
IJCSNS International Journal of Computer Science and Network Security, VOL.18 No.2, February 2018

153

Manuscript received February 5, 2018

Manuscript revised February 20, 2018

Q-Learning applied to the problem of scheduling on

heterogeneous architectures

Younes Hajoui † Omar Bouattane † Mohamed Youssfi † and Elhocein Illoussamen ††,

Laboratory SSDIA, ENSET Mohammedia, Hassan II University of Casablanca

Mohammedia 28999, Morocco

Summary
Grid computing exploits linked heterogeneous resources to deal

with greedy applications or complicated executing tasks. Hence,

an efficient resource allocation algorithm is extremely important

for the sake of reducing and minimizing the overall execution

time. Our approach consists in developing a novel collaborative

Q-Learning scheduler using a Holonic Multi Agent System to

solve the job scheduling problems on heterogeneous distributed

systems. The results show that for many tested dynamic

environments, the proposed load balancer optimizes the

distribution of tasks and reduces the total tardiness.

Key words:
Job scheduling, Grid Computing, Distributed System, Multi-

Agent system, Load balancer, Q-learning.

1. Introduction

This paper deals with the problem of scheduling jobs on

heterogenous parallel machine in order to optimize an

utilization of distributed system and minimize the

makespan. An efficient strategy for scheduling tasks in

grid plays a key role in assigning tasks among available

machines as equally as possible. This work aims at

evolving an exact model to solve this kind of problem.

The resource allocation problem is extensively studied in

the literature [1,2,3,4,5] given that greedy calculations is

frequently appears in many areas and in data intensive

application [6] such as: weather forecasts, financial

projects, industrial production, aerodynamic, scientific

simulations, molecular biology problems, image

processing, video games and so. Hence the need for more

efficient and cost-effective strategies to cope with this

issues in resource allocation.

Load balancing can be classified into two types: static and

dynamic algorithms.

In general, according to [7-11], the used algorithms to deal

with the static balancing method allocates the tasks by

unique and final allocation, to the resources in a

distributed system. It doesn’t take into consideration the

current system status and the node properties.

The main disadvantage of the static load balancing

algorithm is that it creates major imbalances greater than

the balancing produced by an arbitrary distribution.

Dynamic load balancing approach considers, for task

scheduling, the current status of the system [12-16,17].

Dynamic load balancing algorithms are more complicated

to implement but efficient and balances the load in an

optimal manner.

Recently, many load-balancing schemes are developed

based on mobile agents. The MAS [18] (Mobile Agent

Systems) is a system composed of a set of collaborating

agents to solve difficult problems that are hard or

impossible for an individual agent. Further, in multi-

agent systems the concept of agent autonomy and mobility

helps the load balancing developers to conceive and

implement the migration strategy from the overloaded

nodes to the lightly ones [19,20].

Many mobile agent methods have been proposed to deal

with the load balancing problems. In [4,5] authors

developpe an innovative multi agent Framework for grid

computing. Their model engages a set of collaborative

mobile agents to perform parallelly the continuous coming

tasks. Dispatcher agent is used to schedule tasks received

from producers to the workers agent. workers are the

executers residing in nodes of the grid under the

oversight and guidance of the controller’s agent. In [4], the

authors propose a new model that can launch the migration

process from container to other. the goal is to lighten the

overloaded nodes.

Meta-heuristics methods are broadly used to solve

complex problems and especially the load balancing

dilemma [21, 22]. In [23] Authors propose a new method

inspired load-balancing algorithms based on the use of ant

colony optimization. In the context of their research, the

scheduler is used as an ant which chooses, for the current

job, the machine having the higher rate of pheromone.

The load balancing experiments were therefore

satisfactory and the performance was as expected during

the design phase.

IJCSNS International Journal of Computer Science and Network Security, VOL.18 No.2, February 2018

154

In this paper, we propose a new framework for load

balancing based on mobile agents and an Q-Learning

algorithm. In this proposal, a scheduler agent is involved

to distribute received jobs to the executers according to the

exact decisions. The implementation of the proposed

scheme uses the agents based middleware for distributed

programming JADE tool [24].

Section II defines and formulate the problem presented in

this work. Section III describes the architecture of the

proposed computational model. Section IV and V presents

respectively the technical background and the load

balancing system used in task routing. Section 5 show the

experimental setup and results accomplished. In

conclusion, section 6 recaps the contribution of this paper

and presents some perspectives for upcoming extensions.

2. Model

Let [T] = {1, 2, . . . , m} be the set of jobs and let [N] = {1,

2, . . . , n} be the set of machine workers. As shown in

fig.1, the resources are connected to the dispatcher of the

layer 2 through heterogeneous network links. Let Li and Pi

denotes respectively the speed of the network link

connecting the machine Mi with the Dispatcher and the

velocity of the worker machine Mi. Each task: Ti ∈ [T]

has an associated complexity Ci and an estimation

execution time ∈ R.

For t ≥ 0 let TEi(t) represent the estimated times of all jobs

waiting in line on machine (Mi) at time t.

||Q

1

i

)(
i

ii tTE Where: (1)

|Qi|: is the number of the queued tasks in machine Mi.

Each worker machine is monitored by a controller agent.

The controller's agent communicates continuously to the

dispatcher the state of their nodes: si(t).

si(t)={Li,Pi , NBCi , i , TEi(t), NbTi(t), ri(t)} Where :

NBCi : Is the number of cores (CPUs) of node Mi.

NbTi(t): Is the number of the queued tasks on node Mi at

time t.

ri(t): Represents the reward of machine i at time t.

Let S(t)={s1(t), s2(t), .., sN(t)} represents all the status of all

worker machines.

The mentioned gathered parameters by the dispatcher,

allows in each task distribution, to choose the suitable

machine to execute the current task.

Therefore, at any given moment, the overall execution

time to perform the queued jobs depends essentially on the

latest executer machine. In the literature it is also called

the makespan. or the total tardiness. In our proposal, the

makespan can be formulated as follows:

))(()(
1

tPMaxtP i

N

i

 (2)

 Where: iii
k k

i NBCtTELtP /)(*)(
0

 (3)

k : Is the index of task Tk listed on the queue of the node

Mi at time t.

Finally, the scheduling problem can be mathematically

expressed as optimization problem as given below:

iii
k k

t

i

N

i
t

NBCtTELMin

tPMaxMintPMin

/)(*

)))((()(

0

1

 (4)

3. Computational model

3.1 Architecture description

This work aims to solve a scheduling problem on

heterogenous parallel machines. An efficient scheduling

algorithm plays an important role in an effective

management of the resources and consequently in reducing

the overall execution time. In our proposal, the load

balancing is achieved by using Q-learning and a

hierarchical mobile agent system.

As shown in fig.1 ,5 types of mobile agents are used in our

method: The Producer-Agent, the Tester-Agent, the

Dispatcher-Agent, the Controller-Agent and the Worker-

Agent. The Producer agent is the one that represents the

producers of tasks as: web application, mobile application,

embedded system(IOT), expert agent(human) and so. The

Tester-Agent estimate by learning the execution time of

tasks. The Producer agent is a type of central unique agent

and is responsible for scheduling tasks among available

resources. Controller-Agent is responsible for

continuously monitoring the status of the resources and

Worker-Agent executes the tasks received from the

dispatcher.

The main idea of this three-layer model is to build a

Framework able to execute parallelly the continuous

arrival tasks in such a way as to make the system in the

balanced state.

IJCSNS International Journal of Computer Science and Network Security, VOL.18 No.2, February 2018

155

3.2 Monitoring model

3.2.1 Referencing phase

The aim of the referencing phase is to provide the

scheduler by the performance parameters of each worker

machine. Consequently, these settings are used to avoid

overloading the weak machines, underloading the strong

machines and then to reduce the total tardiness.

Each machine that seeks to join the Framework, at the 3rd

layer, as a worker node to participate on the computation

must follow these three steps as shown in fig.2:

Fig. 1 Framework Architecture .

1. Send a request to the dispatcher to join the workers.

2. Receive and perform the referencing task: T0.

3. Communicate to the Dispatcher the results of T0 execution:

Li,Pi , NBCi.

Note that:

 θi : Represent the total Time required to perform T0 since its

departure from the dispatcher, its execution on node Ni and

its return to the dispatcher.

 θPi : Represent the total Time required to perform T0 on

Node Ni (i=1..n).

 Li : The communication Latency of each node Ni. It

corresponds to: Li= θi-θPi (4)

3.2.2 Load balancing process

Two methods are presented to solve the addressed

scheduling problem:

 Q Learning Algorithm:

The used Framework is endowed by a load balancing

process which is performed by the dispatcher agent. This

agent takes decisions about scheduling tasks using Q

Learning algorithm. This means that the load balancer

learns from the previous scheduling. Hence, the imbalance

of the system will be reduced by the experience

accumulated by the Dispatcher.

 Migration Task Strategy:

This second strategy consists of classify periodically nodes

into 3 groups: Overloaded nodes(ON), Under loaded

nodes (UN) and Normal nodes (NN). Then, start the

process of tasks migration from overloaded nodes to under

loaded ones.

 Fig. 2 Referencing phase.

4. Technical background

4.1 Q Learning

Reinforcement learning (RL) is an actual method allowing

algorithms to act optimally on very dynamic and stochastic

environments. By trial and error interactions and

exchanges between agent and its environment, the

algorithm of RL learn an intelligent optimal strategy to

cope with the more difficult circumstances.

These situation model consist of an agent observing its

environment, selecting an action from the current state and

then taking a reward or penalty to the action chosen. The

goal of the agent is to maximize its entire upcoming

reward. Q-learning [25, 26] is one of the well-known RL

methods. Its goal is to find an optimal action-selection

strategy for any specified Markov decision process.

The core of the Q-learning consists of a simple update of

the function Q. Q is updated at each action-selection by the

succeeding formula:

IJCSNS International Journal of Computer Science and Network Security, VOL.18 No.2, February 2018

156

 (5)

Where:

α: is the learning speed, it controls how much new

calculated data will exceed the old one.

ϒ: is called: discount factor. it controls the weight of

future rewards.

5. Proposed approach

In our proposed Framework, the controller agents

continuously communicates to the second layer the

following calculated parameters: NbTi(t),TEi(t),ri(t). Then,

the Dispatcher stock these collected data beside Pi, Li,

NbCi in si(t). In real time, the Dispatcher updates S(t) by

the novel gathered values {si(t)}i=1..N.

As shown in fig.3, the Dispatcher uses the QL to schedule,

in an optimum way, the received tasks from Producers.

The Dispatcher agent receives in real time the list of tasks

from the Producers agent. It analyzes the estimation time

of each task and then it uses Q-learning to send each task

to the suitable worker. The controllers communicate

directly to the second layer the gathered state resource S(t)

in order to provides the Dispatcher by the efficiency of

each worker machine Mi in the past.

The situation consists of a QL-Dispatcher agent that

schedules tasks over available nodes, a set (S) that

represent the workers states, and a set of actions A that

correspond to the list of all possible schedules. By

executing an action a, the agent switches from a state to a

new one. Choosing an action a rewarders the selected

worker by a numerical value ri(t) that can be calculated

based on the other parameters of si (t) by following this

algorithm:

Begin
 For the first scheduling: InitReward();

 For future scheduling: for each

 WMi :CalculReward(WMi);

 InitReward(){

 For(i=1 to N) WMi. ri(t) 1; }

 CalculReward(WMi){

 If(WMi .TEi(t) > (1+Ts)*θT(t) /N) {

 (WMi. ri(t)) (WMi. ri(t))-reward ; }

 If(WMi .TEi(t) < (1+Ts)*θT(t) /N) {

 (WMi. ri(t)) (WMi. ri(t))+reward; }

 End.

Algo. 1 Reward calculation algorithm.

The core of this algorithm consists of a simple calculation

of ri(t). The reward calculation is based on the comparison

to a load threshold value: Ts. This parameter indicates

whether each node belongs to the overloaded machines or

to the underloaded ones.

In our case, Ts is randomly fixed at 20%. We can easily

change this value for another possible configuration.

Rewarding a machine by a positive value means

encouraging it to receive more tasks in future scheduling.

Fig. 3 Q-learning model

Contrary to the negative rewarding, it discourages weak

machines to receive more tasks.

Note that Q is initialized to 0 and R to 1 where:

R(t)= {ri(t)}i=1..N and Q(t)= { i=1..N

Next, the QL-Dispatcher adjusts the q-values according to

the actions taken and the reward received.

The dispatcher agent uses the following equation to update

at each time interval:

It means that it calculates for each worker the new value

based on its old , its reward , and the

maximum value of all worker machines.

The figure 4 and the following example demonstrates an

example of Q calculation: calculation of the novel

IJCSNS International Journal of Computer Science and Network Security, VOL.18 No.2, February 2018

157

Fig. 4 Q-calculation

Next, the dispatcher selects the machine having the

greatest Q value to send it the current task and so forth

on each new received task from producers.

The following algorithm summarizes the load balancing

steps proposed in this paper.

Begin

Repeat

 Controllers communicates S(t) to the Dispatcher.

 Dispatcher calculates R(t+1) and then Q(t+1).

 Dispatcher sends the current task to the

 worker having the greatest Q value.

 Controllers update S(t+1).

While <true>

End.

Algo. 2 Load balancing algorithm operation.

6. Experiments

The Q-Learning scheduler algorithm was implemented and

tested on a grid of N (N=10) heterogeneous machines

worker. The test experiments were generated using a set of

NbT (NbT= 1000) heterogenous tasks. This section

presents the computational findings.

6.1 Parameter's determination phase

Resources referencing is realized by executing a special

task T0 as already mentioned in section 3.2.1. Table 1

shows the parameters calculated during this referencing

phase:

Table 1: Parameters calculation by referencing phase

Node i Pi (ms) Li (ms) NbCi Reward: Mi

0 80 2 4 1

1 150 10 2 1

2 120 8 1 1
3 70 10 4 1
4 100 8 8 1
5 90 10 2 1
6 160 3 1 1
7 170 5 16 1
8 120 1 2 1
9 145 3 4 1

6.2 Q-Learning parametrization

The performance metric in finding optimal solutions

depends essentially on the parameterization of the Q-

Learning operators.

The best Q-Learning operators found are shown in Table 2.

Table 2: Best parameter settings of the Q-Learning

0.2 0.4

Theoretically, for a given system S, having at time t, N

distributed resources and an overall execution time T, each

resource must have a workload of execution time around

the theoretical value: LBT=T / N which is impossible

experimentally.

6.3 Performance evaluations under different system

loads

6.3.1 Tasks having ordered complexity

In this section, we arbitrarily indicate: i =20i for each

Task i. Table 3 shows the scheduling results using Round

Robin Algorithm and Q-Learning, while figure 5

represents a comparison between these three durations:

 Distribution using Round Robin algorithm.

 Load balancing Theoretic: LBT.

 Distribution using Q-Learning.

Round robin algorithm distributes jobs over all available

nodes in circular order Without any type of priority.

IJCSNS International Journal of Computer Science and Network Security, VOL.18 No.2, February 2018

158

Table 3: Parallel execution time of 1000 Tasks using Round robin and Q-

Learning

Node

Ni

Q-L

 (ms)

Q-L

Round robin

(ms)

0 103 266686,5 157550
1 48 328430 496500
2 24 199220 594800
3 61 172357,5 159250
4 172 214964,5 74850
5 36 181510 500500
6 28 277144 602300
7 346 216619,375 62781,25
8 86 432223 503050
9 96 239207 252075

The chosen metrics to evaluate and measure the system

performance at each instant, as already cited, are based on

the calculation of the ratio:

 (7)

In this case .82.1

Fig. 5 Curve of Q-Learning distribution compared to the Round robin
and LBT.

6.3.2 Tasks having unordered complexity

For the additional category of tests related to assessments

under dissimilar system loads, we select arbitrarily for

each task Ti:

Giving to this dissimilar system loads example, a novel

test is performed. The distribution findings are as follows:

Table 6 shows the distribution results by using Q-learning.

Table 4: Parallel execution time of 1000 Tasks using q-learning of

unordered tasks complexities.

Node NBTi θPi(ms)

0 10 91214279,5
1 104 56255662
2 118 37788468
3 32 34039604,5
4 119 36351290
5 66 42744272
6 41 148449863
7 373 89091486,9
8 46 165171256
9 91 99118657,5

In this case

7. Conclusion

This paper deals with the problem of scheduling jobs on

heterogenous parallel machine in order to optimize an

utilization of distributed system and minimize the

makespan. The problem is formulated as optimization

mathematical model. Based on this exact model, we have

developed a solution that consists of an Q-Learning

scheduler that learns from the interaction with its

environment. The results show that for many tested

dynamic environments, the proposed load balancer

optimizes the distribution of tasks and reduces the total

tardiness. In perspective relatively to this study, another

possible contribution of this work would be the

hybridization of Q-Learning and Ant colony optimization

in order to gradually eliminate the cost of tasks migration

strategy.

References
[1] S. Sharma, S. Singh, and M. Sharma, "Performance

Analysis of Load Balancing Algorithms," World Academy

of Science, Engineering and Technology, vol. 38, 2008.

[2] L. M. Khanli1 and BehnazDidevar, “A New Hybrid Load

Balancing Algorithm in Grid Computing Systems, ”Journal

of Computer Science Vol-2 No 5 October, 2011.

[3] A. Revar, M. Andhariya, D. Sutariya, "Load Balancing in

Grid Environment using Machine Learning - Innovative

Approach, " International Journal of Computer Applications

(0975 – 8887), Volume 8– No.10, October 2010

[4] M. Youssfi and O. Bouattane ,”Efficient Load Balancing

Algorithm for Distributed Systems Using Mobile Agents ,”

Advanced Studies in Theoretical Physics Vol. 9, 2015, no. 5,

pp.245 - 253.

[5] Y.Hajoui, M. Youssfi, O. Bouattane and E.Illoussamen

“NEW MODEL OF FRAMEWORK FOR TASK

SCHEDULING BASED ON MOBILE AGENTS,”. Journal

of Theoretical & Applied Information Technology . Vol. 81

Issue 1, p65-72 ; October,2015.

[6] M. D. Beynon, T. Kurc et al. “Efficient Manipulation of

Large Datasets on Heterogeneous Storage Systems”,

Proceedings of the 16th International Parallel & Distributed

Processing Symposium, IEEE, Los Alamitos, California,

2002.

)(tPi

IJCSNS International Journal of Computer Science and Network Security, VOL.18 No.2, February 2018

159

[7] Kameda, H., Li, J., Kim, C., Zhang, Y.: Optimal Load

Balancing in Distributed Computer Systems.

Springer,London (1997)

[8] Tang, X., Chanson, S.T.: Optimizing static job scheduling in

a network of heterogeneous computers. In:Proceedings of

Intl. Conf. on Parallel Processing, pp.373–382. IEEE,

Piscataway (2000)

[9] Grosu, D., Chronopoulos, A.T.: Noncooperative load

balancing in distributed systems. J. Parallel Distrib.

Comput.65(9), 1022–1034 (2005)

[10] Penmatsa, S., Chronopoulos, A.T.: Job allocation schemes

in computational Grids based on cost optimization. In:

Proceedings of 19th IEEE International Parallel and

Distributed Processing Symposium,Denver, (2005)

[11] Penmatsa, S., Chronopoulos, A.T.: Price-based useroptimal

job allocation scheme for Grid systems. In: Proceedings of

20th IEEE International Parallel and Distributed Processing

Symposium, Rhodes, 2006

[12] Dhakal, S., Hayat, M.M., Pezoa, J.E., Yang, C., Bader,

D.A.: Dynamic load balancing in distributed systems in the

presence of delays: a regenerationtheory approach. IEEE

Trans. Parallel Distrib. Syst. 18(4), 485–497 (2007)

[13] Dobber, M., Koole, G., Mei, R.: Dynamic load balancing

experiments in a Grid. In: Proceedings of IEEE International

Symposium on Cluster Computing and the Grid, Cardiff,

2005

[14] Penmatsa, S., Chronopoulos, A.T.: Dynamic multi-user load

balancing in distributed systems. In: Proceedings of 21st

IEEE International Parallel and Distributed Processing

Symposium, Long Beach, 2007

[15] Shah, R., Veeravalli, B., Misra, M.: On the design of

adaptive and de-centralized load balancing algorithms with

load estimation for computational Grid environments. IEEE

Trans. Parallel Distrib. Syst.18, 1675–1686 (2007)

[16] Arora, M., Das, S.K., Biswas, R.: A de-centralized

scheduling and load balancing algorithm for heterogeneous

Grid environments. In: Proceedings of International

Conference on Parallel Processing Workshops, pp. 499–505.

IEEE, Piscataway (2002)

[17] Zheng, Q.: Dynamic load balancing and pricing in grid

computing with communication delay. J. Grid Comput. 6,

239–253 (2008)

[18] Kim YH, Han S, Lyu CH, Youn HY. An efficient dynamic

load balancing scheme for multi-agent system reflecting

agent workload. In: The 12th IEEE international conference

on computational science and, engineering; 2009.

[19] Cho ChoMyint, Khin Mar LarTun, A Framework of Using

Mobile Agent to Achieve Efficient Load Balancing in

Cluster. In: Proc. 6th Asia Pacific symposium on

information and telecommunication technologies; 2005.

[20] Maha A. Metawei, Salma A. Ghoneim ,Sahar M. Haggag ,

Salwa M. Nassar .'Load balancing in distributed multi-agent

computing systems', Ain Shams Engineering Journal, (), pp.

237–249. (23 May 2012)

[21] Kwang, M.S., Sun, H.W.: Ant colony optimization for

routing and load-balancing: survey and new directions.IEEE

Trans. Syst. Man Cybern. Part A33(5), 560–572(2003)

[22] Ludwig, S.A., Moallem, A. : Swarm Intelligence

Approaches for Grid Load Balancing. J Grid Computing 9,

279–301 (2011)

[23] H. Younes, O. Bouattane, M. Youssfi, and E. Illoussamen,

“New load balancing Framework based on mobile AGENT

and ant-colony optimization technique”. In: Proceedings of

International Conference on Intelligent Systems and

Computer Vision (ISCV), IEEE, Fez-Morocco (2017).

[24] F. L. Bellifemine, G.Caire, and D. Greenwood,

“Developing MultiAgent Systems with JADE”. Wiley,

2007.

[25] J.W. Christopher, D. Peter, Q-learning, Machine Learning, 8

(1992) 279-292.

[26] K. Hwang, H. Lin, Y. Hsu, H. Yu, Self-organizing state

aggregation for architecture design of Q-learning,

Information Sciences, 181 (2011) 2813-2822.

