
IJCSNS International Journal of Computer Science and Network Security, VOL.18 No.3, March 2018

110

Manuscript received March 5, 2018
Manuscript revised March 20, 2018

Formal Analysis and Verification of Packet Recovery Protocols
for Multicast Video

Muhammad Atif†, Nadia Mushtaq† , M. Sohaib Mahmood†, Muhammad Naeem††, Amjad Riaz†††

†Department of Computer Science and Information Technology, The University of Lahore, Pakistan

††Department of Electronics and Electrical Systems, The University of Lahore, Pakistan
†††Horizon Concepts Limited, Stockport, Manchester, SK7 5EJ, United Kingdom

Summary
Internet based transmission of real-time videos has become one
of the major components of online multimedia applications. A
real-time video delivery system may face several problems that
include possible delay, packet loss and limited bandwidth.
Unfortunately, not much work has been done on the
improvement of the quality of service (QoS) to ensure the
smooth video transmission. The cooperative packet recovery
protocol for the multi-casting of audio/video was presented in
[Maxemchuk, Nicholas F., K. Padmanabhan, and S. Lo. A
cooperative packet recovery protocol for multicast video,
Proceedings of 1997 IEEE International Conference on Network
Protocols] and claimed significant improvement in QoS through
a packet recovery mechanism. Our work formally specified this
protocol together with its principal functional requirements and
proved that this protocol failed to recover packet(s) in certain
situations. The diagnostic traces have been reported as the proof,
and this protocol has been specified in automata-theoretic
formalism.
Key words:
Multicasting Video/Audio, Formal Specification, Model
Checking, Packet Recovery protocol, QoS in Multimedia
Transmissions.

1. Introduction

For the Internet multimedia applications such as Internet
television, video conferencing, distance learning, digital
libraries, multicast video transmission is required. The
main problem with such applications is the heterogeneity
of networks which makes it difficult to achieve a good
Quality of Service (QoS). In designing video transmission
protocols, the challenging issues are dealing with
bandwidth limitations, packet losses and arbitrary delays in
packet transferring. Moreover, excessive traffic and
congestion collapse also have negative effects on QoS for
video transmission protocols. To achieve acceptable visual
quality, the packet loss ratio should be below a certain
threshold (say 1%) but due to more packet loss the
multicast video transmission protocols face the quality
degradation.

In the cooperative packet recovery protocol for
audio/video multicasting described in [17], a significant
improvement of QoS is claimed by error control approach
which is proved a better packet-recovery mechanism of
retransmission. We verify this claim and the functional
requirements of the protocol by using formal analysis
techniques. Formal methods offer a large potential to
provide correctness measuring techniques [4]. We apply
model-checking, i.e. a formal method’s technique for
formal verification. During the last few years, a number of
modeling and automatic verification tools for hybrid and
real-time systems [8], [16], [19], [25], and [2] have been
developed.

The participants of the protocol described in [17] are
source, a retransmit server, a client and set of receivers.
For implementation of this protocol experiment conducted
via transmission between two real time locations, one at
Indian Hill (IH), near Chicago, and the other at Murray
Hill (MH), New Jersey. At Indian Hill live video
transmission started with the objective to improve the
reception for viewers in Murray Hill. The source transmits
audio and video packets to all via global multicast channel.
In [17], the global multicast depicts the complete multicast
group and local multicast means multicasting for a specific
set of receivers connected with a client. After reception of
packets the retransmit server stores these packets in a
buffer named retransmit buffer. The client as repair server
adds these packets in a buffer named as repair buffer. In
case of packet loss from source, the client sends negative
acknowledge (NACK) message to retransmit server, which
recovers it and again unicasts back that lost packet to the
client. After that the repair server (client) transmits
repaired packets to all receivers using local multicast
channel.

This basic architecture is also extended to the hierarchy of
retransmission servers positioned around expensive or
over-utilized links. In this architecture the servers operate a
NACK based reliable protocol where the receivers use a
similar scheme for requesting lost packets.

IJCSNS International Journal of Computer Science and Network Security, VOL.18 No.3, March 2018

111

2. Related Work

Various real-time systems such as [16], [19], [8], [25], [1]
and [11] use formal methods and model verification
approaches for proving their correctness.

UPPAAL is used to model many real-time systems for
checking their reachability and validity. It is rich with
various features including real-values clocks, invariants,
diagnostic traces, communicating channels and committed
states [13].

In [5] Kim G. Larsen et al. report the significance of
features provided by UPPAAL by using it to perform
formal verification of an audio protocol with bus collision.

Klaus Havelund et al. use real-time verification tool set of
UPPAAL to formally analyze an Audio/Video protocol
[10], in order to trace error in a complex model that
involves 1998 transition steps.

In [15] Magnus Lindahl et al. report a formal analysis of a
gear control system and provide an application in
UPPAAL, based on a gear change algorithm, for this
particular industrial case study.

Atif et al. in [3] and [2] formalize and verify a heartbeat
protocol, and perform formal verification of its various
variants including expanding heart beat protocol, periodic
heart beat protocol, and dynamic heart beat protocol.

[17], [18], [22], [23], [9], [21] and [12] propose different
algorithms and techniques to optimize the quality of
audio/video transmission. Moreover several surveys such
as [7], [24], [6], [14] and [20] claim the quality
enhancement of audio/video transmission on the basis of
system hardware.

In [17] the N. F. Maxemchuk et al. introduce a technique
to improve the quality of audio/video transmission by
recovering lost packets, and claim to have witnessed
significant improvement through an experiment.

In our work we study and precisely describe [17], and
present it formal requirements by specifying corresponding
properties in UPPAAL in the form of formulas. Then we
verify these properties over a designed system model and
generate simulation results. These simulation results show
whether a particular property is satisfied or not, and if not
then verifier generates a counter-example that shows the
correctness of protocol with regard to that property.

3. Introduction of Cooperative Recovery
Protocol

The cooperative recovery protocol is based on a
collaborative agreement between some of the receivers of
audio/video multicast in a network. This protocol aims at
recovering the packets lost by a subset of receivers.

The key players who take part in a simplest form of its
implementation are as follows:

Source

It continuously multicasts packets with a sequence number.

Retransmit Server

It is located near to the source on same local network, and
directly receives packets from the source. It is therefore,
most likely to receive all the transmitted packets. This
server retransmits the packets as and when it receives a
retransmission request for them.

Clients

These are retransmitting clients which receive packets
directly from the source but are on a different location
therefore can miss packets. If a client receives a packet that
has a higher sequence number than the expected sequence
number, then it issues a retransmission request to the
retransmit server for each lost packet. It repeatedly resends
such request for a certain number of times if the lost packet
is not recovered. The retransmission request is
implemented as a negative acknowledgement (NACK) and
issued for each lost packet. After waiting for the missing
packet for a certain time period, the retransmitting client
acts as a repair server and transmits the repaired stream
(with all the packets in proper sequence) on a new
multicast address. Such multicast is transmitted only when
there exist potential receivers. In such cases, all of the
receivers that are under that repair server receive that
repaired signal, and the signal from the source is not
transmitted to those receivers.

Moreover, by using NACKs, this protocol retains the
number of control messages as few as possible, which is
very useful particularly when number of repair servers
grows.

Playback Buffer

It is a fixed size memory buffer based on a circular queue
is used to hold the coming packets.

Receivers

These either receive multicast from the source or receive
repaired stream from the associated retransmitting client.

IJCSNS International Journal of Computer Science and Network Security, VOL.18 No.3, March 2018

112

An important characteristic of this protocol is that it
improves the quality of existing MBone sessions without
requiring operational changes at the source and receivers.
Recovery of missing packets takes place between a subset
of network players. These players multicast repaired
signals on a channel other than that used by the original
source signal. However, the receivers use the same
software to receive both repaired signal and the signal
from the original source. Moreover, this protocol does not
require all the receivers on a network to use it rather only a
subset of receivers use it to improve their quality of
service; hence for instance an internet service provider
(ISP) may use this protocol and then can sell an improved
reception to its customers.

Fig. 1 Basic Architecture of Cooperative Packet Recovery Protocol [17]

Furthermore, number of active participants is very few. For
instance, only a subset of receivers send retransmission
requests for the lost packets to the retransmit server, and
these special receivers are known as retransmitting clients,
and the rest of the receivers rely on these clients for
recovering the lost packets. Another important
characteristic of this protocol is that it learns, and then sets
and changes associated network parameters instead of
predicting them. For instance if amount of multicast delay
is resulting into a bad signal then it changes and corrects
the delay amount to yield an improved signal.

Fig. 2 Source Process

This protocol is appropriate for different types of real-time
audio/video transmission systems for example news,
conference sessions and courses. Such transmission
systems tolerate a delay of few seconds. However, an
interactive audio/video session permits only a very short
delay to keep the conversation live, even if it has to
compromise on video/audio quality [17].

4. Formal Specifications of Cooperative
Recovery Protocol

We use the UPPAALL toolset for formal specification of
the cooperative packet recovery protocol.

The UPPAAL is model-checker tool suit, which performs
validation and verification of the real-time systems [17].
The UPPAAL provides a graphical interface to design an
automata model for specification of a distributed system.
The automata model is based on circular locations and so
called transition (transition are also called edges). The
locations indicates the states of a model and edges are used
to connect the locations. The location can be an initial, a
committed or an urgent location. In UPPAAL, an initial
location is represented by a doubled circle and it indicates
the stating state of a process. The actions from a
committed location is taking on priority before taking
another action form any other process’s location. Process
can move from one location to another by taking an action.
The action can be an update in variables (integers, arrays,
Booleans, etc.), call functions for updates or using
channels (unicast or multicast) for communication with
other processes. The processes use ‘!’ and ‘?’ symbol for
sending and receiving respectively. An action can be
guarded by adding a condition for execution.

In the cooperative packet recovery protocol, there are four
distributed processes (a source, a client, a retransmit server
and some receivers).

4.1 The Automaton of the Source Process

The automaton the source process is shown in Figure 2.
The functional requirement of the source process is
broadcasting packets to the client and the retransmit server.
The source process contains a location named Source and
an edge. We use twelve total packets in the specification of
the protocol. We use a broadcast channel sendpkt [packet]!
for sending packets . There is a counter for counting
number of broadcast packets from the source. The source
process stop broadcasting packets when the counter
reaches the total number of packets.

IJCSNS International Journal of Computer Science and Network Security, VOL.18 No.3, March 2018

113

4.2 The Automaton for the Client Process

The automaton for the client process is shown in Figure 3.
The client process contains two location named Client and
Sening2Receiver and five edges. The Client is an initial
location and the Sening2Receiver is a committed location.
We model the Sening2Receiver location as committed
because the client must complete the action back to the
Client location before executing another edge when it
execute the edge from the Client location to the
Sening2Receiver location. Following are the actions of the
client process:

Fig. 3 The Client Process

It receives packets form the source via sendpkt[packet]?, a
broadcast channel and add the received packet by calling a
function add(). In add() function, we add received packet
in the playback buffer of the client and update the buffer
pointers. The buffer pointers point out the packets to send
and receive. A Boolean variable send2Receivers is also
becomes true to indicate the presence of packet(s) in the
clients buffer for broadcasting.

The bottom right edge of the client process is also
synchronized with the source for receiving packets but this
action indicate the packet is lost by the client. It adds a
negative sequence number in the playback buffer for a lost
packet and also maintain the record of lost packets for
recovery process.

The client process executes the bottom left edge for
sending a NACK request to the retransmit server for
recovery of a lost packet via sendNack[packet2Recover]!
channel. This edge is guarded with the isNack2Send
Boolean variable and it is true when there are lost
packet(s) in the playback buffer.

The middle left edge of the client process executes to
receive a repair packet form the retransmit server via
sendRepairpkt[lostPkt]? channel. In this action, the client
adds that repaired packet in the playback buffer by calling
insertLostPacket(lostPkt) function and calls nextNack()
function to check for another lost packet in the playback
buffer. It also calls removeNackRecord(lostPkt) function
to remove the lost packet record of that lost packet on
successful recovery.

In the upper action, the client executes an edge and move
the Sening2Receiver committed location. In this edge, the
client moves the playback buffers pointer to the
successfully received packet and removes the lost packets
entries for broadcasting by calling skipEmptySpaces()
function. After that it executes an edge from
Sening2Receiver location to the Client location for
broadcasting packets to the receivers via
broadcast4Receivers[]! broadcast channel. In this edge, it
also calls delete() function to remove the sent packet from
the playback buffer and updates buffers pointers.

4.3 The Automaton for the Retransmit Server
Process

The automaton for retransmit server process is shown in
Figure 4. The process contains two locations (RS and
NackReceived) and four edges. RS is an initial location of
the process. We model the NackReceived location is
committed because the retransmit server must send a repair
packet before executing another edge when it receives a
NACK request for a lost packet. Followings are the actions
of the retransmit server process:

It receives packets for the source process via sendpkt[a]?
broadcast channel and it calls add() function to add the
received packet into its repair buffer.

The process change its location from RS to NackReceived
by execution an edge. In this execution, it receives a
NACK request for a lost packet form the client via
sendNack[t]? channel. It calls isAvailable(t) function to
check the availability of the requested packet. In this
function, it also update isPacketinBuffer boolean variable
to true when the requested packet is available. In this edge,
the process also assigns the requested packet to the
lostPacket integer variable to send repaired packet to the
client.

IJCSNS International Journal of Computer Science and Network Security, VOL.18 No.3, March 2018

114

Fig. 4 Retransmit Server Process

The process executes an edge to simply move back to the
RS location from the lostPacket location when the
requested packet is not available in the repair buffer
(isPacketinBuffer = false).

The process sends a repaired packet by executing an edge
via sendRepairpkt[lostPacket]! channel and it changes its
location from lostPacket location to RS location. This edge
is guarded with the isPacketinBuffer variable and it only
executes when this variable is true.

In this edge, the isPacketinBuffer is set to false because we
have sent a repaired packet.

4.4 The Automaton for the Receiver Process

The automaton for receiver process is shown in Figure 5.
The functional requirement of the receiver process is
receiving packets from the client. The receiver process
contains an initial location named R and an edge. It
receives packets form the client via
broadcast4Receivers[z]? a broadcast channel.

There are three receivers (receiver (1), receiver (2) and
receiver (3)) in our system model.

Fig. 5 Receivers Process

5. Verifying Protocol Requirements

We derive following four functional requirements (R1 -
R4) for formal verification. We also give formulae for
these functional requirements. Section 5.1 lists and
discusses these formulae.

R1: Deadlock does not occur during the audio/video
broadcast from the source.

R2: The client either receives packets transmitted by
source or sends a NACK for each lost packet to the
retransmit server.

R3: There exists a NACK for every lost packet, and every
NACK recovers a lost packet.

R4: The client locally multicasts both the repaired signal
and the original signal from the source, to associated
receivers.

5.1 Formal Specifications of the Requirements

We use a constant, totalPackets to specify the total number
of packets at source. The source process continually
transmits a packet and increments by one, a counter
variable packet. This process continues till the packet
becomes greater than totalPackets. There must not occur
any deadlock during the above mentioned processing
(when packet <= totalPackets).

Hence we write the following formula for R1:

A[] deadlock imply Source:packet == totalPackets

This formula states that a deadlock may occur if and only
if the counter packet is greater than the constant
totalPackets.

In order to formalize the R2, we write the following
function to keep track of the received packets and the lost
packets.

bool allPacketsRcvdOrNacked(){

int i;

for (i=0;i<=totalPackets;i++)

 if (packetRecords[i]!=0)

 return false;

 return true;

}

IJCSNS International Journal of Computer Science and Network Security, VOL.18 No.3, March 2018

115

In this function, packetRecords is a global array. The
source adds to this array, the packet ID of each packet it
transmits. The client removes from this array, the packet
ID of each packet it either receives or misses.

The presence of a packet ID that is a non-zero value, in
packetRecords array means that the associated packet is
still missing from the client’s buffer and its NACK
message is not yet generated.

After transmitting totalPackets number of packets the
packetRecords array must be empty. We write the
following formula for R2:

R2 : A[] source:packet == totalPackets imply
allpacketReadorNacked()

Similarly, for R3’s verification we use the following
function.

bool allNacksRecoeverOrNot(){

int i;

for (i=0;i<=totalPackets;i++)

 if (NackRecords[i]!=0)

 return false;

 return true;

}

This function uses a NackRecords array to keep track of
NACK requests. The presence of a packet ID that is a non-
zero value, in NackRecords array means that the associated
requested packet is yet to be transmitted.

We express R3 as:

A[] source:packet == totalPackets imply
allNacksRecoeverOrNot()

In our model there are three receivers for a client i.e.
Receivers(0), Receivers(1) and Receivers(2).

To formalize R4 we write the following formula:

Client:q[0] == 1 Receivers(0):ReceivedPacket == 1

^ Receivers(1):ReceivedP acket == 1

^ Receivers(2):ReceivedP acket == 1

This formula states that all the packets which are present in
client’s buffer q, become the received packets of all the
associated receivers.

Table 1: Verification results of the cooperative packet recovery protocol
[17]

Total Packets: 10
Retransmit buffer size: 5

Client buffer size: 5
Computatio

n time Memory used

R1 True Property is
Satisfied > 15h > Gb

R2 True
Property

not
Satisfied

0:56s 13,764kb –
34,988kb

R3 True
Property

not
Satisfied

0:015s 13,792kb –
35,032kb

R4 True
Property

not
Satisfied

0:016s 7,618kb –
26,532kb

Fig. 6 Counter Example of Requirement no. 2

5.2 Verification Results

With the aim of verifying properties specified in 5.1, we
use Verifier, a feature of UPPAAL model checker. The
Query section of this feature generates the result of each
property and displays the same in Status section. The result
clearly states, whether a property is ’satisfied’ or ’not
satisfied’.

5.3 Verification Results with Counter Examples

We use constant global variables to generalize the buffer’s
size and total number of packets. The protocol [17] works
under a constraint i.e. the playback buffer size is less than
the retransmit buffer size. In our model, we keep these
sizes equal to perform best case analysis.

R1: This property is satisfied. The simulation results show
that R1 is not violated, that means
maxemchuk1997cooatiperve causes no deadlock during
the audio/video transmission.

IJCSNS International Journal of Computer Science and Network Security, VOL.18 No.3, March 2018

116

R2: This property is violated and not satisfied. The
simulation results of R2 show the violation of this
requirement. It means that the client does not generates
NACK for every lost packet. There is a counter example
which shows message sequence chart of some traces. The
counter example is shown in Figure 6.

R3: This property is also not satisfied, the simulation
results show that R3 is not correct that means not every
NACK recovers the related lost packet. The counter
example which shows message sequence chart of some
traces is shown in the Figure 7.

Assume that the client’s buffer size is ’n’, and the client
misses a multicast of last ’n’ packets.

In such a situation the client remains ignorant and hence
fails to recover and repair the last ’n’ lost multicast packets,
and meanwhile transmission ends.

Fig. 7 Counter Example of Requirement no. 3

Fig. 8 Counter Example of Requirement no. 4

R4: This property is violated and not satisfied. The
simulation results of R4 show the violation of this
functional requirement as the client fails to send all
received packets to associated receivers. There is a counter
example which shows message sequence chart of some
traces. The counter example is shown in Figure 8.
According to this example the client process starts
overwriting the previously received packets with the newly
received packets.

In addition to the above violations, the [17] does not
elaborate the following:

1. The way retransmit server should react after receiving a
NACK from a client. If it reacts after some time interval
then how this time internal is determined? Our model
however, binds the retransmit server to reply immediately
in response to a NACK.

2. Whether the retransmit server should maintain a
separate queue for the NACKs or not.

3. The scheme to decide and prioritize which lost packets
must be recovered first in a situation when multiple packet
loss occurs at client side. Our model however, recovers
packets on First Come First Server basis.

4. Dealing with a situation when due to any reason the
retransmit server fails to timely respond to NACK requests
and at the time when it retransmits the relevant packets it
finds that the associated clients are transmitting to the end
receiver’s packets with greater sequence numbers. In such
situation the retransmit server may also encounter buffer
overflows from its clients.

5. In situations when the following types of packets loss
occurs in the network during video transmission.

(a) If the client receives the first half of the video and then
due to a network error or due to any other reasons client
fails to receive next packets with greater sequence numbers
and the transmission session ends. Consequently, client
cannot recover the rest of the video.

(b) Assume that ’n’ is the buffer size of retransmit server,
and a client misses ’n’ packets. The client then receives ’n
+ 1’ packet. In such situation the client cannot repair the
first lost ’n’ multicast packets due to limited buffer size.

(c) The client cannot recover the last lost packet because
no packet with greater sequence number will arrive.
Therefore the client remains unaware of having lost the last
packet.

IJCSNS International Journal of Computer Science and Network Security, VOL.18 No.3, March 2018

117

6. Limitations and Challenges

Modeling encounters three types of limitations. First is to
limit the number of receivers to three, second is to reduce
the value of the max limit of buffer size to five in the
transmission and third is the limited amount of number of
packets. These limitations prevent the system in generating
a very huge state space and also in avoiding the state space
explosion problem. These limitations are imposed due to
limited memory of the machine. The machine can crash
during execution of query verification phase. Model’s
properties are not affected due to these limitations because
a few number of packets and processes can reflect the
behavior of a huge system. This small system is transparent
reflection of a huge system with maximum buffer size and
huge number of packets with a large group of receivers
processes. The main challenge is faced during the
modeling phase of the protocol is to handle RTP packet
representation format. The problem is that protocol uses
the various fields that were available in RTP format but
few of those are packet-sequence-number, retry-count and
a valid tag that contain a packet and a ’Hole’(in our model
hole is simulated as negative integer value). On the other
side packet delay, last-request-time, packet-type are related
to real-time clocks and their use is out of scope defined in
our objective of verification process. This problem is
addressed by initializing two arrays such as
intq[bufferSize], retry_count[bufferSize] and making the
‘q’ array as circular buffer of packets. A source sends a
packet that is added in that array after reception, but each
value that stored in array is represented by packet sequence
number.

7. Conclusion

We formally specified the cooperative packet recovery
protocol described by [17] in UPPAAL model checker-
timed automaton. Further, few properties for checking
functional requirements are formalized and analyzed in
UPPAAL. We know that the verifications and
specifications model for cooperative packet recovery for
multicast video/audio protocol can be very useful for
verification of other video/audio multicast protocols.
Formal specification and analysis of quality claimed in
video/audio multicast transmission is the future research
goal. Our basic research question is to investigate the
behavior and efficiency claimed in the protocol [17]. For
this purpose, we formalize the protocol using tool set
UPPAAL and verify the claim of efficiency described in
the protocol. We develop process and automaton, formal
description on the basis of underlying concepts or informal
description of this protocol. This formal model can be
reused for other protocols that are related to this protocol.

To the best of our knowledge, the formal model on this
protocol is not designed earlier.

References
[1] Rajeev Alur and David Dill. Automata for modeling real-

time systems. In Automata, languages and programming,
pages 322–335. Springer, 1990.

[2] Muhammad Atif. Formal modeling and verification of
distributed failure detectors. Faculty of Mathematics and

[3] Computer Science, TU/e, 10, 2011.
[4] Muhammad Atif and MohammadReza Mousavi. Formal

specification and analysis of accelerated heartbeat protocols.
In Proceedings of the 2010 Summer Computer Simulation
Conference, pages 403–412. Society for Computer
Simulation International, 2010.

[5] Christel Baier, Joost-Pieter Katoen, et al. Principles of
model checking, vol. 26202649. MIT Press Cambridge,
26:58, 2008.

[6] Johan Bengtsson, WO David Griffioen, Kare J Kristoffersen,
Kim G Larsen, Fredrik Larsson, Paul Pettersson, and Wang
Yi. Verification of an audio protocol with bus collision
using uppaal. In Computer Aided Verification, pages 244–
256. Springer, 1996.

[7] Vijay K Bhagavath, Joseph Thomas O’neil, David Hilton
Shur, and Aleksandr Zelezniak. Network-based service for
recipient-initiated automatic repair of IP multicast sessions,
May 20 2003. US Patent 6,567,929.

[8] Georg Carle and Ernst W Biersack. Survey of error recovery
techniques for ip-based audio-visual multicast applications.
Network, IEEE, 11(6):24–36, 1997.

[9] Pedro R D’Argenio, J-P Katoen, Theo C Ruys, and Jan
Tretmans. The bounded retransmission protocol must be on
time! Springer, 1997.

[10] Stephane Gruber, Jennifer Rexford, and Andrea Basso.
Protocol considerations for a prefix-caching proxy for
multimedia streams. Computer Networks, 33(1):657–668,
2000.

[11] Klaus Havelund, Arne Skou, Kim Guldstrand Larsen, and
Kristian Lund. Formal modeling and analysis of an
audio/video protocol: An industrial case study using uppaal.
In Real-Time Systems Symposium, 1997. Proceedings, The
18th IEEE, pages 2–13. IEEE, 1997.

[12] Henrik Ejersbo Jensen, Kim G Larsen, and Arne Skou.
Modelling and Analysis of a Collision Avoidance Protocol
using SPIN and UPPAAL. BRICS, 1996.

[13] Isidor Kouvelas, Vicky Hardman, and Jon Crowcroft.
Network adaptive continuous-media applications through
self organised transcoding. In Proceedings of the Network
and Operating Systems Support for Digital Audio and
Video. Citeseer, 1998.

[14] Kim G Larsen, Paul Pettersson, and Wang Yi. Uppaal in a
nutshell. International Journal on Software Tools for
Technology Transfer (STTT), 1(1):134–152, 1997.

[15] Xue Li, Mostafa H Ammar, and Sanjoy Paul. Video
multicast over the internet. Network, IEEE, 13(2):46–60,
1999.

[16] Magnus Lindahl, Paul Pettersson, and Wang Yi. Formal
design and analysis of a gear controller. In Tools and

IJCSNS International Journal of Computer Science and Network Security, VOL.18 No.3, March 2018

118

Algorithms for the Construction and Analysis of Systems,
pages 281–297. Springer, 1998.

[17] Henrik Lonn and Paul Pettersson. Formal verification of a
tdma protocol start-up mechanism. In Fault-Tolerant
Systems, 1997. Proceedings., Pacific Rim International
Symposium on, pages 235–242. IEEE, 1997.

[18] Nicholas F. Maxemchuk, K. Padmanabhan, and S. Lo. A
cooperative packet recovery protocol for multicast video.

[19] In 1997 International Conference on Network Protocols
(ICNP ’97), 28-31 October 1997, Atlanta, GA, USA, pages
259–266. IEEE Computer Society, 1997.

