
IJCSNS International Journal of Computer Science and Network Security, VOL.18 No.4, April 2018

69

Manuscript received April 5, 2018
Manuscript revised April 20, 2018

Security Threats and Countermeasures in Software Defined
Networks

Adnan Ahmed†, Adnan Manzoor††, Imtiaz Ali Halepoto†††, Fizza Abbas†††, Ubaidullah Rajput†††

†Department of Telecommunication Engineering Quaid e Awam UEST Nawabshah Pakistan
††Department of Information Technology Quaid e Awam UEST Nawabshah Pakistan

†††Department of Computer Systems Engineering Quaid e Awam UEST Nawabshah Pakistan

Summary
Recently, Software-Defined Networking (SDN) has been
emerged as one of the promising research areas and may possibly
act as one of the alternatives of traditional network paradigm.
SDN provide valuable capabilities for efficient network
management, programmability, control the network and elasticity.
However, separating control and data plane expose the SDN to
variety of security threats such as DoS attack, misbehavior
attacks, man-in-middle, table and buffer overflow attacks. This
paper presents the detailed analysis on security threats at each
plane such as application, control and data planes thereby also
provide countermeasures for various attacks. Moreover, this
paper also highlights security challenges in pursuit of present and
future directions in SDN.
Key words:
Network, Software Defined Network, Control Plane, Forwarding
Plane, Data Plane, Security

1. Introduction

Traditional Network Architecture (TNA) has reached on
its hype. Traditional networks have an old history starting
from a project known as Advanced Research Project
Agency Network (ARPANet) in late 60s. Basic building
blocks of Traditional Network are consisted of Sender,
Intermediary Communication Devices and the Reciever.
Traditional networks are also known as conventional
networks. Conventional networks may use number of
intermediary communication devices such as switches,
routers, load balancers, firewalls etc. Corresponding
algorithms are normally pre-programmed (hardwired) with
respect to their functionalities of the devices [1]. This
vendor’s specified algorithms are responsible to route,
control and monitor the data depending upon the type of
device. A network manager is given privileges to control
the behaviour of these devices. Network manager is not
allowed to work beyond the jurisdiction of hardwired
algorithms. Conventional network does not support the
dynamic, self-contained and run time modifications,
updates those are out of scope to vendor’s product, which
is assumed as one of the major weaknesses of
conventional networks.

2. Brief Background of Software Defined
Networks

Software Defined Network (SDN) is termed in recent
years. However, the history starts since 1996, research and
industrial organizations including Ipsilon (proposed
General Switch Management protocol, 1996), The
Tempest (a framework for safe, resource-assured,
programmable networks, 1998) and Internet Engineering
Task Force (IETF) Forwarding and Control Element
Separation, 2000, and Path Computation Element, 2004.
Most recently, Ethane (2007) and OpenFlow (2008)
started to work for SDN and brought it into reality after a
long journey [2][3]. In Fig.1 SDN network and OpenFlow
devices are shown.

The traditional Network devices such as routers, switches,
hubs, load balancers, firewalls etc are having two basic
units. One is known as forwarding plane or data plane and
second as control plane. Forwarding plane is the part that
carries data. One can say that the interfaces or ports in
device are known as forwarding plane. The function of
interfaces is to send and receive data to another device. On
the other hand, control plane is Internetworking Operating
System (IOS), which is pre-programmed (hardwired)
piece of software, provides an environment to control and
command the forwarding plane [4]. All commands or
instructions related to underlying are executed through this
control plane. From cost perspective control plane is much
more expensive than a forwarding plane, because
complete behaviour of a device is based on the
instructions executed by control plane. The core idea of
SDN networks is to separate control and data / forwarding
planes. A Control plane now may control number of data
planes. In other way, control plane centrally controls the
data planes. Due to disjoining both the planes, SDN is
capable to have a system abstraction, which is the gateway
of extensive network programmability, increased
throughput and manageability [5].

IJCSNS International Journal of Computer Science and Network Security, VOL.18 No.4, April 2018

70

OpenFlow and mininet SDN architectures are widely
accepted in these days. These architectures follow
different protocols and standards. They are also used to
program control plane. Now, fundamentally SDN is
divided into three major parts: i) Programming
architecture such as OpenFlow or mininet, ii) Control
plane and iii) Forwarding plane.

The control plane is programmed through OpenFlow,
mininet etc. SDN provides a way of innovative changes,
modifications and logic functions can also be incorporated
to existing code. As control plane is programmed and the
instructions executed are directly applied over forwarding
plane through standard interfaces. The Communications
amongst SDN API and Control plane can be done via
northbound API, similarly south-bound API is used to
communicate between control and data layers [6].

Fig. 1 Software Defined Network and OpenFlow Devices

2. Key Challenges

SDN promises in terms of flexible, cost effective and
managed network deployment network services. However,
a number of challenges remain to be addressed. Some of
the key challenges are discuss below:

2.1 Security

The SDN is ground-breaking field in computer networks
and virtualization. So, there are less forums and industries
which gradually work to identify and address number of
issues. Some of the key areas which require attention of
security professionals in purist of SDN are highlighted
below.

SDN controller is responsible for most of network related
functions such as gathering network information,
configuration and route selection/calculation. However,
due to its openness nature it is potential target for attackers.
Moreover, the cloud computing platforms/applications
enable the attackers to easily compromise and seize the

functionally of SDN controller thereby resulting in
paralyzing the whole network.

The open programmable interfaces also make SDN
vulnerable to several threats. It exposes the software
vulnerabilities to an attacker so that it may formulate
strategies to launch an attack. Furthermore, the open
interfaces may also lead to exploitation of interface in such
a way that an adversary may embed malicious code that
may cause an interface to behave abnormally. Therefore, it
requires careful scrutiny of open programmable interfaces
of SDN.

As the SDN is divided into three layers such as application,
control and data/infrastructure layers, there may be several
attack points for an attacker to compromise a SDN. These
potential attack points may be i) The SDN switch, ii) The
SDN controller, iii) the link between SDN switches, iv)
the links between SDN controllers and switches, v) The
links between the controllers and vi) the application
software.

The buffer and flow tables maintained on SDN switches
may be compromised or overflowed. The data traffic on
potential links between the switch-controller, switches and
controllers may be tampered, dropped and misrouted to
false destinations. Similarly, if the application software is
embedded with some malicious code may result in seizing
or misbehaving the controller program.

2.2 Performance Vs Flexibility

Performance and flexibility are two unavoidable key
points. The flexibility to reprogram the control logic will
obviously effect on performance. The volume of code
writing updating, security codes and route management
codes may effect on performance and throughput of the
system. Whether processing speed can be acheived or not
in terms of throughput and latency. On the contrary
flexibility means the capability to change / write/ update
the code written through application layer on to the control
plane that directly effects on data plane.

2.3 Scalability

A Control plane plays a vital role in SDN Networks. An
entire SDN network is divided into different logical layers.
At the top of stack, an application layer exists. Application
plane layer supports SDN applications such as OpenFlow
to program the SDN Controller in Control plane layer.
Two different aspects are implied by scalability. One is,
scaling up SDN controllers and second is enhancing the
number of network nodes. Multiple issues arise here like if
a single controller is interfaced with multiple nodes, will
latency time be affordable for the network? Secondly, how
multiple controllers via east and westbound APIs

IJCSNS International Journal of Computer Science and Network Security, VOL.18 No.4, April 2018

71

communicate with SDN controller? The third issue is the
management overhead that the controller processes size of
operation and also deals with database running at backend
[1].

2.4 Interoperability

Interoperability is one of the major challenges in paradigm
shift from conventional networks to SDN networks. The
migration from one system to another system must be
synced that the existing network should be compatible to
newly adopting system. The components used for SDN
network should be SDN enabled capabilities. Despite of
this fact many organizations have developed a mature
SDN networks.

3. Threats in SDN

In SDN networks, control and management is improved
by imposing centralized control and management system.
Besides this many challenges are to be faced. Runtime
updating SDN security policies may come into conflict.
Like traditional networks, SDN also needs to take
countermeasure to security issues and threats. Number of
security issues are discussed in following subsections.
Table 1 presents the summary of security threats in SDN.
Table 2 presents the proposed research solutions in pursuit
of countering security threats in SDN.

3.1 Unauthorized Access

One of the distinguishing characteristics of SDN is
logically centralized control of network. The network
applications from multiple vendors may communication to
pool of controllers. However, if an adversary
compromised a controller or impersonate an application, it
may gain access to network resources and take control of
the network.

3.2 Table and buffer overflows

The flow table and flow buffer are maintained by SDN
switches which are constrained in terms of storage
capacity. If an attacker node generates huge amount of
irregular traffic with unknown destinations, causes new
rules (illegal rules) to be inserted in flow table thereby
compromising the storage capacity of flow table.
Therefore, packet forwarding exhibits significant
variations as legitimate traffic forwarding rules may not
get storage capacity in flow table. Another similar type of
attack is buffer overflow. The forwarded packets need to
be buffered in flow buffer before the rule is searched or
new rule is inserted. An adversary can flood large amount
of packets that switch has to buffer thereby leads to buffer

overflow, which leaves no space for legitimate packets
consequently resutls in packet drop.

3.3 Data Leakage

The OpenFlow standard describes variety of actions for
packet handling such as send, drop or forward. If an
attacker determines the type of action being applied on
particular packet, it can discover the configuration
(proactive or reactive) of switch. Such data leakages
enable the attacker to redirect the data traffic or generate
fake traffic to launch DoS attack. Another challenging
issue in SDN is secure storage to credentials such as keys
and certificates. If these credentials are compromised, this
may result in data leakages which significantly undermine
the performance of SDN.

3.4 Data Modification

The SDN architecture allows the controller to program the
network devices in order to control flow of traffic.
However, if the controller is compromised and comes
under the adversary attack, it may able to take control of
whole SDN. This provides leverage to attacker so that it
may modify existing rules, insert new attacking rules, and
modify critical data packets.

3.5 Compromised/Malicious Applications

The applications running on controller have access to
network resources and may control behavior of network.
As discussed, SDN allows third-party applications to be
integrated in SDN architecture using North-bound APIs.
However, a malicious or compromised application may
take control of the network. Similarly, a buggy or poorly
designed application unintentionally introduces
vulnerabilities to the network.

3.6 Denial of Service

The separation of data and control planes in SDN
architecture exposes it to denial of service attacks. An
attacker could flood enormous traffic (attacking traffic)
between the SDN controller (control plane) and network
devices (data plane) communication links. As a result,
legitimate users refrain from using the links and become
unavailable. Similarly, attacking traffic may integrate with
legitimate traffic thereby making it very difficult to
distinguish between two types. Moreover, DoS attacks
attempt to exhaust processing, memory and bandwidth

IJCSNS International Journal of Computer Science and Network Security, VOL.18 No.4, April 2018

72

Table 1: Security threats in SDN architecture
SDN Plane Threat type Possible reason

Application

Unauthorized
access By passing authentication and authorization mechanism

Malicious
applications Poorly designed applications

Configuration
issues Incorrect use of security features

Control
DoS attacks Flooding high volume of traffic
Threats from
applications Open interfaces

Data/infrastr
ucture

Man-in-the
middle Communication channel not secure

Table and
buffer

overflows
Storage constraints, attacking traffic saturates table and buffers

Fake flows Malicious applications generate false flow rules
Data leakage Weak credential management

Data
Modification

Open nature of network,
Controller hijacking

Table 2: Proposed research solutions to security threats in SDN
Attack Possible countermeasures

Unauthorized access AuthFlow [7], PermOF [8], NICE [9], Verificare [10], VeriCon [11], FortNOX [12],
Malicious applications ROSEMARY [13], LegoSDN [14]
Configuration issues Flow-based policy [15], LPM [16], Frenetic [17], Flover [18], Anteater [19],

NetPlumber [20]
DoS attacks CPRecovery [21], FloodGuard [22], AVANT-GUARD [23], DDoS Blocking

Application [24], CONA [25],
Threats from
applications FRESCO [26], SE-Floodlight [27]

Man-in-the middle FlowChecker [28], FortNOX [12], VeriFlow [29], Controller replication [21]
Table and buffer

overflows FlowVisor [30], VAVE [31], Resonance [32]
Fake flows FlowChecker [28], FlowGuard [33]

resources and make it unavailable for normal traffic.
Furthermore, at infrastructure level, DoS attack may
overflow table and buffers, falsified rule insertion and
modification.

3.7 Man-in-the-Middle

An agent node (man-in-middle) between source and
destination, without being detected by either side, ma
intercept and tamper data. A man-in-middle attack
between SDN switches and controller is an ideal for an
adversary to intercept and tamper data forwarding rules in
order to have complete access on packet forwarding
mechanism. Some popular man-in-middle attacks include
port mirroring, session hijacking, DNS spoofing and so
on.

3.8 Configuration Issues

In SDN, it is important to implement network policies and
configurations such as Transport Layer Security (TLS).
However, misconfigurations and overlooking security
features may impact all layers in SDN architecture.

3.9 Threats from applications

The applications (in some cases third-party applications),
running on the top of control plane exhibits security

threats to SDN controller. The higher layer applications
can obtain network information by invoking API at control
layer. These types of application must be scrutinized
before accessing network resources/configurations. The
different applications may have different functional
requirements and needs to customize security policy for
them. For example, intrusion detection application need to
inspect packet header field, whereas, load balancing
applications may require network statistics such as packet
counter values to balance the load.

3.10 Fake flows

The switches and controllers can be attacked by flawed
devices or clients. Network components are used to
propagate DoS. Numbers of interesting points are stored
for each client, which can be attacked through fake flow of
data.

4. Conclusion

SDN has opened many gateways for programmers,
network administrators, and policy makers. In this paper,
we presented the characteristics and architecture of SDN.
SDN architecture comprises of three layers: application
layer, control layer and data or infrastructure layer. We

IJCSNS International Journal of Computer Science and Network Security, VOL.18 No.4, April 2018

73

presented the security attacks in SDN and analyzed these
attacks in pursuit of SDN layers. Moreover, various
countermeasure proposed by researchers to prevent threats
are also presented. In future, various other attacks will be
analyzed and countermeasure may be provided to
efficiently deal with attacks.

References
[1] S. Sezer, S. Scott-Hayward, P. Kaur Chouhan, B. Fraser, D.

Lake, J. Finnegan, N. Viljoen, M. MIler, and N. Rao, “Are
We Ready for SDN? Implementation Challenges for
Software-Defined Networks,” IEEE Commun. Mag., vol. 51,
no. 7, pp. 36–43, 2013.

[2] K. Slavov, D. Migault, and M. Pourzandi, “Identifying and
Addressing the vulnerabilites and Security issues of SDN,”
in Ericsson Technology Review, 2015, pp. 1–12.

[3] I. Ahmad, S. Namal, M. Ylianttila, and A. Gurtov, “Security
in Software Defined Networks : A Survey,” IEEE Commun.
Surv. Tutorials, vol. 17, no. 4, pp. 2317–2346, 2015.

[4] B. UNderdahl and G. Kinghorn, Software Defined
Networking for Dummies, Cisco Spec. Wiley Brand, 2015.

[5] D. Kreutz, F. M. V Ramos, and P. Verissimo, “Towards
Secure and Dependable Software-Defined Networks,” in
Proceedings of the second ACM SIGCOMM workshop on
Hot topics in software defined networking, 2013, pp. 55–60.

[6] H. Hu, G.-J. Ahn, W. Han, and Z. Zhao, “Towards a
Reliable SDN Firewall,” in Open Networking Summit,
2014.

[7] D. M. F. Mattos and O. C. M. B. Duarte, “AuthFlow:
Authentication and Access Control Mechanism for Software
Defined Networking,” Ann. Telecommun., vol. 71, no.
11–12, pp. 607–615, 2016.

[8] X. Wen, Y. Chen, C. Hu, C. Shi, and Y. Wang, “Towards a
secure controller platform for openflow applications,” in
Proceedings of the second ACM SIGCOMM workshop on
Hot topics in software defined networking, 2013, pp.
171–172.

[9] M. Canini, D. Venzano, P. Peresini, D. Kostic, and J.
Rexford, “A NICE way to test OpenFlow applications,” in
Proceedings of the 9th USENIX Symposium on Networked
Systems Design and Implementation (NSDI), 2012, pp.
1–14.

[10] R. W. Skowyra, A. Lapets, A. Bestavros, and A. Kfoury,
“Verifiably-safe software-defined networks for CPS,” in
Systems, Proceedings of the 2nd ACM international
conference on High confidence networked, 2013, pp.
101–110.

[11] T. Ball, N. Bjrner, A. Gember, S. Itzhaky, A. Karbyshev, M.
Sagiv, M. Schapira, and A. Valadarsky, “Vericon: Towards
verifying controller programs in software-defined
networks,” ACM SIGPLAN Not., vol. 49, no. 6, pp.
282–293, 2014.

[12] P. Porras, S. Shin, V. Yegneswaran, M. Fong, M. Tyson,
and G. Gu, “A security enforcement kernel for OpenFlow
networks,” in Proceedings of the first workshop on Hot
topics in software defined networks, 2012, pp. 121–126.

[13] S. Shin, Y. Song, T. Lee, S. Lee, J. Chung, P. Porras, V.
Yegneswaran, J. Noh, and B. B. Kang, “Rosemary: A
Robust, Secure, and High-Performance Network Operating
System,” in Proceedings of the ACM SIGSAC conference
on computer and communications security, 2014, pp. 78–89.

[14] B. Chandrasekaran and T. Benson, “Tolerating SDN
application failures with LegoSDN,” in Proceedings of the
13th ACM Workshop on Hot Topics in Networks, 2014, pp.
22–28.

[15] T. Hinrichs, N. Gude, M. Casado, J. Mitchell, and S.
Shenker, “Expressing and enforcing flow-based network
security policies,” in University of Chicago, Tech. Rep,
2008.

[16] W. Han, H. Hu, and G.-J. Ahn, “LPM: Layered Policy
Management for Software-Defined Networks,” in IFIP
Annual Conference on Data and Applications Security and
Privacy, 2014, vol. 356–363.

[17] N. Foster, R. Harrison, M. J. Freedman, C. Monsanto, J.
Rexford, A. Story, and D. Walker, “Frenetic: A network
programming language,” ACM SIGPLAN Not., vol. 46, no.
9, pp. 279–291, 2011.

[18] S. Son, S. Shin, V. Yegneswaran, P. Porras, and G. Gu,
“Model checking invariant security properties in
OpenFlow,” in IEEE International Conference on
Communications (ICC), 2013, pp. 1974–1979.

[19] H. Mai, A. Khurshid, R. Agarwal, M. Caesar, P. Godfrey,
and S. T. King, “Debugging the data plane with anteater,”
ACM SIGCOMM Comput. Commun. Rev., vol. 41, no. 4,
pp. 290–301, 2011.

[20] P. Kazemian, M. Chan, H. Zeng, G. Varghese, N.
McKeown, and S. Whyte, “Real time network policy
checking using header space analysis,” in Symposium on
Networked Systems Design and Implementation, 2013, pp.
99–111.

[21] P. Fonseca, R. Bennesby, E. Mota, and A. Passito, “A
replication component for resilient OpenFlow-based
networking,” in Network Operations and Management
Symposium (NOMS), 2012, pp. 933–939.

[22] H. Wang, L. Xu, and G. Gu, “FloodGuard: a dos attack
prevention extension in software-defined networks,” in 45th
Annual IEEE/IFIP International Conference on Dependable
Systems and Networks (DSN), 2015, pp. 239–250.

[23] S. Shin, V. Yegneswaran, P. Porras, and G. Gu,
“AVANT-GUARD: scalable and vigilant switch flow
management in software-defined networks,” in Proceedings
of the ACM SIGSAC conference on Computer
communications security, 2013, pp. 413–424.

[24] S. Lim, J. Ha, H. Kim, Y. Kim, and S. Yang, “A
SDN-oriented DDoS blocking scheme for botnet-based
attacks,” in Sixth International Conf on Ubiquitous and
Future Networks (ICUFN), 2014, pp. 63–68.

[25] Y. Choi, “Implementation of content-oriented networking
architecture (CONA): a focus on DDoS countermeasure,” in
Proc of 1st European NetFPGA Developers Workshop,
2010, pp. 1–6.

[26] S. Shin, P. A. Porras, V. Yegneswaran, M. W. Fong, G. Gu,
and M. Tyson, “FRESCO: Modular Composable Security
Services for Software-Defined Networks,” in Proceedings
of Network and Distributed Security Symposium, 2013, pp.
1–16.

[27] “Security-enhanced floodlight,” [Online]. [Available]
http://www.
sdncentral.com/education/toward-secure-sdn-controllayer/2
013/ 10/. .

[28] E. Al-Shaer and S. Al-Haj, “FlowChecker: Configuration
analysis and verification of federated OpenFlow

IJCSNS International Journal of Computer Science and Network Security, VOL.18 No.4, April 2018

74

infrastructures,” in Proceedings of the 3rd ACM workshop
on Assurable and usable security configuration, 2010, pp.
37–44.

[29] A. Khurshid, W. Zhou, M. Caesar, and P. Godfrey,
“Veriflow: verifying network-wide invariants in real time,”
ACM SIGCOMM Comput. Commun. Rev., vol. 42, no. 4,
pp. 467–472, 2012.

[30] R. Sherwood, G. Gibb, K.-K. Yap, G. Appenzeller, M.
Casado, N. McKeown, and G. Parulkar, “Flowvisor: a
network virtualization layer,” 2009.

[31] G. Yao, J. Bi, and P. Xiao, “Source address validation
solution with OpenFlow/NOX architecture,” in 19th IEEE
International Conference on Network Protocols (ICNP),
2011, pp. 7–12.

[32] R. Braga, E. Mota, and A. Passito, “Lightweight DDoS
flooding attack detection using NOX/OpenFlow,” in IEEE
35th Conference on Local Computer Networks (LCN), 2010,
pp. 408–415.

[33] H. Hu, W. Han, G.-J. Ahn, and Z. Zhao, “FLOWGUARD:
Building Robust Firewalls for Software-Defined Networks,”
in Proceedings of the third workshop on Hot topics in
software defined networking, 2014, pp. 97–102.

Adnan Ahmed Arain is an Assistant
Professor in the department of
Telecommunication at Quaid-e-Awam
University of Engineering, Science and
Technology (QUEST), Nawabshah,
Pakistan. He completed his PhD in
computer science from Universiti
Teknologi Malaysia (UTM), Johor Bahru,
Malaysia in November, 2015. He
completed his Master of Engineering in

Computer systems Engineering in February, 2012 from QUEST,
Nawabshah, Pakistan. He is professional member of Pakistan
Engineering Council (PEC) and regular reviewer of well reputed
ISI-indexed journals. His research interest includes routing in ad
hoc networks, security, trust management in ad hoc networks and
quality of service issues in sensor and ad-hoc networks.

Adnan Manzoor received his bachelor’s
and master’s degree in Computer Science
from University of Sindh Jamshoro
Pakistan in 2001. He received his Master’s
in Information Technology from
Quaid-e-Awam University of Engineering,
Science and Technology (QUEST),
Pakistan in 2012. He successfully
completed his PhD in Artificial
Intelligence from Vrije University

Amsterdam Netherlands in 2017. His research interests include,
but are not limited to, computational modelling of cognitive and
affective processes and study the role of these processes in the
context of a person’s social network both for purposes of
monitoring and support, for example, via mobile phone apps.

Imtiaz Ali Halepoto received Bachelor
of Engineering degree in Computer
Systems Engineering from QUEST
Nawabshah, Pakistan, and both M.Sc and
PhD from the Department of Computer
Science, the University of Hong Kong in
2010 and 2015. Currently, he is working as
Assistant Professor at the Department of
Computer Systems Engineering QUEST

Nawabshah. His research interests are in communication,
network protocols and the heterogeneous networks.

Fizza Abbas received the bachelor's
degree in computer system engineering
from the Quaid-e- Awam University of
Engineering, Science and Technology
(Quest), Pakistan, in 2007, and the master's
degree in communication system and
networks from Mehran University,
Pakistan, in 2011. She successfully
completed her PhD in Computer
Engineering from Hanyang University,

Korea in 2017. Her research interests are security and privacy in
social network services, mobile social networks, cloud
computing, mobile cloud computing, and vehicle ad hoc
networks. She has ten years of teaching experience and currently
working as Assistant Prof. in Quest Pakistan. She has served as a
reviewer in many conferences and journals. She is an author of
many International and national papers.

Ubaidullah Rajput received his
Bachelor's Degree in Computer System
Engineering from Quaid-e-Awam
University of Engineering, Science and
Technology (Quest), Pakistan in 2005. He
received his Master's in Computer System
Engineering from NUST Islamabad,
Pakistan in 2011. He successfully
completed his PhD in Computer
Engineering from Hanyang University,

Korea in 2017. His research interests are security and privacy
issues in crypto-currency, security and privacy issues in
VANETS, Internet of Things (IoT), mobile social networks and
cloud computing. He has more than 11 years of teaching and
research experience and currently working as Assistant Prof. in
Quest Pakistan. He has served as a reviewer in many
conferences and journals. He is an author of many International
and national papers.

