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Summary 
Internet based transmission of real-time videos has become one 
of the major components of online multimedia applications. A 
real-time video delivery system may face several problems that 
include possible delay, packet loss and limited bandwidth. 
Unfortunately, not much work has been done on the 
improvement of the quality of service (QoS) to ensure the 
smooth video transmission. The cooperative packet recovery 
protocol for the multi-casting of audio/video was presented in 
[Maxemchuk, Nicholas F., K. Padmanabhan, and S. Lo. A 
cooperative packet recovery protocol for multicast video, 
Proceedings of 1997 IEEE International Conference on Network 
Protocols] and claimed significant improvement in QoS through 
a packet recovery mechanism. Our work formally specified this 
protocol together with its principal functional requirements and 
proved that this protocol failed to recover packet(s) in certain 
situations. The diagnostic traces have been reported as the proof, 
and this protocol has been specified in automata-theoretic 
formalism. 
Key words: 
Multicasting Video/Audio, Formal Specification, Model 
Checking, Packet Recovery protocol, QoS in Multimedia 
Transmissions. 

1. Introduction 

For the Internet multimedia applications such as Internet 
television, video conferencing, distance learning, digital 
libraries, multicast video transmission is required. The 
main problem with such applications is the heterogeneity 
of networks which makes it difficult to achieve a good 
Quality of Service (QoS). In designing video transmission 
protocols, the challenging issues are dealing with 
bandwidth limitations, packet losses and arbitrary delays in 
packet transferring. Moreover, excessive traffic and 
congestion collapse also have negative effects on QoS for 
video transmission protocols. To achieve acceptable visual 
quality, the packet loss ratio should be below a certain 
threshold (say 1%) but due to more packet loss the 
multicast video transmission protocols face the quality 
degradation. 

In the cooperative packet recovery protocol for 
audio/video multicasting described in [17], a significant 
improvement of QoS is claimed by error control approach 
which is proved a better packet-recovery mechanism of 
retransmission. We verify this claim and the functional 
requirements of the protocol by using formal analysis 
techniques. Formal methods offer a large potential to 
provide correctness measuring techniques [4]. We apply 
model-checking, i.e. a formal method’s technique for 
formal verification. During the last few years, a number of 
modeling and automatic verification tools for hybrid and 
real-time systems [8], [16], [19], [25], and [2] have been 
developed. 

The participants of the protocol described in [17] are 
source, a retransmit server, a client and set of receivers. 
For implementation of this protocol experiment conducted 
via transmission between two real time locations, one at 
Indian Hill (IH), near Chicago, and the other at Murray 
Hill (MH), New Jersey. At Indian Hill live video 
transmission started with the objective to improve the 
reception for viewers in Murray Hill. The source transmits 
audio and video packets to all via global multicast channel. 
In [17], the global multicast depicts the complete multicast 
group and local multicast means multicasting for a specific 
set of receivers connected with a client. After reception of 
packets the retransmit server stores these packets in a 
buffer named retransmit buffer. The client as repair server 
adds these packets in a buffer named as repair buffer. In 
case of packet loss from source, the client sends negative 
acknowledge (NACK) message to retransmit server, which 
recovers it and again unicasts back that lost packet to the 
client. After that the repair server (client) transmits 
repaired packets to all receivers using local multicast 
channel. 

This basic architecture is also extended to the hierarchy of 
retransmission servers positioned around expensive or 
over-utilized links. In this architecture the servers operate a 
NACK based reliable protocol where the receivers use a 
similar scheme for requesting lost packets. 
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2. Related Work 

Various real-time systems such as [16], [19], [8], [25], [1] 
and [11] use formal methods and model verification 
approaches for proving their correctness. 

UPPAAL is used to model many real-time systems for 
checking their reachability and validity. It is rich with 
various features including real-values clocks, invariants, 
diagnostic traces, communicating channels and committed 
states [13]. 

In [5] Kim G. Larsen et al. report the significance of 
features provided by UPPAAL by using it to perform 
formal verification of an audio protocol with bus collision. 

Klaus Havelund et al. use real-time verification tool set of 
UPPAAL to formally analyze an Audio/Video protocol 
[10], in order to trace error in a complex model that 
involves 1998 transition steps. 

In [15] Magnus Lindahl et al. report a formal analysis of a 
gear control system and provide an application in 
UPPAAL, based on a gear change algorithm, for this 
particular industrial case study. 

Atif et al. in [3] and [2] formalize and verify a heartbeat 
protocol, and perform formal verification of its various 
variants including expanding heart beat protocol, periodic 
heart beat protocol, and dynamic heart beat protocol. 

[17], [18], [22], [23], [9], [21] and [12] propose different 
algorithms and techniques to optimize the quality of 
audio/video transmission. Moreover several surveys such 
as [7], [24], [6], [14] and [20] claim the quality 
enhancement of audio/video transmission on the basis of 
system hardware. 

In [17] the N. F. Maxemchuk et al. introduce a technique 
to improve the quality of audio/video transmission by 
recovering lost packets, and claim to have witnessed 
significant improvement through an experiment. 

In our work we study and precisely describe [17], and 
present it formal requirements by specifying corresponding 
properties in UPPAAL in the form of formulas. Then we 
verify these properties over a designed system model and 
generate simulation results. These simulation results show 
whether a particular property is satisfied or not, and if not 
then verifier generates a counter-example that shows the 
correctness of protocol with regard to that property. 

3. Introduction of Cooperative Recovery 
Protocol 

The cooperative recovery protocol is based on a 
collaborative agreement between some of the receivers of 
audio/video multicast in a network. This protocol aims at 
recovering the packets lost by a subset of receivers. 

The key players who take part in a simplest form of its 
implementation are as follows: 

Source 

It continuously multicasts packets with a sequence number. 

Retransmit Server 

It is located near to the source on same local network, and 
directly receives packets from the source. It is therefore, 
most likely to receive all the transmitted packets. This 
server retransmits the packets as and when it receives a 
retransmission request for them. 

Clients 

These are retransmitting clients which receive packets 
directly from the source but are on a different location 
therefore can miss packets. If a client receives a packet that 
has a higher sequence number than the expected sequence 
number, then it issues a retransmission request to the 
retransmit server for each lost packet. It repeatedly resends 
such request for a certain number of times if the lost packet 
is not recovered. The retransmission request is 
implemented as a negative acknowledgement (NACK) and 
issued for each lost packet. After waiting for the missing 
packet for a certain time period, the retransmitting client 
acts as a repair server and transmits the repaired stream 
(with all the packets in proper sequence) on a new 
multicast address. Such multicast is transmitted only when 
there exist potential receivers. In such cases, all of the 
receivers that are under that repair server receive that 
repaired signal, and the signal from the source is not 
transmitted to those receivers. 

Moreover, by using NACKs, this protocol retains the 
number of control messages as few as possible, which is 
very useful particularly when number of repair servers 
grows. 

Playback Buffer 

It is a fixed size memory buffer based on a circular queue 
is used to hold the coming packets. 

Receivers 

These either receive multicast from the source or receive 
repaired stream from the associated retransmitting client. 
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An important characteristic of this protocol is that it 
improves the quality of existing MBone sessions without 
requiring operational changes at the source and receivers. 
Recovery of missing packets takes place between a subset 
of network players. These players multicast repaired 
signals on a channel other than that used by the original 
source signal. However, the receivers use the same 
software to receive both repaired signal and the signal 
from the original source. Moreover, this protocol does not 
require all the receivers on a network to use it rather only a 
subset of receivers use it to improve their quality of 
service; hence for instance an internet service provider 
(ISP) may use this protocol and then can sell an improved 
reception to its customers. 

 

Fig. 1  Basic Architecture of Cooperative Packet Recovery Protocol [17] 

Furthermore, number of active participants is very few. For 
instance, only a subset of receivers send retransmission 
requests for the lost packets to the retransmit server, and 
these special receivers are known as retransmitting clients, 
and the rest of the receivers rely on these clients for 
recovering the lost packets. Another important 
characteristic of this protocol is that it learns, and then sets 
and changes associated network parameters instead of 
predicting them. For instance if amount of multicast delay 
is resulting into a bad signal then it changes and corrects 
the delay amount to yield an improved signal. 

 

Fig. 2  Source Process 

This protocol is appropriate for different types of real-time 
audio/video transmission systems for example news, 
conference sessions and courses. Such transmission 
systems tolerate a delay of few seconds. However, an 
interactive audio/video session permits only a very short 
delay to keep the conversation live, even if it has to 
compromise on video/audio quality [17]. 

4. Formal Specifications of Cooperative 
Recovery Protocol 

We use the UPPAALL toolset for formal specification of 
the cooperative packet recovery protocol. 

The UPPAAL is model-checker tool suit, which performs 
validation and verification of the real-time systems [17]. 
The UPPAAL provides a graphical interface to design an 
automata model for specification of a distributed system. 
The automata model is based on circular locations and so 
called transition (transition are also called edges). The 
locations indicates the states of a model and edges are used 
to connect the locations. The location can be an initial, a 
committed or an urgent location. In UPPAAL, an initial 
location is represented by a doubled circle and it indicates 
the stating state of a process. The actions from a 
committed location is taking on priority before taking 
another action form any other process’s location. Process 
can move from one location to another by taking an action. 
The action can be an update in variables (integers, arrays, 
Booleans, etc.), call functions for updates or using 
channels (unicast or multicast) for communication with 
other processes. The processes use ‘!’ and ‘?’ symbol for 
sending and receiving respectively. An action can be 
guarded by adding a condition for execution. 

In the cooperative packet recovery protocol, there are four 
distributed processes (a source, a client, a retransmit server 
and some receivers). 

4.1 The Automaton of the Source Process 

The automaton the source process is shown in Figure 2. 
The functional requirement of the source process is 
broadcasting packets to the client and the retransmit server. 
The source process contains a location named Source and 
an edge. We use twelve total packets in the specification of 
the protocol. We use a broadcast channel sendpkt [packet]! 
for sending packets . There is a counter for counting 
number of broadcast packets from the source. The source 
process stop broadcasting packets when the counter 
reaches the total number of packets. 
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4.2 The Automaton for the Client Process 

The automaton for the client process is shown in Figure 3. 
The client process contains two location named Client and 
Sening2Receiver and five edges. The Client is an initial 
location and the Sening2Receiver is a committed location. 
We model the Sening2Receiver location as committed 
because the client must complete the action back to the 
Client location before executing another edge when it 
execute the edge from the Client location to the 
Sening2Receiver location. Following are the actions of the 
client process: 

 

Fig. 3  The Client Process 

It receives packets form the source via sendpkt[packet]?, a 
broadcast channel and add the received packet by calling a 
function add(). In add() function, we add received packet 
in the playback buffer of the client and update the buffer 
pointers. The buffer pointers point out the packets to send 
and receive. A Boolean variable send2Receivers is also 
becomes true to indicate the presence of packet(s) in the 
clients buffer for broadcasting. 

The bottom right edge of the client process is also 
synchronized with the source for receiving packets but this 
action indicate the packet is lost by the client. It adds a 
negative sequence number in the playback buffer for a lost 
packet and also maintain the record of lost packets for 
recovery process. 

The client process executes the bottom left edge for 
sending a NACK request to the retransmit server for 
recovery of a lost packet via sendNack[packet2Recover]! 
channel. This edge is guarded with the isNack2Send 
Boolean variable and it is true when there are lost 
packet(s) in the playback buffer. 

The middle left edge of the client process executes to 
receive a repair packet form the retransmit server via 
sendRepairpkt[lostPkt]? channel. In this action, the client 
adds that repaired packet in the playback buffer by calling 
insertLostPacket(lostPkt) function and calls nextNack() 
function to check for another lost packet in the playback 
buffer. It also calls removeNackRecord(lostPkt) function 
to remove the lost packet record of that lost packet on 
successful recovery. 

In the upper action, the client executes an edge and move 
the Sening2Receiver committed location. In this edge, the 
client moves the playback buffers pointer to the 
successfully received packet and removes the lost packets 
entries for broadcasting by calling skipEmptySpaces() 
function. After that it executes an edge from 
Sening2Receiver location to the Client location for 
broadcasting packets to the receivers via 
broadcast4Receivers[]! broadcast channel. In this edge, it 
also calls delete() function to remove the sent packet from 
the playback buffer and updates buffers pointers. 

4.3 The Automaton for the Retransmit Server 
Process 

The automaton for retransmit server process is shown in 
Figure 4. The process contains two locations (RS and 
NackReceived) and four edges. RS is an initial location of 
the process. We model the NackReceived location is 
committed because the retransmit server must send a repair 
packet before executing another edge when it receives a 
NACK request for a lost packet. Followings are the actions 
of the retransmit server process:  

It receives packets for the source process via sendpkt[a]?  
broadcast channel and it calls add() function to add the 
received packet into its repair buffer. 

The process change its location from RS to NackReceived 
by execution an edge. In this execution, it receives a 
NACK request for a lost packet form the client via 
sendNack[t]? channel. It calls isAvailable(t) function to 
check the availability of the requested packet. In this 
function, it also update isPacketinBuffer boolean variable 
to true when the requested packet is available. In this edge, 
the process also assigns the requested packet to the 
lostPacket integer variable to send repaired packet to the 
client. 
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Fig. 4  Retransmit Server Process 

The process executes an edge to simply move back to the 
RS location from the lostPacket location when the 
requested packet is not available in the repair buffer 
(isPacketinBuffer = false). 

The process sends a repaired packet by executing an edge 
via sendRepairpkt[lostPacket]! channel and it changes its 
location from lostPacket location to RS location. This edge 
is guarded with the isPacketinBuffer variable and it only 
executes when this variable is true. 

In this edge, the isPacketinBuffer is set to false because we 
have sent a repaired packet. 

4.4 The Automaton for the Receiver Process 

The automaton for receiver process is shown in Figure 5. 
The functional requirement of the receiver process is 
receiving packets from the client. The receiver process 
contains an initial location named R and an edge. It 
receives packets form the client via 
broadcast4Receivers[z]? a broadcast channel. 

There are three receivers (receiver (1), receiver (2) and 
receiver (3)) in our system model. 

 

Fig. 5  Receivers Process 

5. Verifying Protocol Requirements 

We derive following four functional requirements (R1 - 
R4) for formal verification. We also give formulae for 
these functional requirements. Section 5.1 lists and 
discusses these formulae. 

R1: Deadlock does not occur during the audio/video 
broadcast from the source. 

R2: The client either receives packets transmitted by 
source or sends a NACK for each lost packet to the 
retransmit server. 

R3: There exists a NACK for every lost packet, and every 
NACK recovers a lost packet. 

R4: The client locally multicasts both the repaired signal 
and the original signal from the source, to associated 
receivers. 

5.1 Formal Specifications of the Requirements 

We use a constant, totalPackets to specify the total number 
of packets at source. The source process continually 
transmits a packet and increments by one, a counter 
variable packet. This process continues till the packet 
becomes greater than totalPackets. There must not occur 
any deadlock during the above mentioned processing 
(when packet <= totalPackets). 

Hence we write the following formula for R1: 

A[] deadlock imply Source:packet == totalPackets 

This formula states that a deadlock may occur if and only 
if the counter packet is greater than the constant 
totalPackets. 

In order to formalize the R2, we write the following 
function to keep track of the received packets and the lost 
packets. 

bool allPacketsRcvdOrNacked(){ 

int i; 

for (i=0;i<=totalPackets;i++) 

   if (packetRecords[i]!=0) 

     return false; 

   return true; 

} 
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In this function, packetRecords is a global array. The 
source adds to this array, the packet ID of each packet it 
transmits. The client removes from this array, the packet 
ID of each packet it either receives or misses. 

The presence of a packet ID that is a non-zero value, in 
packetRecords array means that the associated packet is 
still missing from the client’s buffer and its NACK 
message is not yet generated. 

After transmitting totalPackets number of packets the 
packetRecords array must be empty. We write the 
following formula for R2: 

R2 : A[] source:packet == totalPackets imply 
allpacketReadorNacked() 

Similarly, for R3’s verification we use the following 
function. 

bool allNacksRecoeverOrNot(){ 

int i; 

for (i=0;i<=totalPackets;i++) 

   if (NackRecords[i]!=0) 

      return false; 

   return true; 

} 

This function uses a NackRecords array to keep track of 
NACK requests. The presence of a packet ID that is a non-
zero value, in NackRecords array means that the associated 
requested packet is yet to be transmitted. 

We express R3 as: 

A[] source:packet == totalPackets imply 
allNacksRecoeverOrNot() 

In our model there are three receivers for a client i.e. 
Receivers(0), Receivers(1) and Receivers(2). 

To formalize R4 we write the following formula: 

Client:q[0] == 1  Receivers(0):ReceivedPacket == 1 

^ Receivers(1):ReceivedP acket == 1 

^ Receivers(2):ReceivedP acket == 1 

This formula states that all the packets which are present in 
client’s buffer q, become the received packets of all the 
associated receivers. 

Table 1: Verification results of the cooperative packet recovery protocol 
[17] 

Total Packets: 10 
Retransmit buffer size: 5 

Client buffer size: 5 
Computatio

n time Memory used 

R1 True Property is 
Satisfied > 15h > Gb 

R2 True 
Property 

not 
Satisfied 

0:56s 13,764kb – 
34,988kb 

R3 True 
Property 

not 
Satisfied 

0:015s 13,792kb – 
35,032kb 

R4 True 
Property 

not 
Satisfied 

0:016s 7,618kb – 
26,532kb 

 

 

Fig. 6  Counter Example of Requirement no. 2 

5.2 Verification Results 

With the aim of verifying properties specified in 5.1, we 
use Verifier, a feature of UPPAAL model checker. The 
Query section of this feature generates the result of each 
property and displays the same in Status section. The result 
clearly states, whether a property is ’satisfied’ or ’not 
satisfied’. 

5.3 Verification Results with Counter Examples 

We use constant global variables to generalize the buffer’s 
size and total number of packets. The protocol [17] works 
under a constraint i.e. the playback buffer size is less than 
the retransmit buffer size. In our model, we keep these 
sizes equal to perform best case analysis. 

R1: This property is satisfied. The simulation results show 
that R1 is not violated, that means 
maxemchuk1997cooatiperve causes no deadlock during 
the audio/video transmission. 
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R2: This property is violated and not satisfied. The 
simulation results of R2 show the violation of this 
requirement. It means that the client does not generates 
NACK for every lost packet. There is a counter example 
which shows message sequence chart of some traces. The 
counter example is shown in Figure 6. 

R3: This property is also not satisfied, the simulation 
results show that R3 is not correct that means not every 
NACK recovers the related lost packet. The counter 
example which shows message sequence chart of some 
traces is shown in the Figure 7. 

Assume that the client’s buffer size is ’n’, and the client 
misses a multicast of last ’n’ packets. 

In such a situation the client remains ignorant and hence 
fails to recover and repair the last ’n’ lost multicast packets, 
and meanwhile transmission ends. 

 

Fig. 7  Counter Example of Requirement no. 3 

 

Fig. 8  Counter Example of Requirement no. 4 

R4: This property is violated and not satisfied. The 
simulation results of R4 show the violation of this 
functional requirement as the client fails to send all 
received packets to associated receivers. There is a counter 
example which shows message sequence chart of some 
traces. The counter example is shown in Figure 8. 
According to this example the client process starts 
overwriting the previously received packets with the newly 
received packets. 

In addition to the above violations, the [17] does not 
elaborate the following: 

1. The way retransmit server should react after receiving a 
NACK from a client. If it reacts after some time interval 
then how this time internal is determined? Our model 
however, binds the retransmit server to reply immediately 
in response to a NACK. 

2. Whether the retransmit server should maintain a 
separate queue for the NACKs or not. 

3. The scheme to decide and prioritize which lost packets 
must be recovered first in a situation when multiple packet 
loss occurs at client side. Our model however, recovers 
packets on First Come First Server basis. 

4. Dealing with a situation when due to any reason the 
retransmit server fails to timely respond to NACK requests 
and at the time when it retransmits the relevant packets it 
finds that the associated clients are transmitting to the end 
receiver’s packets with greater sequence numbers. In such 
situation the retransmit server may also encounter buffer 
overflows from its clients. 

5. In situations when the following types of packets loss 
occurs in the network during video transmission. 

(a) If the client receives the first half of the video and then 
due to a network error or due to any other reasons client 
fails to receive next packets with greater sequence numbers 
and the transmission session ends. Consequently, client 
cannot recover the rest of the video. 

(b) Assume that ’n’ is the buffer size of retransmit server, 
and a client misses ’n’ packets. The client then receives ’n 
+ 1’ packet. In such situation the client cannot repair the 
first lost ’n’ multicast packets due to limited buffer size. 

(c) The client cannot recover the last lost packet because 
no packet with greater sequence number will arrive. 
Therefore the client remains unaware of having lost the last 
packet. 
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6. Limitations and Challenges 

Modeling encounters three types of limitations. First is to 
limit the number of receivers to three, second is to reduce 
the value of the max limit of buffer size to five in the 
transmission and third is the limited amount of number of 
packets. These limitations prevent the system in generating 
a very huge state space and also in avoiding the state space 
explosion problem. These limitations are imposed due to 
limited memory of the machine. The machine can crash 
during execution of query verification phase. Model’s 
properties are not affected due to these limitations because 
a few number of packets and processes can reflect the 
behavior of a huge system. This small system is transparent 
reflection of a huge system with maximum buffer size and 
huge number of packets with a large group of receivers 
processes. The main challenge is faced during the 
modeling phase of the protocol is to handle RTP packet 
representation format. The problem is that protocol uses 
the various fields that were available in RTP format but 
few of those are packet-sequence-number, retry-count and 
a valid tag that contain a packet and a ’Hole’( in our model 
hole is simulated as negative integer value). On the other 
side packet delay, last-request-time, packet-type are related 
to real-time clocks and their use is out of scope defined in 
our objective of verification process. This problem is 
addressed by initializing two arrays such as 
intq[bufferSize], retry_count[bufferSize] and making the 
‘q’ array as circular buffer of packets. A source sends a 
packet that is added in that array after reception, but each 
value that stored in array is represented by packet sequence 
number. 

7. Conclusion 

We formally specified the cooperative packet recovery 
protocol described by [17] in UPPAAL model checker-
timed automaton. Further, few properties for checking 
functional requirements are formalized and analyzed in 
UPPAAL. We know that the verifications and 
specifications model for cooperative packet recovery for 
multicast video/audio protocol can be very useful for 
verification of other video/audio multicast protocols. 
Formal specification and analysis of quality claimed in 
video/audio multicast transmission is the future research 
goal. Our basic research question is to investigate the 
behavior and efficiency claimed in the protocol [17]. For 
this purpose, we formalize the protocol using tool set 
UPPAAL and verify the claim of efficiency described in 
the protocol. We develop process and automaton, formal 
description on the basis of underlying concepts or informal 
description of this protocol. This formal model can be 
reused for other protocols that are related to this protocol. 

To the best of our knowledge, the formal model on this 
protocol is not designed earlier. 
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