
IJCSNS International Journal of Computer Science and Network Security, VOL.18 No.3, March 2018

161

Empirical Comparison of XP & SXP

Faiza Anwer†, Shabib Aftab†, Muhammad Salman Bashir†, Zahid Nawaz††, Madiha Anwar††,

Munir Ahmad†

†Department of Computer Science, Virtual University of Pakistan

††Department of Computer Science, University of Gujrat, Lahore Campus, Pakistan

Summary
Extreme Programming (XP) is a renowned agile model,

commonly used for small scale projects. It uses an iterative

approach for software development, assisted with agile practices

used in extreme manner. Although XP provides the opportunity

to handle shortcomings of traditional software development

models however it is not exempt from limitations. Lack of

proper design, no documentation and poor architectural

structure are some of its drawbacks. Furthermore, some of its

practices like on-site customer and pair programming are not

beneficial in every situation and may cause an extra burden on

development process. Simplified Extreme Programming (SXP)

process model was proposed to cover these problems without

affecting the agility of development process. This paper

compares classical XP and proposed SXP with the help of

empirical case studies.

Key words:
Agile Models, Extreme Programming, XP, SXP,Modified XP,

Comparative Analysis, Empirical Comparison.

1. Introduction

Agile software development methodologies provide light

weight, iterative and incremental way of software

development with evolutionary principles and values

[1],[2],[3],[34]. These methodologies emerged in 2001

while the software industry was looking for better

software development processes, which could mitigate

the project’s failure risks and also meet the needs of new

business environment [2],[4],[5]. Agile methodologies

changed the development paradigm and explored the

hidden aspects of software development to get better

results. These methodologies deeply valued good team

collaboration, frequent customer interaction and change

in requirements with constant pace of development

[5],[6],[34]. Agile methods are the collection of best

software engineering practices and values used to cope

with challenges of delayed, canceled or failed projects [1]

[31],[33],[35]. Although most of these practices were not

new for the software industry, however in agile umbrella

these are used in a novel manner and the encouraging

results of these practices convinced the software

developers to use agile models to handle software failure

risks [6],[7]. Today, many agile software development

models are used by software industry such as Extreme

programming (XP), Scrum, Feature driven development

(FDD), Dynamic system development method (DSDM),

Kanban, Lean software development (LSD) and Adaptive

software development (ASD). Extreme programming

(XP) is one of the widely used agile models [3]. It was

developed by Kent Beck to overcome the limitations of

traditional software development methodologies. It

consists of principles, values and practices, which work

together rigorously to develop high quality software

[6],[8],[9]. Like other agile methods, XP provides a

flexible and adaptive approach which can handle the

changing business needs in a better way. Its twelve

practices provide guidelines to govern the whole

development process. With all the advantages XP

provides, it lacks in some areas as well. Poor architecture,

weak system design and lack of documentation are the

major issues with XP [10],[11]. Moreover some of its

practices like ‘pair programming’ and ‘on-site customer’

are little bit controversial and are not applicable in every

situation [12]. Pair programming needs mutual

understanding, common skills, personality traits and good

coordination among developers [11],[13]. It is also

possible that particular project does not have enough

resources to use pair programming practice. Similarly, the

practice of on-site customer can cause serious issues if

not implemented properly [11],[12],[13]. Customer

presence can cause problems if he does not understand

the system requirements properly. To tackle the

mentioned issues of XP, SXP [14] was proposed for

small to medium scale projects. This paper performs an

empirical comparison of conventional XP and SXP with

the help of case studies. Both models are used to develop

client oriented projects and extracted empirical data of

development is used for comparison.

Further organization of this paper is as follows. Section 2

describes the various attempts of XP customizations.

Section 3 provides brief overview of XP & SXP. Section

4 compares both the models with empirical analysis.

Section 5 finally concludes the paper.

2. Related Work

Many researchers have discussed and customized the XP

model; some of the selected studies are discussed here. In

[32], researchers presented a customized form of XP

named Tailored Extreme Programming (TXP). The

proposed model was designed specifically for small scale

projects where requirements have fewer tendencies to

change. In [15], authors proposed a customized version of

XP model which introduced the feature of reusability.

Proposed model used a framework which added the

ability of component based architecture refinement

reusability in traditional XP. This framework provided a

way to develop simple and loosely coupled design which

has made the future modifications easy. Researchers in

[16] customized the XP model and introduced parallel

refinement iteration along with development activities to

enhance quality without affecting the agility. Proposed

Manuscript received March 5, 2018.
Manuscript revised March 20, 2018.

IJCSNS International Journal of Computer Science and Network Security, VOL.18 No.3, March 2018 162

model is not suitable for software projects having a lot of

inter dependencies among modules. In [17], researchers

proposed Formal Extreme Programming (FXP), a

modified form of XP model. FXP introduced formal

methods in XP to deal with safety critical projects. In

proposed model, authors combined the agility of XP with

precision of formal methods to overcome the drawbacks

of both models.FXP used formal methods like Software

Cost Reduction (SCR), Algebraic Specification and

Design by Contract (DbC) in different phases of XP to

make it suitable for safety critical projects. In [18],

authors presented an extended software maintenance

model. The proposed model used many XP practices such

as: on-site customer, planning game, small releases, pair

programming, metaphor, test driven development and

refactoring etc. In [19], authors presented an integrated

model by incorporating the practices of Personal

Software Process (PSP) in XP. The proposed model

introduced “Personal planning phase” in which

developers can plan their activities using PSP practices. 6

crucial practices from each model (PSP and XP) are

integrated in proposed model for effective development.

In [20], a modified XP model was presented to develop

medium scale projects with a large team. Moreover the

proposed model also targeted the drawbacks of XP such

as weak design and lack of documentation.A phase

named “analysis and risk management” was introduced to

handle failure risks. In [21], researchers used Analytical

Hierarchy Process (AHP) with CRC cards during

designing phase of XP. AHP was used to design a

systematic approach of CRC card’s prioritization. AHP is

a five step hierarchal model which reflects the human

thinking process. Use of AHP enables the developers to

select, design and implement the most important classes

first. In [22], researcher proposed a new XP model by

extending classical XP for medium and large scale

projects. According to author, XP has some drawbacks

which make it suitable only for small scale projects. The

drawbacks include weak design, poor architecture, lack of

risk management and lack of documentation. To handle

these issues, new phases were introduced. In [23], authors

presented an improved XP methodology, designed for the

security critical projects. The proposed model included

security checks in all the phases of XP and involved

developers and business representatives from the

beginning of project to identify security threats.

3. Material and Methods

XP is one of the widely accepted agile models by

software industry. It is commonly used for small scale

and low risk projects. Along with all the benefits XP

provides, it reflects some limitations as well. Lack of

documentation and weak system architecture make it a

bad choice for medium and large scale projects. Absence

of proper system design makes the development task

difficult and time consuming [11],[26]. Moreover

practices like pair programming and on-site customer can

create extra burden over the development process if not

implemented properly [11],[12],[13]. To get the

maximum benefits from XP, its limitations have to be

eliminated. For this reason, many researchers have

presented the customized versions of XP. Moreover, XP

has been tailored and integrated with other models to

accommodate different business needs and product

requirements [25]. Simplified Extreme Programming

(SXP) was proposed in [14] to fix the maximum issues of

XP without affecting the simplicity and agility.

3.1 ExtremeProgramming (XP)

XP is a lightweight and flexible approach of software

development which focuses on customer’s satisfaction,

frequent communication, quick feedback and acceptance

of changing requirements [3],[24]. Its iterative and

incremental approach helps in managing the vague and

constantly changing requirements with maximum level of

customer’s satisfaction [29]. Development process starts

with the basic functionality of the system (module) which

incrementally developed in to a complete product [6]. XP

is a collection of values, principles and best practices that

may not be new for software industry but arranged here

in a novel way to achieve effective and efficient software

development as well as to get the trust of software

industry [6]. These practices and principles are used in

extreme manner to mitigate the chances of project failure.

XP uses twelve best practices including planning game,

small releases, pair programming, metaphor, refactoring,

collective code ownership, on-site customer, 40-hour

week, simple design, continuous integration, continuous

testing and coding standards [3],[24]. The development

process of XP consists of six phases: Exploration,

Planning, Iteration to release, productionizing,

maintenance and death (Fig. 1). Exploration phase deals

with the requirement gathering activity. In this phase,

customer provides the system requirements through

writing the story cards [24],[27],[28]. Each story card

describes a small functionality to be developed without

any technical detail. Development team considers

different options regarding tools and technology for

system development [3]. Next is the planning phase, in

which a complete iteration is planned by prioritizing the

collected requirements. Moreover, effort and time

estimation is also completed in this phase to make a

realistic plan. In iteration to release phase, developers

perform analysis, designing, coding, testing and

integration activities of selected requirements iteratively.

Pair programming practice is used for development in

this phase [30]. Unit testing and integration testing are

performed to get quick feedback regarding the

implemented code. In productionizing phase, further

testing is performed and with the approval of customer,

workable module is released. Maintenance phase is used

to handle maintenance process of software in which

existing functionality can be updated or a new

functionality can be added [6]. Death phase is last phase

of XP where development process ends after releasing the

final product with complete required functionalities.

3.2 Simplified Extreme Programming (SXP)

SXP [14] is the customized form of XP designed for

small to medium scale projects.

IJCSNS International Journal of Computer Science and Network Security, VOL.18 No.3, March 2018 163

Fig. 1Extreme Programming Life Cycle [3],[6]

SXP explicitly pays attention towards system

architecture, design and documentation activities without

affecting the agility. This model simplified the structure

of XP by removing the practices of pair programming and

on-site customer. SXP consists of five phases:

Initialization, Analysis, Design, Development & Testing,

and Release (Fig. 2). Initialization phase is the first phase

of SXP which consists of two basic activities;

requirement gathering & prioritization and project

planning. In this phase, representatives from customer

side and from developer side sit together to extract the

requirements of system. These collected requirements are

then prioritized according to customer demand and finally

documented for later reference. During the activity of

project planning, project scope and project cost are

finalized.

Moreover development tools are also selected in this

phase. During analysis phase, an iteration plan is

developed, which includes the detail regarding number of

iterations needed to develop a complete system and the

number of stories which would be implemented in each

iteration. Moreover, time span of each iteration and final

budget estimation of the project is also the part of this

phase. All these activities are performed by development

team only. Design phase of SXP provides the opportunity

to explicitly focus on system design. In this phase, use

case and sequence diagrams are developed. This phase

also includes the test planning activity in which test cases

for the functionalities are written before the development.

Writing the test cases before coding activity provide

better design opportunities.

Fig. 2 Simplified Extreme Programming (SXP) Process Model

IJCSNS International Journal of Computer Science and Network Security, VOL.18 No.3, March 2018 164

in which coding and testing activities are performed in an

iterative manner.This is the phase where actual

implementation takes place. During coding activity only

one developer can work on selected tasks. In this phase

activities of coding, testing, code integration, and

integration testing are performed in an iterative manner

until a workable product is ready.The final product is

handed over to customer in release phase after

performing acceptance testing. As shown in Fig. 2, these

phases can be revisited in case of any deficiency or

problem.

4. Results and Discussions

Two case studies are selected for the empirical

comparison of XP and SXP. The selected case studies are

the part of a research project in which multiple agile

models are used to develop client oriented projects in a

software house, situated in Islamabad, capital of Pakistan.

In selected case studies, two small scale projects of same

nature were developed by two teams with XP and SXP

respectively.

Table 1: Case Study Selected for XP

Characteristics Description

Size Small

Iterations 3

Programming Approach Object Oriented

Language C#, ASP.NET

Documentation MS Office

Testing Browser Stack

Web Server IIS

Product Type Human Resource

Project Type Average

Project Duration 4 Weeks

Team size 5 Member

Feed back Weekly

Development

Environment
Visual Studio 2012

Other Tools MS Visio

Reports Crystal Report

Table 2. Case Study Selected for SXP

Characteristics Description

Size Small

Iterations 4

Programming

Approach
Object Oriented

Language C#, ASP.NET

Documentation MS Office

Testing Browser Stack

Web Server IIS

Product Type Human Resource

Project Type Average

Project Duration 4 Weeks

Team size 5 Member

Feed back Weekly

Development

Environment
Visual Studio 2012

Other Tools MS Visio

Reports Crystal Report

Both teams have same work environment and each team

consisted of 5 members. Description of case studies of

both the models is given in Table 1 and Table 2.

For comparison, following quality parameters are

selected [36],[37]:

- Completion Time (weeks)

- Budgeted Work Effort (hours)

- Actual Work Effort (hours)

- Post Release Defects

- Team Productivity

- Time to Manage Change

Table 3 presents the comparison of empirical results

according to above mentioned quality parameters. It can

be seen that SXP has improved overall development

process as its analysis and design phase helped to

overcome the limitation of weak design and produced

necessary documentation for future reference. Removing

the practices of pair programming and on-site-customer

made the development process simple and productive.

Table 3: Comparison of XP and SXP model

Parameter XP SXP

Completion time (in weeks) 4 3.8

Total line of Code (LOC) 2812 3060

Budgeted work effort (in hours) 800 760

Actual work effort (in hours) 710 695

Post release defects 25 15

Team productivity 3.96 4.4

Pre-release Change Requests 10 10

Time to manage change (in

hours)
14 11

Fig. 3Total Completion Time (Weeks)

IJCSNS International Journal of Computer Science and Network Security, VOL.18 No.3, March 2018 165

Total project completion time is less in SXP (Fig. 3)

because of the effective customization.

The activities of analysis phase helped in proper

estimation and provided an upfront design document

which reduced the total completion time. Moreover the

removal of the practices of pair-programming and onsite-

customer also reduced the completion time as these

practices were creating an extra burden on overall

schedule.

Total budgeted work effort for a project is an important

quality metric and calculated using the following

formula;

Total budgeted work effort (h) =No of hours in a day (8)

* No of days in a week (5) *No of weeks* Total team

size (5).

As the completion time reported for SXP is already less

then XP so obviously budgeted work effort would also be

less (Fig. 4) as in both projects remaining parameters are

same such as no of hours, no of days and team size.

Fig. 4 Budgeted Work Effort (Hours)

Actual work effort depends upon the actual time in hours

spent in a day for project development, the remaining

formula is same as budgeted work effort.

Fig. 5Actual Work Effort (Hours)

Actual spending hours are always less from budgeted

time as some time is consumed on other related activities.

In SXP, actual work effort is 695 hours however in XP it

is reported 710 hours. Number of post release defects is

very important quality parameter which also reflects the

customer’s satisfaction. In case of SXP, 3060 lines of

code were written and 15 defects were reported. Whereas

for XP project, 2812 lines of code were written and 25

post release defects were reported (Fig. 6).

Fig. 6 Post Release Defects

Team productivity is calculated using the following

formula;

Productivity= line of code/ actual time spent in hours.

As in SXP, more lines of code were written in less time

that’s why team productivity is higher than XP (Fig. 7).

Fig. 7 Team Productivity

Post release change requests are 10 in both the cases,

SXP implemented the changes in 11 hours whereas XP

have taken 14 hours (Fig. 8). SXP provides the necessary

documentation which helps to manage the change in an

efficient manneras compared to XP where no design

diagrams and documents are used (Fig. 8).

IJCSNS International Journal of Computer Science and Network Security, VOL.18 No.3, March 2018 166

Fig.8Total Time to Manage Change Request (Hours)

5. Conclusion

Agile models have explored the new directions of

software development. Extreme programming (XP) is one

of the widely used agile model which have the ability to

accommodate changing requirements with good level of

customer satisfaction. Although XP uses best software

engineering practices however it has some drawbacks as

well. Due to these limitations it is not considered suitable

for medium and large scale projects. To overcome its

limitations many customized version of XP were

presented by different researchers. Simplified Extreme

Programming (SXP) model was also a contribution in this

regard which targeted to eliminate maximum limitations

of classical XP without effecting its simplicity and

agility. This study empirically compared proposed SXP

and classical XP. For empirical comparison, two small

scale projects of same nature were developed using SXP

and XP respectively. Results of selected quality

parameters were compared and it was concluded that the

SXP performed far better than classical XP. For future

work, it is suggested that the proposed SXP model should

be tested further in medium scale complex projects.

References

[1] L. Williams, “Agile software development methodologies

and practices,” in Advances in Computers, vol. 80, Elsevier

Inc., pp.1-44, 2010.

[2] M. Fowler and J. Highsmith, “The agile manifesto.”

Software Development, vol. 9, no. 8, pp. 28-35, 2001.

[3] F. Anwer, S. Aftab, U. Waheed, and S. S. M. Shah,

“Comparative Analysis of Two Popular Agile Process

Models: Extreme Programming and Scrum,”International

Journal of Computer Science and Telecommunications vol.

8, no. 2, March 2017.

[4] D. Cohen, M. Lindvall, and P. Costa, “An introduction to

agile methods.” ADVANCES IN COMPUTERS, vol. 62,

pp.1- 66, 2004.

[5] F. Anwer, S. Aftab, U. Waheed, and S. S. Muhammad,

“Agile Software Development Models TDD, FDD,

DSDM, and Crystal Methods: A Survey,” International

Journal of Multidisciplinary Sciences and Engineering,

vol. 8, no. 2, 2017.

[6] P. Abrahamsson, O. Salo, J. Ronkainen and J. Warsta,

“Agile software development methods: Review and

analysis,” VTTpubl.,pp. 3-107 2002.

[7] T. Dyba, and T. Dingsoyr, "Empirical studies of agile

software development: A systematic review,” Information

and Software Technology, vol. 50, no. 9-10, pp. 833-859,

2008.

[8] E. Mnkandla, and B. Dwolatzky, “A survey of agile

methodologies,” The transactions of the SA institute of

electrical engineers, vol. 3, pp.236-247, Dec. 2004.

[9] E. R. Mahajan and E. P. Kaur, “Extreme Programming:

Newly Acclaimed Agile System Development Process,”

International Journal of Information Technology, vol. 3,

no. 2, pp.699-705, 2010.

[10] R. Crocker, “The 5 reasons XP can’t scale and what to do

about them,” Proceedings of XP, 2001.

[11] A. Dalalah, “Extreme Programming: Strengths and

Weaknesses,” Computer Technology and Application, vol.

5, no. 1, 2014.

[12] S. Beecham, H. Sharp, N. Baddoo, T. Hall and H.

Robinson, “Does the XP environment meet the

motivational needs of the software developer? An

empirical study,” in Agile Conference (AGILE), 2007 pp.

37-49, IEEE.

[13] K. S. Choi and F. P. Deek, “Extreme Programming Too

Extreme,” New Jersey Institute of Technology, 2002.

[14] F. Anwer and S. Aftab, "SXP: Simplified Extreme

Programing Process Model,” International Journal of

Modern Education and Computer Science (IJMECS), vol.

9, no. 6, pp. 25-31, 2017.

[15] S. Nagalambika, R. Majunath and K.S. Praveen,

“Component Based Software Architecture Refinement and

Refactoring Method in Extreme

Programming,”International Journal of Advanced

Research in Computer and Communication Engineering,

vol. 5, no. 12, 2016.

[16] M. R. J. Qureshi and J. S. Ikram, “Proposal of Enhanced

Extreme Programming Model,” International Journal of

Information Engineering and Electronic Business, vol. 7,

no. 1, p.37- 42, 2015.

[17] T. Saeed, S.S. Muhammad, M.A. Fahiem, S. Ahamd, M.T.

Pervezand and A.B. Dogar, “Mapping Formal Methods to

Extreme Programming (XP)–A Futuristic Approach,”

International Journal of Natural and Engineering

Sciences, vol. 8, no. 3, pp.35-42, 2014.

[18] J. Choudhari and U. Suman, “Extended iterative

maintenance life cycle using eXtreme programming,”

ACM SIGSOFT Software Engineering Notes, vol. 39, no.

1, pp.1-12, 2014

[19] N. Iqbal, M.U. Hassan, A.R. Osman and M. Ahmad, “A

framework for partial implementation of PSP in Extreme

programming,”International Journal of Engineering

Research and Applications, vol. 3, no. 2, pp.604-60, 2013.

[20] M. Qureshi, “Estimation of the new agile XP process

model for medium-scale projects using industrial case

studies,”arXiv preprint arXiv: 1408.6228, 2014.

[21] S. Alshehri and L. Benedicenti, "Prioritizing CRC cards as

a simple design tool in extreme programming," in

Electrical and Computer Engineering (CCECE), Regina

SK, 2013.

[22] M.R.J. Qureshi, “Agile software development

methodology for medium and large projects,”IET software,

vol. 6, no. 4, pp.358-363, 2012.

[23] S. Musa, N. Norwawi, M. Selamat and K. Sharif,

"Improved Extreme Programming Methodology with

Inbuilt Security," in Computers & Informatics (ISCI),

Kuala Lumpur , 2011.

IJCSNS International Journal of Computer Science and Network Security, VOL.18 No.3, March 2018 167

[24] K. Beck, “Extreme programming explained: embrace

change,” addison-wesley professional, 2000.

[25] S. Shahzad, “Learning from experience: The analysis of an

extreme programming process,”Information Technology:

New Generations, 2009. ITNG'09. Sixth International

Conference, pp. 1405-1410, IEEE, 2009.

[26] R. Fojtik, “Extreme Programming in development of

specific software,” Procedia Computer Science, vol. 3,

pp.1464-1468, 2011.

[27] T. Dudziak, “eXtreme programming an overview,”

Methoden und Werkzeuge der Softwareproduktion WS,

2000/1999, pp.1-28.

[28] R. Juric, “Extreme programming and its development

practices,” in. Proc. 22nd Int. Conf. Information

TechnologyInterfaces, IEEE, pp. 97-104, Jun. 2000.

[29] J. Newkirk, “Introduction to agile processes and extreme

programming,” in Proc. 24th Int. conf. Software

engineering, pp. 695-696, 2002.

[30] O. Kobayashi, M. Kawabata, M. Sakai and E. Parkinson,

“Analysis of the interaction between practices for

introducing XP effectively,” in Proc. 28th Int. conf. Softw.

Eng, pp. 544-550, May 2006.

[31] Z. Nawaz, S. Aftab and F. Anwer, “Simplified FDD

Process Model,” International Journal of Modern

Education and Computer Science (IJMECS), vol. 9, no.9,

pp. 53-59, 2017.

[32] F. Anwer, S. Aftab and I. Ali, “Proposal of Tailored

Extreme Programming Model for Small Projects,”

International Journal of Computer Applications (IJCA),

vol. 171, no. 7, pp. 23-27, 2017.

[33] G. Rasool, S. Aftab, S. Hussain and D. Streitferdt,

“eXRUP: A Hybrid Software Development Model for

Small to Medium Scale Projects,” Journal of Software

Engineering and Applications, vol.6, no. 09, p.446, 2013.

[34] S. Ashraf and S. Aftab, “Latest Transformations in Scrum:

A State of the Art Review,” International Journal of

Modern Education and Computer Science (IJMECS), vol.

9, no.7, pp.12-22, 2017.

[35] F. Anwer and S. Aftab, "Latest Customizations of XP: A

Systematic Literature Review,” International Journal of

Modern Education and Computer Science (IJMECS), vol.

9, no. 12, pp. 26-37, 2017.

[36] S. Aftab, Z. Nawaz, M. Anwar, F. Anwer, M. S. Bashir,

and M. Ahmad, "Comparative Analysis of FDD and

SFDD," International Journal of Computer Science and

Network Security (IJCSNS), vol. 18, no. 1, pp. 63-70,

2018.

[37] S. Ashraf and S. Aftab, "Pragmatic Evaluation of IScrum,"

International Journal of Modern Education and Computer

Science (IJMECS), vol. 10, no. 1, pp. 24-35, 2018.

