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Summary 
This paper presents a comparative study between two techniques 
in order to outline the stability performances of the string tension 
racket of stringing machine, when we apply the state feedback 
controller. These two techniques are the graphic approach which 
based on Bond Graph (BG) tool, and the optimization method 
LMI (Linear Matrix Inequality). Therefore, in this paper, we will 
take into account the advantage of using the two techniques in 
designing the Luenberger (full order and reduced order) and the 
functional observers in closed loop for estimation and control 
purposes. The simulation and experimental results are presented 
and discussed. 
Key words: 
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1. Introduction 

The linear time invariant systems stabilization by the state 
feedback controller via the pole placement technique can 
be performed at the real time by the Luenberger observer 
[1], Kalman filter [2] and at the frequency time [3].  
Many techniques exist in the literature for the calculation 
of the state feedback controller gain as well as the observer 
gain. We found the pole placement technique [4] which 
placed arbitrarily the eigenvalues of the systems, and the 
optimization method as LMI (Linear Matrix Inequality) [5] 
and BMI (Bilinear Matrix Inequality) [6], which gives an 
exactly location in the complex plan. 
Few works relative to the state feedback stabilization in the 
graphic case, which based on the BG approach. Indeed, [7] 
applied the control on the Luenberger observer. In this 
case, the control gain determined by the causal path 
calculus [8] as well as the Luenberger observer gain [9].  
Therefore, in this paper, we will take into account the 
advantage of using the BG approach, in designing the 
Luenberger and the functional observers for estimation and 
control purposes. The paper also highlights and clarifies 
the need for the optimization method LMI (Linear Matrix 
Inequality), to outline the stability performances. 
In summary, this paper is organized as follows: Section 2 
presents the methodology of BG modeling. Section 3 
describes the studied system. Section 4 deals with 

observers design based on algebraic and graphic methods. 
We simulate the error evolution and the control strategies, 
and we discuss the simulation and the experimental results 
in section 5. Section 6 concludes the paper.  

2. The Methodology of BG Modeling  

To study the control laws, the step of modeling is 
indispensable. Despite its multidisciplinary projects, the 
BG was hyped up. It’s created in 1961 by [10] and 
developed by [11]. The BG is a tool of modeling in various 
fields (electrical, mechanical, hydraulic...). It’s based on 
power transfer between the different parts of the systems. 
To describe the systems dynamic, there are two pairs of 
variables, effort symbolized as e  and flow symbolized as f , 
the product of which constitutes the power. There are also 
the energy variables, which are the generalized momentum 
p  (time integral of effort) and the generalized 
displacement q  (time integral of flow). The classification 
of BG elements is as follows; the passive elements as 
inertial elements )(I , capacitive elements )(C  and 

resistive elements )(R . The effort sources ( )se  and flow 

sources 
( )s f  are the active elements. Two ports elements 

represented by transformer elements )(TF  and gyrator 
elements )(GY , and multi ports elements represented by 

effort junctions ( )J 0  and flow junctions ( )J 1 . 
Despite BG approach applicability to the architecture and 
the design of the observer [12, 13], yet it has used as a tool 
for modeling [14], diagnosis [15] and for fault tolerant 
control synthesis [16].  
Note that the graphical formalism is used in this paper for 
modeling, simulation and practice purposes. 

3. Stringing Machine BG Model 

 In the following section, an application in real system is 
provided to demonstrate the effectiveness of the proposed 
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methods. The studied system Fig. 1 is composed of two 
zones; the cradle and the clamp, and the tensioning 
mechanism. The first zone corresponds to the manual 
operations, which might be attached to the racket, and 
keeps respective the rope tension. The second zone, is 
automated which allows to obtain the precise rope tension. 

 

Fig. 1  The stringing machine (laboratory test) 

The word BG of the stringing machine in open loop is 
composed of four blocks Fig. 2, the first one presents the 
DC motor, the second presents the reducer, the third block 
gathers the gable and the chain, the spring the trolley and 
the rope are presented in the fourth block. 

 

Fig. 2  Word BG of stringing machine 

The detailed BG model of the system is depicted in Fig. 3. 
In fact, the DC motor is used to associate the physical 
phenomenon or components considered by the induced 

current I m , and by the mechanic part which depends on 
the rotation speed of its axe. Whether, U m  is the induced 
tension, Rm  is the resistance, Lm  is the inductance, R1  is 
the resistive viscous friction, and J m  is the moment of the 
rotor inertia and the shaft of inertial type. The gyrator 
element has as r1  constant, and transforms the 
electromotive force into rotation speed of the reducer tree. 
The compressibility of the tree is presented by C1  element. 
The third block transforms the rotation movement into 
translation movement via winding up the rope which is 
presented as the transformer element witch has as r2  
constant. The mass of the chain is given by m  and the 
frictions at the gable are negligible. We consider that the 

tree is of elastic type (whether KK
KC

cr

r

+
=

12
 ( K r  is the 

spring stiffness and K c  is the rope stiffness), the loss 
resistance is given by R2 ). The mass of the trolley is 
negligible.  

From Fig. 4, we can deduce the gear motor equations:  

UUUU em RL mm
−−=

   (1) 

IRU mmRm
=

 

∫= dtLL Up
mm  

ωme rU 1=
 

IrU mem
1=

 

CFUF mReJ mm
−−=

1    (2) 

ωmRF R 1
1
=

 

∫= dtJJ Fp
mm  

ωωω 2−= mr  
 
The gable + chain equations:  

CrF rpig 21=
    (3) 

Vrr 121=ω  

FFF mopigch −=
 

∫= dtFp chm  
 
And the spring + trolley + rope equations: 

VVV K T
43 −=
    (4) 

∫= )(
2

dtKCK VF
TT

ψ
 

∫= dtKC Vq
T2  
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Fig. 3  BG model of stringing machine 

 

From the BG model and the equations above, we can 
deduce the state space of the system described by equation 
(5):  


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    (5) 
 

With
[ ]qpqpp CmCJ mLm

x
T

21
=  is the state vector, 

[ ]DDDD feffy
T

4321
=

 is the measured 

output variables, U mu =  is the control input variable and 

the system matrices A , B and C are 
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The characteristics of the parameters are listed in the Table 
1. 
 
 
 
 

Table 1: Parameters of the stringing machine 

Symbol Designation Nominal 
values 

Rm  Rotor resistance Ω1.1  
Lm  Rotor inductance mH1   

J m  
Moment of geared 

motor mKg 2.05.0  

R1  Coefficient of viscous 
Srad
mN

//
.28.0

 

r1  Coefficient of torque 
A

mN
/

.0386.0

  

r2  
Reduction ratio AmN /.01.0  

m  Chain mass Kg3.0  
K r  Spring stiffness mmN /4  
K c  Rope stiffness mmN /7.32  

C1  
Coefficient of 

compressibility 10 4−

 

C2  
Coefficient of 

compressibility 00028.0  

R2  Loss resistance 
Srad
mN

//
.1000

 
According to [17], any system driven by the output of the 
given system can serve as an observer for that system. 
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4. Observer Design for State Feedback 
Control 

4.1 Analytical Observers Design 

4.1.2 Full Order Luenberger Observer 

The aim of the full observer is to estimate all its states. The 
observer-based controller structure is defined as  
 





=
−++−=

xCy
yyGBxBAx yKK cforwardfeedback

ˆˆ
)ˆ(ˆ)(&̂

 (6) 
 

Where Rnx∈ , Rpy∈ , Rmu∈ , K feedback is the feedback gain 

matrix, yc  is the reference input, K forward  is the forward 
gain matrix and G  is the observer gain to be determined. 
The estimation error is xxe ˆ−=  leading to eGCAe )( −=& . 

4.1.2 Reduced Order Luenberger Observer 

This observer is designed to estimate the remaining part of 

the state vector, that is xbˆ  of dimension )( pn − . The aim of 
the reduced order observer is to separate the state vector of 

(5) in non-estimated variables noted xa  and estimated 

variables noted xb . The reduced observer structure is 
given by  
 







+=
++=
yLz

yPuNzMz

xb
)

&
) ˆˆ

   (7) 
 
With z  is auxiliary variable which avoid the time 
derivation of the output, when we calculate the estimated 
state.  

AA abbb
LM −=     (8) 

BB ab
LN −=     (9) 

LLLLP AAAA abaabbba
−−+=

  (10) 
 

ℜ −∈ mmnL )(

 is the observer gain matrix.  
CACACA ababaaaaa

1
)(

−
+= , )( CAACACA baabbbabaab

−+= , 
CAA ababa

1−
= , CCAAA bbabbbb a

1−
−=  

BCBCB bbaaa
+=  and BB bb

=  are the sub-matrices of the 
state matrix. 
The observer-based controller structure is given by  
 







+=

+−+=

yLz
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x
KyK

b

feedbackcforward )
&)

) )(ˆ

(11) 
 
The dynamic of the estimation error is defined as  

xx bbe ˆ−=  leading to .)( eLe AA abbb
−=& . 

4.1.3 Functional Observer 

The aim of the functional observer is to estimate directly 
the control law )( KxW =  with RrW ∈ , where nr ≤  without 

estimating all its states. We assume that the pair ),( CA  is 
observable and prankC =  and rrankK = . Let us propose 
that ( )0IC =  and ( )KK baK = . So we obtain yxa =  and 

)(
1

yWb KKx ab −=
−

.    
After some algebraic manipulations, the linear functional 
observer has the following form: 
 







++=
−++−−+−=

yLzW
uLyLLLLzLz

KKK
BBAAAAAA

bab

abbbaaabbaabbb

)(ˆˆ
)()(ˆ)(&̂

(12) 
 
With L  is the observer gain matrix to be determined.  
In the general case, the form of the observer structure is as 
follows: 





+=
++=
FyzPW

HuDyzEz
ˆˆ

ˆ&̂

    (13) 
 
With 

AA abbb LE −= , LLLLD AAAA bbaaabba +−−= , BB ab LH _= ,

 

K bP = , LF KK ba +=     (14)
 

The dynamic of the estimation error is defined as  

TxzKxWe −=−=     (15) 
 
Assumptions : 
Ŵ  in (12) is an asymptotic estimate of W for any x0 , 
Ŵ 0 and any u , if and only if the following assumptions are 
satisfied:  
1. E  is a Hurwitz matrix, i. e., has all its eigenvalues in the 
left-hand side of the complex plane. 
2. DCETTA =−  
3. KFCPT =+      (16) 
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4. TBH =   
Where T  is a constant matrix, as 0)(lim =−

∞→
Txzt  Then 

the estimation error dynamics are written as: 

Eee =&      (17) 
 
Using the linear state-space system representation and 
linear algebra, we have introduced the Luenberger and the 
functional observers for the state vector and the state 
vector function estimations. To simplify some classical 
matrices calculations, the observers design based on BG 
approach will be presented. 

4.2 BG Observers Design Model 

The present section introduces the procedure to design a 
Luenberger and functional observers using the bond graph 
tool [18]. The algorithm is formulated as follows: 
Step 1: Checking the redundant outputs 
The property of existence of redundant outputs, 
summarized in the bond-graph rank (bg-rank), which can 
confirm the rank of the model’s matrices. Indeed, the 

[ ]Crankbg −  is equal to the number of detectors in a model 
that can be dualized without creating causality conflicts. So, 
the [ ]Crankbg −  will be equal to the number of non-
redundant outputs; [ ] pCrankbg =−  
Step 2: Investigating the structural observability of the 
system BG model  
With reference to [19]’s theorem, a bond graph model is 
structurally observable if and only if the below conditions 
are satisfied: 
When we put the BG model of the system with preferred 
integral causality, there is a causal path linking the sensors 
for each dynamic element I orC . 
When the BG model of the system is affected with 
derivative causality, all the element I orC .have derivative 
causalities and the sensors are dualized. 
The design of the observers bond graph models steps are 
as follows: 

4.2.1 Full Order Luenberger Observer 

Step 1 and step 2 (see above). 
Step 3: Linear output injection: Addition of the term 

)ˆ( yyGi −  in the dynamical elements of the observer model.  
The observer BG model in closed loop is given by Fig. 4 : 
 

 

Fig.4  Full observer BG model in closed loop 

4.2.2 Reduced Order Luenberger Observer 

Step 1 and step 2 (see above). 

To avoid C a
1−  calculus, and to simplify the reduced order 

observer design, [9] uses the bicausality concept. The 
procedure of reduced observer design summarizes by the 
following steps: 
Step 3: Selection of xa ,verification that [ ] pCrankbg =_  
(invertibility) and calculation of Ca and Cb . 
Step 4: Suppression of the dynamical elements associated 
with xa . 
Step 5: Sum of the term yL   

Step 6: Sum of the term ))ˆ(( uyLzyL BAA aabaa
+++−=φ  

Applying the step above, the BG model of the reduced 
observer in closed loop is presented in Fig. 5. 
 

 

Fig. 5  Reduced observer BG model in closed loop 

4.2.3 Functional Observer 

Step 1 and step 2 (see above). 
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Step 3: Selection of xa : From the BG point of view, the 
non-estimable variables in BG model are the state 
variables associated to the dynamical elements which are 
connected directly to the detectors by a causal path or 
through the R  element. 
 Step 4: Change of xa  causality: We change the causality 
of the dynamical elements associate with xa which is made 
from the initial BG model into a derivative causality, as 
shown in Fig. 6. 
 Step 5: Injection of the term Fy : As in the case of the 
full order observer design, we consider the term Fy  as an 
error signal which comes from an extra junction on the 
effort or flow source bond via an active bond, and injected 
it on the dynamical elements associated to the state 
variable, which has a linear function with the control 
variable by the modulated source, as shown in Fig. 7. 
Step 6: Sum of the term P : In the observer BG model, 
the term P  is added with a modulated source. Indeed, it’s 
the flow when the control variable is associated to the C  
element (and it’s the effort when the control variable is 
associated to the I  element), as shown in Fig. 8. 
 

 

Fig.6  Derivative causality of the elements associated with xa  

 

Fig. 7  Fy  injection to: (a) I  element, (b) C  element 

 

Fig. 8. Addition of the term P  in the observer BG model: (a) I  element, 
(b) C  element  

Applying the step above, the functional observer BG 
model shown in Fig.9 
 

 

Fig. 9  BG model of the functional observer 

Thereafter, we compute the observer gain via both BG and 
LMI methods. 

4.2.4 Observer Gain Computing  

4.2.4.1 By BG Method 

The observer gains G , L and L  can be computed using 
two different methods. The first consists in the traditional 
methods using the state equations calculation from the 
system bond graph model. The second is based on the 
formal calculation of the characteristic polynomial 

)()( sP GCA− , )()( s
ALAP

abbb− and 
)()( sAAP

abbb
L− respectively. It uses 

the causal manipulations and structural properties on the 
bond graph model without any calculations using [8]’s 
theorem cited below 
The value of each coefficient of the characteristic 
polynomial  

ααα nn

nn
A ss ssP ++++=

−

−

1

1 ...)(    (18) 
 
equal to the constant term (without the Laplace operator) 
of the total gain of the families of causal cycles of order i  
in the bond graph model. The gain of each family of causal 
cycles must be multiplied by )1(− d

 if the family consists of 
d  disjoined causal cycles. 
Thus, the causal analysis to calculate the observer gains is 
made only with the family of causal cycles in the 
observer’s bond graph. 

4.2.4.1 By LMI Method 

The decay rate is strictly upper to α , if there exist a 
Lyapunov function )(xV , for all 0≠x , 0)( fxV  and 

)(2)(
.

xVxV α−= .  
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We choose PxxV xT=)(  with P  is a symmetric matrix will 
be determined, [5]. 
 





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− )(2)(

0)(
.

xVx

xV
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f

 
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The Luenberger (full and reduced) and the functional 
observers gain matrices are computed through the solution 
of the following inequalities [5]: 
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Where P  is a symmetric, positive and defined matrix, and 
α  is the decay rate of the observer. 
For every P  and Z  satisfying the LMIs inequalities, it 
corresponds to stabilizing observers. 
Solving the (20), (21) and (22) LMIs inequalities, the 
observer gains can be performed using the following 
expression: 

ZG P 1−=      (23) 

ZL P 1−=      (24) 

ZL P 1−=      (25) 
 
The closed-loop system of (5) is quadratically stable, if 
and only if the following LMI are feasible:  
 







≤+−+− 02)(
0

)( PBAPPfeedback

P

KKBA feedback

T
a

f

 (26) 
 
Where P  is a symmetric, positive and defined matrix, and 
α  is the decay rate.  
The controller design is the result of the following LMI 
problem, where Q  is a symmetric, positive and defined 
matrix 







++++ + 0)(
0

)( p
f

BYIA TTT
BYQQIA

Q

αα   (27) 
 
The resulting controller feedback gain is given by:  

YPK feedback −=     (28) 
 
Where Y  and P are the solutions, such that LMI problem 
given by (26) is feasible. 

The forward control gain K forward computed such as 
)(tyc  

equal to the reference input. To ensure that 
)()(lim tty yct =

∞→ . So, 
 

BfeedbackC KBAK forward )( 1

1

+− −
=

  (29) 

5. Simulation and Experimental Results 

5.1 Simulation Results 

To determine the observer’s gains a pole placement 
technique is used. Each observer gain is represented as 
follows: 
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[ ]4.2000105 −=L     (31) 
 

 By BG method : 

Applying [8]’s theorem in the BG functional observer 
model (Fig. 9), we found one order causal cycle. Then, 
selecting α 1  as the desired coefficient of the characteristic 
polynomial: 
 

α 1)( )( +=
−

ssAAP
αbLbb     (32) 

 
The calculus of L is directly derived from α 1because  
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C
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C
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   (33) 
Then, L4  is calculated from (33)  
 

k
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b

a)( 21
4

+
−= a

    (34) 
 
So, the functional observer gain is 
 

[ ]04.1000104 −=L    (35) 
 
As the system is controllable, a linear state feedback 
control law can be easily derived with pole placement 
technique. Then,  
 

[ ]18.14871.00107 −−=K feedback   (36) 

[ ]00098.7103 −=K forward    (37)  

 By LMI method : 
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( )72.8000104
)( −=L lmi 103=α   (40) 

[ ]00015.00001.0039.098.8105
)( −=K lmifeedback , 104=α  (41) 

 
And 
 

[ ]00098.8105
)( =K lmiforward    (42) 

 
To simulate the dynamic performance of the closed-loop 
system, a nonzero initial condition is required. The values 
of different system parameters are presented in Table 1. 
The control input )(tu  is a step signal start after s3  with 

amplitude of sm3100  . The gaussian noise amplitude equal 
to 25.0 .  
Before carrying out the simulation of different scenarios on 
the 20-SIM software, it is essential to validate the BG 
model (see Fig 10). 
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Fig. 10  Input and output 
)(Fc  signals of the system 

The output responses with pole placement and LMI 
techniques by full, reduced and functional observers are 
given in Figs. 11, 12, and 13 respectively. 
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Fig. 11  String tension racket response 
( )FC  with pole placement and 

LMI techniques by full order observer 

model
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Fig. 12  String tension racket response 
( )FC  with pole placement and 

LMI techniques by reduced order observer 
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Fig. 13. String tension racket response 
( )FC  with pole placement and 

LMI techniques by functional observer 

Now, the evolution of the estimation errors with pole 
placement (PP) and LMI technics, using the Luenberger 
and functional observers can be readily carried out (see 
Figs. 14, 15 and 16). 
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Fig. 14  Full order observer estimation error by pole placement (PP) and 
LMI techniques for the stringing machine 

model
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Fig. 15  Reduced order observer estimation error by pole placement (PP) 
and LMI techniques for the stringing machine 

model
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Fig.16  Functional observer estimation errors by pole placement (PP) and 
LMI techniques for the stringing machine 

It’s clear from the figures above, that the asymptotic 
convergence property of the Luenberger and functional 
observers have been attenuated. 

5.1 Experimental Results 

Until the robustness of the proposed system is targeted, 
many tests have been validated experimentally using a test 
bench (Fig. 1) around the response of the string tension 
racket. The experimental input and the output signals are 
shown in Fig.17. The experimental estimation errors 
evolutions of Luenberger and functional observers are 
presented in Figs. 18, 19 and 20 respectively. 
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Fig.17  Experimental input and outputs signals obtained from the 
stringing machine. 
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Fig.18  Experimental estimation error evolution of full observer 
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Fig.19  Experimental estimation error evolution of reduced observer 
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Fig.20  Experimental estimation error evolution of functional observer 

The Table 2 presents the difference between the pole 
placement and LMI methods in terms of stabilization time 
and error. 

Table 2: Observers characteristics 

 Errors (%) Stabilization time (s) 

Technics 
observer 

Pole 
placemen

t (PP) 
LMI 

Pole 
placemen

t (PP) 
LMI 

Full 
observer %012.0  %710 5−  s49.5  s46.1  

Reduced 
observer %74.4  %56.1  s43.6  s3   

Functiona
l observer %96.1  %96.0  s3  s27.1  
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As a result of these different scenarios, it seems clear that 
the simulation and experimental results are proven. We can 
see from the table, that LMI method is more accurate to 
use for our system because, it shows acceptable time of 
response and good stability. Besides, the pole placement 
technique has showed a longer time of stabilization than 
the LMI method. 
The obtained control law ameliorates the rapidity and the 
accuracy of the system behaviour due to the proposed 
linear observers. 

6. Conclusion 

This paper has proposed the Luenberger and the functional 
observers designs based on BG approach. Two techniques 
BG and LMI are detailed. These two methods are applied 
on the same process, in order to improve the stability 
performances of the string tension racket of stringing 
machine. The study of Bond Graph (BG) method and 
Linear Matrix Inequality (LMI) suggest that the results of 
both techniques are very satisfactory in terms of rapidity, 
stability and precisions. But LMI method performs 
acceptable time of response and good stability. At the last 
particular attention will be paid to the study of the 
diagnosis based on BG Luenberger and functional 
observers in future research works. 
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