software Testing. SpringerBriefs in Information Systems.

pp 11-56. Springer, Berlin, Heidelberg.

[3] Matalonga S., Rodrigues F., Travassos G.H. 2015.

“Matching Context Aware Software Testing Design

Techniques to ISO/IEC/IEEE 29119”. In: Rout T.,

O’Connor R., Dorling A. (eds) Software Process

Improvement and Capability Determination. SPICE 2015.

Communications in Computer and Information Science, vol

526. pp 33-44. Springer, Cham.

[4] ISO/IEC/IEEE International Standard. 2013. “Software and

systems engineering --Software testing --Part 1:Concepts

and definitions," in ISO/IEC/IEEE 29119-1:2013(E) , pp.1-

64. IEEE.

[5] ISO/IEC/IEEE International Standard. 2013. “Software and

systems engineering --Software testing --Part 2:Test

processes," in ISO/IEC/IEEE 29119-2:2013(E), pp.1-68.

IEEE.

[6] ISO/IEC/IEEE International Standard. 2013. “Software and

systems engineering -- Software testing --Part 3: Test

documentation," in ISO/IEC/IEEE 29119-3:2013(E), pp.1-

138. IEEE.

[7] ISO/IEC/IEEE International Standard. 2015. “Software and

systems engineering--Software testing--Part 4: Test

techniques," in ISO/IEC/IEEE 29119-4:2015, pp.1-149.

IEEE.

[8] ISO/IEC/IEEE International Standard. 2016. “Software and

systems engineering -- Software testing -- Part 5: Keyword-

Driven Testing," in ISO/IEC/IEEE 29119-5 First edition

2016-11-15 , pp.1-69. IEEE.

Hesham Alaqail earned his B.Sc. in

Computer Science from King Faisal

University, Saudi Arabia in 2009. He is

pursuing his M.S. in same field at King

Faisal University. Currently, Hesham is

working as Programmer Analyst at Ministry

of National Guard – Health Affairs, Saudi

Arabia. His current research interests

include Software Validation and

Verification, Machine Learning and

Classification Techniques.

Shakeel Ahmed received his B.Sc.

(Computer Science in 1997) from Kakatiya

University and M.C.A (Master of Computer

Applications in 2000) from M.K.

University, India. He earned his PhD

degree in Computer Science from Indore

University, India, in 2013. Currently he is

working at King Faisal University, Saudi

Arabia as Assistant Professor in the College

of Computer Sciences and Information

Technology. His current research interests include Mobile Ad

hoc networks, Software Engineering, cloud computing he has

published more than 15 papers in international journals and

conferences in the field of software engineering and cloud

computing.

