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Summary 
Grid computing exploits linked heterogeneous resources to deal 

with greedy applications or complicated executing tasks. Hence, 

an efficient resource allocation algorithm is extremely important 

for the sake of reducing and minimizing the overall execution 

time. Our approach consists in developing a novel collaborative 

Q-Learning scheduler using a Holonic Multi Agent System to 

solve the job scheduling problems on heterogeneous distributed 

systems. The results show that for many tested dynamic 

environments, the proposed load balancer optimizes the 

distribution of tasks and reduces the total tardiness. 
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1. Introduction 

This paper deals with the problem of scheduling jobs on 

heterogenous parallel machine in order to optimize an 

utilization of distributed system and minimize the 

makespan. An efficient strategy for scheduling tasks in 

grid plays a key role in assigning tasks among available 

machines as equally as possible. This work aims at 

evolving an exact model to solve this kind of problem. 

The resource allocation problem is extensively studied in 

the literature [1,2,3,4,5] given that greedy calculations is 

frequently appears in many areas and in data intensive 

application [6] such as: weather forecasts, financial 

projects, industrial production, aerodynamic, scientific 

simulations, molecular biology problems, image 

processing, video games and so. Hence the need for more 

efficient and cost-effective strategies to cope with this 

issues in resource allocation. 

Load balancing can be classified into two types: static and 

dynamic algorithms. 

In general, according to [7-11], the used algorithms to deal 

with the static balancing method allocates the tasks by 

unique and final allocation, to the resources in a 

distributed system. It doesn’t take into consideration the 

current system status and the node properties. 

The main disadvantage of the static load balancing 

algorithm is that it creates major imbalances greater than 

the balancing produced by an arbitrary distribution. 

Dynamic load balancing approach considers, for task 

scheduling, the current status of the system [12-16,17]. 

Dynamic load balancing algorithms are more complicated 

to implement but efficient and balances the load in an 

optimal manner. 

Recently, many load-balancing schemes are developed 

based on mobile agents. The MAS [18] (Mobile Agent 

Systems) is a system composed of a set of collaborating 

agents to solve difficult problems that are hard or 

impossible for an individual agent. Further, in multi-

agent systems the concept of agent autonomy and mobility 

helps the load balancing developers to conceive and 

implement the migration strategy from the overloaded 

nodes to the lightly ones [19,20]. 

Many mobile agent methods have been proposed to deal 

with the load balancing problems. In [4,5] authors 

developpe an innovative multi agent Framework for grid 

computing. Their model engages a set of collaborative 

mobile agents to perform parallelly the continuous coming 

tasks. Dispatcher agent is used to schedule tasks received 

from producers to the workers agent. workers are the 

executers residing in nodes of the grid under the 

oversight and guidance of the controller’s agent. In [4], the 

authors propose a new model that can launch the migration 

process from container to other. the goal is to lighten the 

overloaded nodes. 

Meta-heuristics methods are broadly used to solve 

complex problems and especially the load balancing 

dilemma [21, 22]. In [23] Authors propose a new method 

inspired load-balancing algorithms based on the use of ant 

colony optimization. In the context of their research, the 

scheduler is used as an ant which chooses, for the current 

job, the machine having the higher rate of pheromone. 

The load balancing experiments were therefore 

satisfactory and the performance was as expected during 

the design phase. 
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In this paper, we propose a new framework for load 

balancing based on mobile agents and an Q-Learning 

algorithm. In this proposal, a scheduler agent is involved 

to distribute received jobs to the executers according to the 

exact decisions. The implementation of the proposed 

scheme uses the agents based middleware for distributed 

programming JADE tool [24]. 

Section II defines and formulate the problem presented in 

this work. Section III describes the architecture of the 

proposed computational model. Section IV and V presents 

respectively the technical background and the load 

balancing system used in task routing. Section 5 show the 

experimental setup and results accomplished. In 

conclusion, section 6 recaps the contribution of this paper 

and presents some perspectives for upcoming extensions. 

2. Model 

Let [T] = {1, 2, . . . , m} be the set of jobs and let [N] = {1, 

2, . . . , n} be the set of machine workers. As shown in 

fig.1, the resources are connected to the dispatcher of the 

layer 2 through heterogeneous network links. Let Li and Pi 

denotes respectively the speed of the network link 

connecting the machine Mi with the Dispatcher and the 

velocity of the worker machine Mi. Each task: Ti ∈ [T] 

has an associated complexity Ci and an estimation 

execution time  ∈ R. 

For t ≥ 0 let TEi(t) represent the estimated times of all jobs 

waiting in line on machine (Mi) at time t. 
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|Qi|: is the number of the queued tasks in machine Mi. 

Each worker machine is monitored by a controller agent. 

The controller's agent communicates continuously to the 

dispatcher the state of their nodes: si(t). 

si(t)={Li,Pi , NBCi , i , TEi(t), NbTi(t), ri(t)}  Where : 

NBCi : Is the number of cores (CPUs) of node Mi.  

NbTi(t): Is the number of the queued tasks on node Mi at 

time t. 

ri(t): Represents the reward of machine i at time t. 

Let S(t)={s1(t), s2(t), .., sN(t)} represents all the status of all 

worker machines.  

The mentioned gathered parameters by the dispatcher, 

allows in each task distribution, to choose the suitable 

machine to execute the current task. 

Therefore, at any given moment, the overall execution 

time to perform the queued jobs depends essentially on the 

latest executer machine. In the literature it is also called 

the makespan. or the total tardiness. In our proposal, the 

makespan can be formulated as follows: 
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k : Is the index of task Tk listed on the queue of the node 

Mi at time t. 

Finally, the scheduling problem can be mathematically 

expressed as optimization problem as given below: 
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3. Computational model 

3.1 Architecture description 

This work aims to solve a scheduling problem on 

heterogenous parallel machines. An efficient scheduling 

algorithm plays an important role in an effective 

management of the resources and consequently in reducing 

the overall execution time. In our proposal, the load 

balancing is achieved by using Q-learning and a 

hierarchical mobile agent system. 

As shown in fig.1 ,5 types of mobile agents are used in our 

method: The Producer-Agent, the Tester-Agent, the 

Dispatcher-Agent, the Controller-Agent and the Worker-

Agent. The Producer agent is the one that represents the 

producers of tasks as: web application, mobile application, 

embedded system(IOT), expert agent(human) and so. The 

Tester-Agent estimate by learning the execution time of 

tasks. The Producer agent is a type of central unique agent 

and is responsible for scheduling tasks among available 

resources. Controller-Agent is responsible for 

continuously monitoring the status of the resources and 

Worker-Agent executes the tasks received from the 

dispatcher. 

The main idea of this three-layer model is to build a 

Framework able to execute parallelly the continuous 

arrival tasks in such a way as to make the system in the 

balanced state. 
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3.2 Monitoring model 

3.2.1 Referencing phase 

The aim of the referencing phase is to provide the 

scheduler by the performance parameters of each worker 

machine. Consequently, these settings are used to avoid 

overloading the weak machines, underloading the strong 

machines and then to reduce the total tardiness. 

Each machine that seeks to join the Framework, at the 3rd 

layer, as a worker node to participate on the computation 

must follow these three steps as shown in fig.2: 

 

Fig. 1  Framework Architecture . 

1. Send a request to the dispatcher to join the workers. 

2. Receive and perform the referencing task: T0. 

3. Communicate to the Dispatcher the results of T0 execution: 

Li,Pi , NBCi. 

Note that: 

 θi : Represent the total Time required to perform T0  since its 

departure from the dispatcher, its execution on node Ni and 

its return to the dispatcher. 

 θPi : Represent the total Time required to perform T0 on 

Node Ni (i=1..n). 

 Li : The communication Latency of each node Ni. It 

corresponds to: Li= θi-θPi   (4) 

3.2.2 Load balancing process 

Two methods are presented to solve the addressed 

scheduling problem: 

 Q Learning Algorithm: 

The used Framework is endowed by a load balancing 

process which is performed by the dispatcher agent. This 

agent takes decisions about scheduling tasks using Q 

Learning algorithm. This means that the load balancer 

learns from the previous scheduling. Hence, the imbalance 

of the system will be reduced by the experience 

accumulated by the Dispatcher. 

 Migration Task Strategy: 

This second strategy consists of classify periodically nodes 

into 3 groups: Overloaded nodes(ON), Under loaded 

nodes (UN) and Normal nodes (NN). Then, start the 

process of tasks migration from overloaded nodes to under 

loaded ones. 

 

 Fig. 2  Referencing phase. 

4. Technical background 

4.1 Q Learning 

Reinforcement learning (RL) is an actual method allowing 

algorithms to act optimally on very dynamic and stochastic 

environments. By trial and error interactions and 

exchanges between agent and its environment, the 

algorithm of RL learn an intelligent optimal strategy to 

cope with the more difficult circumstances. 

These situation model consist of an agent observing its 

environment, selecting an action from the current state and 

then taking a reward or penalty to the action chosen. The 

goal of the agent is to maximize its entire upcoming 

reward. Q-learning [25, 26] is one of the well-known RL 

methods. Its goal is to find an optimal action-selection 

strategy for any specified Markov decision process. 

The core of the Q-learning consists of a simple update of 

the function Q. Q is updated at each action-selection by the 

succeeding formula: 
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  (5)

 

Where: 

α: is the learning speed, it controls how much new 

calculated data will exceed the old one. 

ϒ: is called: discount factor. it controls the weight of 

future rewards. 

5. Proposed approach 

In our proposed Framework, the controller agents 

continuously communicates to the second layer the 

following calculated parameters:  NbTi(t),TEi(t),ri(t). Then, 

the Dispatcher stock these collected data beside Pi, Li, 

NbCi in si(t). In real time, the Dispatcher updates S(t) by 

the novel gathered values {si(t)}i=1..N. 

As shown in fig.3, the Dispatcher uses the QL to schedule, 

in an optimum way, the received tasks from Producers. 

The Dispatcher agent receives in real time the list of tasks 

from the Producers agent. It analyzes the estimation time 

of each task and then it uses Q-learning to send each task 

to the suitable worker. The controllers communicate 

directly to the second layer the gathered state resource S(t) 

in order to provides the Dispatcher by the efficiency of 

each worker machine Mi in the past. 

The situation consists of a QL-Dispatcher agent that 

schedules tasks over available nodes, a set (S) that 

represent the workers states, and a set of actions A that 

correspond to the list of all possible schedules. By 

executing an action a, the agent switches from a state to a 

new one. Choosing an action a rewarders the selected 

worker by a numerical value ri(t) that can be calculated 

based on the other parameters of si (t) by following this 

algorithm: 

Begin 
   For the first scheduling: InitReward( ); 

   For future scheduling: for each  

                      WMi :CalculReward(WMi ); 

       InitReward(){ 

        For( i=1  to N ) WMi. ri(t) 1;   } 

        CalculReward(WMi ){ 

        If( WMi .TEi(t) > (1+Ts)*θT(t) /N ) { 

              (WMi. ri(t)) (WMi. ri(t))-reward ; } 

       If( WMi .TEi(t) < (1+Ts)*θT(t) /N ) { 

              (WMi. ri(t)) (WMi. ri(t))+reward; } 

         End. 

Algo. 1  Reward calculation algorithm. 

The core of this algorithm consists of a simple calculation 

of ri(t). The reward calculation is based on the comparison 

to a load threshold value: Ts. This parameter indicates 

whether each node belongs to the overloaded machines or 

to the underloaded ones. 

In our case, Ts is randomly fixed at 20%. We can easily 

change this value for another possible configuration. 

Rewarding a machine by a positive value means 

encouraging it to receive more tasks in future scheduling. 

 

Fig. 3  Q-learning model 

Contrary to the negative rewarding, it discourages weak 

machines to receive more tasks. 

Note that Q is initialized to 0 and R to 1 where: 

R(t)= {ri(t)}i=1..N  and Q(t)= { i=1..N   

Next, the QL-Dispatcher adjusts the q-values according to 

the actions taken and the reward received. 

The dispatcher agent uses the following equation to update 

at each time interval:

It means that it calculates for each worker the new value 

based on its old , its reward , and the 

maximum value  of all worker machines. 

The figure 4 and the following example demonstrates an 

example of Q calculation: calculation of the novel 
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Fig. 4  Q-calculation 

Next, the dispatcher selects the machine having the 

greatest Q value to send it the current task and so forth 

on each new received task from producers. 

The following algorithm summarizes the load balancing 

steps proposed in this paper. 

Begin 

Repeat 

 Controllers communicates S(t) to the Dispatcher. 

 Dispatcher calculates R(t+1) and then Q(t+1). 

 Dispatcher sends the current task to the  

                 worker having the greatest Q value. 

 Controllers update S(t+1). 

While <true> 

End. 

Algo. 2  Load balancing algorithm operation. 

6. Experiments 

The Q-Learning scheduler algorithm was implemented and 

tested on a grid of N (N=10) heterogeneous machines 

worker. The test experiments were generated using a set of 

NbT (NbT= 1000) heterogenous tasks. This section 

presents the computational findings. 

6.1 Parameter's determination phase 

Resources referencing is realized by executing a special 

task T0 as already mentioned in section 3.2.1. Table 1 

shows the parameters calculated during this referencing 

phase: 

 

 

 

Table 1: Parameters calculation by referencing phase 

Node i Pi (ms) Li (ms) NbCi Reward: Mi 

0 80 2 4 1 

1 150 10 2 1 

2 120 8 1 1 
3 70 10 4 1 
4 100 8 8 1 
5 90 10 2 1 
6 160 3 1 1 
7 170 5 16 1 
8 120 1 2 1 
9 145 3 4 1 

6.2 Q-Learning parametrization 

The performance metric in finding optimal solutions 

depends essentially on the parameterization of the Q-

Learning operators. 

The best Q-Learning operators found are shown in Table 2. 

Table 2: Best parameter settings of the Q-Learning 

  

0.2 0.4 
 

Theoretically, for a given system S, having at time t, N 

distributed resources and an overall execution time T, each 

resource must have a workload of execution time around 

the theoretical value: LBT=T / N which is impossible 

experimentally. 

6.3 Performance evaluations under different system 

loads 

6.3.1 Tasks having ordered complexity 

In this section, we arbitrarily indicate: i =20i for each 

Task i. Table 3 shows the scheduling results using Round 

Robin Algorithm and Q-Learning, while figure 5 

represents a comparison between these three durations: 

 Distribution using Round Robin algorithm.  

 Load balancing Theoretic: LBT. 

 Distribution using Q-Learning. 

Round robin algorithm distributes jobs over all available 

nodes in circular order Without any type of priority. 
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Table 3: Parallel execution time of 1000 Tasks using Round robin and Q-

Learning 

Node 

Ni 
 

Q-L 

 (ms) 

Q-L 

Round robin 

(ms) 

0 103 266686,5 157550 
1 48 328430 496500 
2 24 199220 594800 
3 61 172357,5 159250 
4 172 214964,5 74850 
5 36 181510 500500 
6 28 277144 602300 
7 346 216619,375 62781,25 
8 86 432223 503050 
9 96 239207 252075 

 

The chosen metrics to evaluate and measure the system 

performance at each instant, as already cited, are based on 

the calculation of the ratio: 

       (7) 

In this case .82.1   

 

Fig. 5  Curve of Q-Learning distribution compared to the Round robin 
and LBT. 

6.3.2 Tasks having unordered complexity 

For the additional category of tests related to assessments 

under dissimilar system loads, we select arbitrarily for 

each task Ti: 

 

Giving to this dissimilar system loads example, a novel 

test is performed. The distribution findings are as follows:  

Table 6 shows the distribution results by using Q-learning. 

 

 

 

Table 4: Parallel execution time of 1000 Tasks using q-learning of 

unordered tasks complexities. 

Node NBTi θPi(ms) 

0 10 91214279,5 
1 104 56255662 
2 118 37788468 
3 32 34039604,5 
4 119 36351290 
5 66 42744272 
6 41 148449863 
7 373 89091486,9 
8 46 165171256 
9 91 99118657,5 

In this case  

7. Conclusion 

This paper deals with the problem of scheduling jobs on 

heterogenous parallel machine in order to optimize an 

utilization of distributed system and minimize the 

makespan. The problem is formulated as optimization 

mathematical model. Based on this exact model, we have 

developed a solution that consists of an Q-Learning 

scheduler that learns from the interaction with its 

environment.  The results show that for many tested 

dynamic environments, the proposed load balancer 

optimizes the distribution of tasks and reduces the total 

tardiness. In perspective relatively to this study, another 

possible contribution of this work would be the 

hybridization of Q-Learning and Ant colony optimization 

in order to gradually eliminate the cost of tasks migration 

strategy. 
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