
IJCSNS International Journal of Computer Science and Network Security, VOL.18 No.2, February 2018 
 

 
 

130 

Manuscript received February 5, 2018 

Manuscript revised February 20, 2018 

Hovering Patterns: Clickjacking Defense Technique 

Ahmed Anas, Sherif Khatab, Akram Salah  

Computer Science Dept. 

Faculty of Computers and information, Cairo University 

Cairo, Egypt  

 
 
Abstract 
Clickjacking attacks is one of the evolving attacks that targets 

users web surfing integrity. Through the attack observation and 

analysis, we developed a new technique that enforces user 

awareness of sensitive UI actions he is about to perform. 

Proposed technique enforces user experience integrity by asking 

the user to interact with visual component through hovering over 

randomly generated points where a summary text of the critical 

action will be explicitly outlined. 

The technique is protected by nature against Clickjacking attacks 

as it requires clicking to proceed with the required actions. The 

technique has trivial performance effect and can be integrated 

easily within a web widget. 

Keywords: 
Clickjacking, The random patterns, Anti-Clickjacking 

Introduction 

Applications can share some of their functionality 

allowing embedding themselves within other hosting 

applications. Embedding is a technique that allows a web 

application to display another web application’s 

functionality and features within the main web application 

pages. To achieve such goal, the original web application 

uses HTML attributes (e.g. Iframe). According to 

SmilarTech 28.04% of the top 10,000 websites in the 

world have some sort of Integration with Facebook Social 

Plugins[1] on their homepage. Also, a percentage of 20.9% 

of the websites have one of Twitter’s social 

tool,embedding is not limited to social media plugins, 

applications can share widgets for different reasons, such 

as open authentication widgets (OAuth ), PayPal Widgets, 

etc. The desire of applications owners to increase the 

brand recall, engagement, time on their website, referrals 

and sales revenue by adding social media plugging expose 

their users to the risk of being targeted by Clickjacking 

attacks[2], [3]. 

Clickjacking is a technique used in order to deceive the 

user of the hosting applications to trigger unintentional 

actions on the embedded components or widgets.The 

attacker would achieve his goal using different techniques 

such as applying multiple transparent or opaque layers 

deceiving a user to click a button or link. One of the 

famous types of clickjacking attack is Like-jacking [4]; 

The attacker can create a webpage that has a Facebook like 

button with a hidden property. Along with overlying it 

with any other sincere button such as download button. 

Since the user can only see the download button, he may 

be deceived to click it generating fake likes or undesirable 

feeds to appear in user’s news feeds. Clickjacking attacks 

can be combined with cross site scripting, that may cause 

worm propagation [5] similar to the one that targeted 

MySpace in 2005 and millions of users affected. 

Generally, one of the solutions of this type of attacks is 

using the frame buster techniques [6], which uses a 

JavaScript code to prevent the website from being 

rendered within IFrame. Another solution, the X-Frame-

Options HTTP response header [7] that can control which 

hosting website are allowed to render the protected 

website in Iframes. The previous solutions are not 

fulfilling the business need of the application which 

intended to share its functionalities as widgets. Other 

solution introduced like NoScript, ClearClick and Firefox 

plug-in along with ClickIDS enhancement to let it work 

with anti-XSS techniques [8] and similar solutions which 

have a common issue of generating a user pop-up to ask 

the user confirming the action, and as most of the users are 

not aware of the deep technical details, this will not 

introduce them a real protection. Another solution 

introduced as HDTCV [9] that crawls the internet to build 

a database of websites which contain a Clickjacking attack. 

Unfortunately, such solution will not protect against newly 

crafted websites. Other solutions involve JavaScript 

disabling as in ClearClick or random generating Iframes 

introduce poor usability and incompatibility with existing 

web sites, or failure to defend against significant attack 

vectors. 

Clickjacking undermines one of the two contexts of an 

object, or both of them at once for that matter. The first 

one is the visual context which typically means an object 

has been masqueraded as another baiting users into 

clicking like button as a download button for example. The 

second way is by manipulating the momentary along with 

physical properties (Temporal context). Thereby, baiting 

users to click an object, a like button for example, despite 

they target on clicking in different object at a certain time. 

Our solution propose adding other visual components that 

guarantee that user will not be able to proceed with his 

intended action unless he has the visibility over the control 

in place. To achieve that, we need to ensure an HTML 



IJCSNS International Journal of Computer Science and Network Security, VOL.18 No.2, February 2018 
 

131 

object containing a pattern which includes checkpoints 

being generated based on user interaction where user has 

to follow without single mouse click. Additionally, the 

panel area will show the third party reference identity. 

This pattern can be configured to work in two different 

ways, first of them is to be totally randomized as shown in 

Figure 1.The other technique is to be persistent one 

registered with the widget site as a sort of authentication. 

 

 

Fig. 1  An example of the proposed solution. A div area expands and 

contains an unpredictable pattern of checkpoints the user has to follow in 

order to make a money transaction for a website. 

Applying this technique on widget controls will let the 

clickjacking attacks no longer visible, attempts to affect 

the user visibility of reference without previous knowledge 

of the predicted point location will result in user will not 

be able to make the action processed, and thereby will 

prevent the attack. The remainder of the paper is structured 

as follows: in section 2, background and detailed 

illustration of Clickjacking attack. In section 3, a detailed 

illustration of how our defense technique works, it 

includes the details regarding how the two patterns are 

going to defend against the attack. In section 4, the 

implementation section contains the details about the 

implementation along with security and performance 

analysis. In section 5,an overview of the previous studies 

related to our subject then the conclusion in section 6. 

2. Background 

When a browser renders an HTML page, it processes the 

page’s Document Object Model (DOM) which contains 

nodes, widgets, div tags and event listeners associated with 

those components. In the HTML DOM, every HTML 

element is an object of a tree including the document itself, 

buttons, text boxes and text areas as well. Each DOM 

object has properties such as style object properties. [10] 

In conjunction with HTML DOM objects, HTML DOM 

events allow JavaScript to register events handler on those 

objects. This event is usually assigned to fire pre-defined 

functions, 

HTML DOM click event and HTML DOM on-hover event 

would be considered as examples of the HTML DOM 

events 

[10] There are some DOM elements that require attention 

such as the div tag that defines a division or a section in an 

HTML document [11] , Some DOM objects, such as 

IFrame, div, object and applet, are used to embed Widgets 

in an HTML page. 

A widget [12] is a small application with a specific 

function (e.g., clock or a Like button). Figure 2 shows a 

like button, this like button code is typically an iFrame 

component rendered from third party website as a widget. 

Web site can embed widget that has been developed and 

published by third party 

 

 

Fig. 2  Example of a like button widget embedded within hosting page. 

and could be embedded within the hosting page as it is the 

original web-page that those widgets are embedded within. 

Applications which encourage embedding some of their 

components may be vulnerable to clickjacking [2]; 

clickjacking is a technique used in order to deceive the 

user of the hosted applications to fire unintentional actions 

within the embedded components or widgets; in order to 

do that, attacker would use multiple techniques for 

example, using multiple transparent or opaque layers to 

deceive a user into clicking on a button or link, as shown 

in Figure 3. The attacker may add the ”Opacity:0.001” 

style to like button in order to hide it and adding the ”z-

index:-99” property ; attacker also may apply the ”pointer-

events: none;” property in order to disable interaction with 

fake download button thunder image highlights where 

does the pointer action takes place. 

 

 

Fig. 3  Hiding Like button under Download button 

One of the most common types of clickjacking attack is 

Like-jacking [4]; the attacker could craft a web page that 

has a hidden like button embedded within the web page 

deceiving users into clicking on a Facebook Like button by 

transparently overlaying it on top of legitimate UI element, 



IJCSNS International Journal of Computer Science and Network Security, VOL.18 No.2, February 2018 132 

such as a download button. Hence, when the user tries to 

download the desired file, a feed appears in the user’s 

Facebook friends’ news feed stating that she likes the 

attacker web site. 

Besides the basic clickjacking attacks, which only violates 

the visual integrity constraints, attackers could innovate 

different attack variants, for instance “Brain of Computer” 

demonstrate a technique called “Facebook Click Jacking 

with Floating Like Button” which is basically a JavaScript 

code that lets the like button sticks to cursor, and thereby, 

whenever the user perform a click, he will click the like 

button. 

Another type of attacks which also based on cursor move 

called Cursor-jacking demonstrated by Bordi and 

Kotowicz, one of those attacks are using fake cursor plus 

hiding the real cursor using CSS styles deceiving the user 

to fire unintended hidden actions. 

3. Proposed technique 

In essence, our technique is based on using user interface 

verification control to ensure the integrity of actions. The 

technique comes with two flavors, the first one is related to 

generating a random pattern where user has to follow in 

order to proceed with the action Figure 2. The second one 

is by asking the user to draw a specific pattern, this pattern 

whom the user was already asked to register. 

The random pattern: We enforce the widget to have an 

event listener (e.g., onhover event) which expands a div 

area that contains unpredictable pattern that consists of 

checkpoints along with background brief of the transaction 

you are about to acknowledge Figure 1. User has to follow 

those points in order to perform the desired action. 

Accordingly, the control would not allow the user to fire 

the action he desires by clicking the control itself. 

As a high level, a verification process goes as follows 

when user hovers over sensitive action handler, message 

appears to user asking him to follow the pattern, a 

verification request message sent to server that accordingly 

prepare verification process creating a session object that 

carries array list of finite random points 

Verification process goes as follows Figure 4 verification 

request message is sent to server with value “req”, client 

side code receives ( x,y) coordinates along with Len 

attribute, if len value equals zero, that means the server has 

successfully authenticated the user and performed the 

required action. Otherwise, it uses the ( x,y) coordinated to 

draw the next point, and attach hover event as in Figure 5. 

When user hovers over point, we apply different style and 

then send point id to server that will verify the point id and 

send (x,y) coordinates along with Len. When len equal 

zero verification process ends, else, it draw next point 

attaching the same hover event to it. 

Server side process in particular goes as the following 

Figure 6. When server receives verification request 

message, it creates a session object that carries an array list 

of finite random points. Then, it sends point attributes and 

checks whether it is the last point of the array when it 

receives the correct id.Thereby, authenticate the action and 

send Len flag with value zero. Also, there is a session 

timed out after specific time of inactivity to protect server 

memory. Figure 7 shows screenshots for the random 

pattern confirmation scenario from the user perspective. 

The Persistent Pattern: We enforce the widget to have an 

event listener (e.g., onhover event) which expands a div 

area that contains a grid of checkpoints similar to pattern 

concept as used by the mobile users [49], User has to 

follow the points pattern in order to perform the desired 

action. This pattern will be already saved by the user. 

Accordingly, the control prevent the user to trigger the 

action by clicking the control itself. To implement this 

technique, there is no need to change neither 

 

 

Fig. 4  Sequence Diagram to demonstrate the interaction between user, 

browser and server for random pattern technique 

 

Fig. 5  Flow Chart demonstrate the process of point properties receiving, 

rendering till action takes place 



IJCSNS International Journal of Computer Science and Network Security, VOL.18 No.2, February 2018 
 

133 

the browser behavior nor the http protocol. We need only 

to change the action listeners implemented for the third 

party widgets. For future deployment, our solution can be 

integrated with the browser. 

While triggering a sensitive action, the user must be 

authenticated against the third party widget provider. 

When  

Fig. 

6  Flow Chart demonstrates server procedure to generate and validate the 

pattern point list 

One when user already has a registered pattern and the 

second when user does not have a registered pattern. In 

case of user already has registered pattern, a message 

appears to user with instructions prompting him to draw a 

nine points pattern, thus, user has to draw the correct 

pattern exactly matches which saved on the server, when 

user finishes drawing the pattern, he should move the 

cursor out of the red boarder in order to send the pattern to 

server for verification, server compares the received 

pattern against the one already saved on database, if both 

match, it grant the action, otherwise, it will send the user 

hovers over the handler there will be one of two scenarios, 

first a rejection message 

In case that user does not have a registered pattern, user 

will be instructed to create a new pattern. Using the pop-up 

window or through navigating to pattern registration 

screen, user pattern registration from client side 

perspective should go as in Figure 9. User choose to create 

a new verification pattern, then a panel contains a grid of 

nine points appears to user after that user has to draw a 

pattern by hovering over number of points,and after that, 

user has to move the cursor  

 

Fig. 7  Figure demonstrates user confirms payment 

 

Fig. 8  Sequence Diagram to show user interaction with server and server 

processing to validate persistent pattern technique 

out of red border to commit the pattern , then user has to 

redraw the pattern for confirmation, finally message 

appears to client that he can use the pattern for verification. 

Server side process goes as follows: After the server has 

authenticated the client identity, it will receive the 

confirmed pattern and save it to database. 



IJCSNS International Journal of Computer Science and Network Security, VOL.18 No.2, February 2018 134 

We are going to analyze our solution as a whole in 

addition to pattern generation in particular from the 

following perspectives: The system performance will be 

evaluated and complexity analysis will be performed to 

analyze running time of the pattern generation algorithm. 

Finally, the predictability 

 

Fig. 9  Sequence Diagram to demonstrate user pattern registration for 

persistent pattern registration 

of the generated patterns will be analyzed. 

Figures 10, and 11 illustrate the confirming persistence 

pattern scenario. 

 

Fig. 10  User draws the pattern hovering over points 

When the user does not have a registered persistence 

pattern, third party widget directs the user to create one by 

drawing a pattern of his choice and reenter it as 

confirmation Figure 12 is a screen-shot that illustrates 

recording the confirmation pattern. 

4. Implementation 

Following snippet code 1 shows the function which the 

point id value and coordinates assigned in random pattern 

technique: 

 

Fig. 11  User moves the pointer out of the panel boarder to submit the 

action 

 

Fig. 12  User asked to confirm pattern 

Following snippet of server side code describe how to 

validate the user sent Id against the next point expected id: 

A. Security Analysis 



IJCSNS International Journal of Computer Science and Network Security, VOL.18 No.2, February 2018 
 

135 

Variety of precautions have been taken to protect the 

technique, for example sending a random nonce along with 

point id, to protect against CSRF attacks. 

function WriteNextPoint(x, y, id) { 

var elem= document.createElement("img"); 

elem.setAttribute("src", "ready.png"); 

elem.setAttribute("id", id); 

document.getElementById("auth"). 

appendChild(elem); 

$("#" + id + "").addClass("point"); 

$("#" + id + "").css({"left": x}); 

$("#" + id + "").css({"top": y}); $("#" + id + 

"").hover(function() { doEffect(this); 

authNext(this.id); $("#"+id+""). 

off('mouseenter mouseleave'); 

}); 

} 

Listing 1: Code Snippet for Adding hover Event Client Side 

if ((((ArrayList<Point>) session. 

getAttribute("Points")).get(i). 

isVisited() == false)) { if (((ArrayList<Point>) 

session. 

getAttribute("Points")). 

get(i).getId(). 

equalsIgnoreCase(pointId)){ 

//send the next correct point 

} 

Listing 2: Code Snippet for Server Side Validation for Point 
Ids 

One of the major attacks that may target our mechanism is 

to deceive the user browser to zoom out the text, yet, this 

can be solved by mixing up the panel background by 

images and text phrases. 

Other attacks may target hiding parts of the panel to 

prevent the user from reading the notation, yet, hiding part 

of the panel would prevents the user from completing the 

pattern Transportation layer should be encrypted using 

https to prevent the attackers from intercepting the server 

responses and resending Ids values back. 

Nevertheless on a panel of 240p as width and 130px as 

height, and Point size of 24p as width and 24p height the 

probability of correct pattern would be 240∗ 130 = 312005 

which approximately equals 1/31023 Persistent Pattern: 

Anti-CSRF technique has been implemented to prevent 

resending the authentication pattern, if the attacker could 

make a successful attack and get user’s secret panel. 

Double Submit Cookies technique [13] has been 

implemented by sending a nonce values along with secret 

pattern matches a cookie value for hosted widget domain 

Transportation layer should be encrypted using https to 

prevent the attackers from intercepting the user’s secret 

pattern and lunch another clickjacking attack against him 

tricking the user to draw the revealed secret pattern 

Experimental Evaluation: Experiment setup will included 

personal computer with Apache Tomcat server installed, 

Internet Explorer and Mozilla FireFox browsers used 

along with Process Explorer application to measure the 

CPU and memory utilization. Personal Computer has Intel 

Core i-7 CPU 2.6 GHz and 8.00 GB Ram running 64-bit 

Microsoft windows 7 operating system 

Number of points: We chose to use the five point pattern 

which generates probability of 3*10 23 

Parameters for the expriement are defined as follows, 

Number of points: 5, Panel size: 240px*130px, Browser 

type: Mozilla Firefox and Microsoft, Server type: Apache 

Tomcat installed on local machine, Round trip time 

average: 2.08 seconds, Panel size without jQuery java 

script library: 44 KB, Random Generation Type: 

SecureRandom. 

Factorial Design: 

Based on table I, Most effective parameter in response 

time is the total number of points (N) 

Table 1: RESPONSE TIME STATISTICS 

  Response time (including 
rendering times 
+ thinking time) in 

seconds 

Total 
number of 
points (N) 

Number of 
points per 
require (K) 

  Chrome FireFox 
2 1 2.5±0.348 3.5±0.468 
2 2 3.1±0.579 3.5±0.468 
5 1 5.5±0.896 5.8±0.751 
5 5 5.8±0.522 5.5±0.468 

Based on table II, most effective parameter in client 

memory is the browser type 

Table 2:CLIENT MEMORY STATISTICS 

Total 
number of 
points (N) 

Number of 
points per 
require (K) 

Client Memory in MB 
  

  Chrome FireFox 
2 1 .35±.205 1.58±0.41 
2 2 1.46±0.92 0.856±0.399 
5 1 .56±.24 1.34±0.21 
5 5 .4±.27 1.4±0.24 

Based on table III, most effective parameter in client CPU 

is the browser type 

Table 3: CLIENT CPU STATISTICS 

Total 
number of 
points (N) 

Number of 
points per 
require (K) 

Client CPU in Percentage 
  

  Chrome FireFox 
2 1 3.574±2.156 2.264±0.637 
2 2 3.512±0.7098 2.234±1.317 
5 1 4.31±1.21 3.343±0.95 
5 5 3.11±0.53 3.181±1.19 



IJCSNS International Journal of Computer Science and Network Security, VOL.18 No.2, February 2018 136 

Based on table IV, Most effective parameter on server 
memory is number of points per request (K) 

Table. 4: SERVER MEMORY STATISTICS 

Total number of 
points (N) 

Number of points per 
request (K) 

Server 
Memory 
In MB 

2 1 16±0 
2 2 25.4±1.82 
5 1 38.77±3.40 
5 5 15.41±6.5 

Based on table V,Most effective parameter on server 
CPU is the total number of points 

Table. 5: SERVER CPU STATISTICS 

Total number of 
points (N) 

Number of points per 
request (K) 

Server 
Memory 
In MB 

2 1 1.74±1.02 
2 2 2.28±0.66 
5 1 0.88±0.38 
5 5 0.91±0.31 

The experiment assumes that users are successful in all of 

their attempts to follow the patterns and thereby doing the 

intended action 

In N5K5, We have to implement margin to ensure that 

user did not accidentally hover over wrong point as points 

may be rendered within same coordinates. 

Performance Analysis: 

In order to assess the application performance in 

massusage, we launched the following experiment: 

Number of users/Threads: 1000 user, Loop Count: 50, 

Total number of Request: 50,000. 

we define response time in the experiment as the 

difference between time when request was sent and time 

when response has been fully received. 

The experiment examine n5k5 request structure which 

consists of two http requests, one as a retrieval point array 

(Retrieve N5K5 request) and the other request is to submit 

the point ids list(Submit N5K5). Another separate run for 

the unsecured action has been launched, the experiment 

assumes that users are successful in all of their attempts to 

follow the patterns and send correct ones. The following 

consolidated graph IV-A demonstrates the average 

response time for submitting secure requests comparing to 

the original request with no security technique in place. 

 

Fig. 13  Response Time Graph illustrates that implementing secure token 

solution has a light footprint despite the number of requests 

Following micro bench mark VI illustrates a comparison 

between each of the techniques in terms if number of 

request, newt work overhead and total time used over the 

network to have the action done. 

Table. 6: MICRO BENCHMARK 
           Items                N2K1       N5K1       N5K5 
Number of requests 5 8 8 
Network overhead 2.1 KB 2.3 7 

Elapsed Time 769ms 2.95 S 484MS 

5. Related work 

Clickjacking attacks has wide range of vectors, one of 

those attacks are using fake cursor plus hiding the real 

cursor using CSS styles tricking the user to trigger actions 

he do not know about [14], [15], in Sebastian solution [16] 

the author suggest to disable the CSS style on the cursor, 

which would be a serious limitation in many types of 

applications (e.g. text editors), Through the idea of using 

hovering instead of clicking, our proposed solution by 

definition solves most of the limitations that are in other 

solutions, we also do not require milliseconds of waiting in 

case pop ups window as defense, in HDTCV [9] the author 

made a technique in came up with an offline analysis for 

websites; the offline methodology will not be able to 

introduce protection if the attacker used new website to 

launch their attack through it, one of the irrelevant 

researches also. 

Mechanisms like randomly rendering [17] the buttons 

faces wide rejection as it has usability issues, besides, the 

attack could be conducted by trails and errors. One of the 

client side countermeasures was NoScript ClearClick 

Firefox plug-in [18], ClearClick mechanism is by creating 

two screenshots, first one as screenshot of the framed page 

and the second is by executing the real code, if the two 

screenshots differ, plugin warns the user by a pop-up, 

besides, solution suffers from false positives, other related 

0 

2 

4 

6 

8 

10 

12 

14 

4 3 2 1 5 6 7 8 9 10 11 
Time 

  Steps 

Response   Time   Graph   for   Secured   and   Not   Secured    Actions 

Retrieve   N5K5 Submit   N5K5 Not   Secure 



IJCSNS International Journal of Computer Science and Network Security, VOL.18 No.2, February 2018 
 

137 

proposed solution called ClickIDS [19] been developed to 

reduce with a goal to reduce false positive, yet, it cannot 

detect some types of attacks like partially overplayed or 

cropped elements, besides, due to the mechanism is being 

used to compare the bitmaps screenshot, it cannot detect 

types of cursor spoofing attacks. 

One of the solutions related to ours is to introduce new 

types of controls that require user focus (e.g. a Swipe or 

holding the mouse for a certain amount of time, etc.) [5]. 

One of the solution is to dim the screen except the control 

that will receive the action to prevent other controls to by 

overlapped with, For the time being, none of these prosed 

solutions has been implemented by any of the major 

internet browsers [3].Adapting Huang et al. [3], Context 

consists of visual context and temporal context, Visual 

context is about the screen sensitive components view 

state and pointer feedback sbtate right before user’s action, 

and to ensure its integrity we need to guaranty its total 

visibility to the user and Temporal context refers to that no 

changes have happened to the targeted element at the point 

of time right before the user action, a popular example for 

that would be by launching a bait-and-switch attack by 

first baiting the user with a “claim your free iPad” button 

and then switching in a sensitive UI element right before 

the anticipated time of user click. 

Our proposed solution is different to CAPTCHA [20] , 

CAPTCHA does not solve clickjacking problem, moreover, 

one of the ways to bypass CAPTCHA can be done through 

attack similar to clickjacking, a famous attack against 

CAPTCHA is typically goes as following firstly, 

automated bot extracts the CAPTCHA content from the 

CAPTCHA protected form, secondly, the attacker injects 

the extracted CAPTCHA challenge content needs to be 

solved in phishing website luring its users to solve 

CAPTCHA in order to get the phishing site services (e.g. 

free downloading or cracks, etc...), thirdly, when the users 

answers that hijacked CAPTCHA, attackers use the 

answers to solve the CAPTCHA challenge mentioned at 

the first step. On the other hand, our proposed solution is 

not a replacement for CAPTCHA as it does not prevent 

against automation since all expected input is being sent to 

client side. 

6. Conclusion 

Clickjacking attack is one of the challenges that faces 

websites which trying to expose its features as widgets, the 

hovering patterns technique is expected to guarantee an 

actual level of protection against the attack with 

neglectable performance effect as it guarantees the total 

intention of the user ensuring both of visual and temporal 

context integrity. Finally, the fact that this technique is not 

using the clicking concept and using the hovering instead 

will make all current running attack invisible 

 

References 
[1] SimilarTech. 

https://www.similartech.com/categories/widget/, 2015. 

[2] A.Sankara Narayanan. Clickjacking vulnerability and 

countermeasures. International Journal of Applied 

Information Systems (IJAIS), 4, 2012. 

[3] Lin-Shung Huang; Alex Moshchuk; Helen J. Wang ;Stuart 

Schechter ; Collin Jackson. Clickjacking: Attacks and 

defenses. USENEX Security, 2012. 

[4] Wikipedia. Likejacking.

 http://en.wikipedia.org/wiki/ ClickjackingLikejacking. 

[5] Brad Hill. Anti-clickjacking protected interactive elements. 

January, 2012. 

[6] Gustav Rydstedt, Elie Bursztein, Dan Boneh, and Collin 

Jackson. Busting frame busting: a study of clickjacking 

vulnerabilities at popular sites. volume 2, 2010. 

[7] David Ross and Tobias Gondrom. Http header field xframe-

options, 2013. 

[8] Nikhil Limaje Abhilash Gupta Mridul Jain Bernard 

Menezes Kanpata Sudhakara Rao, Naman Jain. Two for the 

price of one: A combined browser defense against XSS and 

clickjacking. 

[9] D Kavitha, S Chandrasekaran, and SK Rani. Hdtcv: 

[10] Hybrid detection technique for clickjacking vulnerability. In 

Artificial Intelligence and Evolutionary Computations in 

Engineering Systems, pages 607–620. Springer, 2016. [10] 

The World Wide Web Consortium (W3C). Document object 

model (dom). http://www.w3.org/DOM/what. 

[11] The World Wide Web Consortium (W3C). 

Html/elements/div. 

https://www.w3.org/wiki/HTML/Elements/div. 

[12] R. Lal. Web widget.

 http://www.widgetsgadgets.com/2007/08/what-is-web-

widget.html. 

[13] Paul Petefish, Eric Sheridan, and Dave Wichers. Crosssite 

request forgery (csrf) prevention cheat sheet, 2011. 

[14] E. Bordi. Proof of concept -

 cursorjacking. http://static.vulnerability.fr/noscript-

cursorjacking.html. 

[15] K. Kotowicz. Cursorjacking again (january 2012). 

http://blog.kotowicz.net/2012/01/cursorjackingagain.html. 

[16] M. Johns;L. Sebastian. Tamper-resistant likejacking 

protection. 2013. 

[17] Brad Hill. Adaptive user interface randomization as an anti-

clickjacking strategy. May, 2012. 

[18] G. Maone. Noscript clearclick. 

http://noscript.net/faqclearclick, January 2012. 

[19] Marco Balduzzi, Manuel Egele, Engin Kirda, Davide 

Balzarotti, and Christopher Kruegel. A solution for the 

automated detection of clickjacking attacks. In Proceedings 

of the 5th ACM Symposium on Information, Computer and 

Communications Security, pages 135–144. ACM, 2010. 

[20] Bin B Zhu, Jeff Yan, Guanbo Bao, Maowei Yang, and Ning 

Xu. Captcha as graphical passwords—a new security 

primitive based on hard ai problems. IEEE transactions on 

information forensics and security, 9(6):891– 904, 2014. 


