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Summary 
Automated classification of cancers using histopathological 
images is a challenging task of accurate detection of tumor sub-
types. In this paper, we applied fine-tuned pre-trained deep 
neural networks classified on BreakHis datasets on eight distinct 
classes for benign has four sub-classes (adenosis, fibroadenoma, 
phyllodes tumor, and tubular adenoma) malignant has four sub-
classes (ductal carcinoma, lobular carcinoma, mucinous 
carcinoma, and papillary carcinoma) all together on difference 
model on Inception (V1,V2) and ResNet V1 50. The confusion 
matrix showing high accuracy value 95% with less error rate 
0.011 .   
Keywords: 
Medical imaging, Computer-aided diagnosis (CAD), Deep 
Learning, Medical image processing, Convolution Neural 
Network. 

1. Introduction 

Breast cancer is considered to be the most rampant and 
deadliest among various types of cancers. It is reported 

that around 523,000 women die of breast cancer (BC) [1]. 
It is increasing at an alarming rate. The following chart on 
the statistics of BC cases of Australia can drive home the 
point. 
Figure 1 shows the year-wise comparisons between a 
number of new female patient and the number of female 
death since the year 2007 in Australia. The case of 
Australia with a population of 20-25 million may act as an 
indication to understand the alarming situation worldwide. 
Carcinomas are grouped into two class namely benign and 
malignant each group have four types of tumor. While 
benign types of breast cancer contain adenosis, 
fibroadenoma, phyllodes tumor and tubular adenoma, 
malignant types containductal carcinoma, lobular 
carcinoma, mucinous carcinoma, and papillary carcinoma. 
Histopathological classification of breast carcinoma is 
usually based on the morphological features of the tumors. 
On the basis of the morphological features of tumors, they 
are grouped as major tumor types and minor tumor 
subtypes. 

 

Fig.  1 New cases of breast cancer for women and number of women dying in the last twelve years. 

There are 20 major tumor types and 18 minor tumor sub-
types ([27]). Approximately, 70-80 percent of all breast 
cancers belong to either one of the two major 
histopathological classes, namely invasive ductal 
carcinoma (IDC) or invasive lobular carcinoma (ILC) [34]. 
The IDC class is divided into five different carcinoma 

sub-types including tubular, medullary, papillary, 
mucinous and cribriform carcinomas, while benign types 
of breast cancer contain adenosis, fibroadenoma, 
phyllodes tumor and tubular adenoma. More importantly, 
Identification of minor tumor sub-types known as special 
tumor types provides clinically useful information to 
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determine an effective therapy. Many clinical studies 
reported a mismatch between immunohistochemically and 
molecular classification of breast cancer [3]. In 2011, 
StGallen International Expert Consensus validated the 
application of immunohistochemistry for identification 
breast cancer sub-types. The diversity in breast cancer 
types and the limited predictive power of the 
histopathological classification exceedingly urge to find a 
comprehensive approach for accurate evaluation of the 
morphological features of carcinomas. Ascertaining the 
type of tumor or carcinoma is complicated and time-
consuming activity. It is also subject to human errors. For 
the detection of cancer and interpretation, pathologists 
have to study large numbers of tumor tissue slides. The 
processes of quantifying the cell or tumor on different 
parameters (e.g. miotic counts, surface area, and cell size) 
and evaluation of immunohistochemical molecular 
markers are multifarious and time-consuming. Manual 
inspection and interpretation are vulnerable to statistical, 
distributional and human errors due to improper images. 
These errors affect the accuracy in classification of 
cancers in conventional diagnosis. So there is a need to 
for an automated and reproducible diagnostic device to 
meet the requirements efficiently. Computer-aided 
diagnosis (CAD) has proven to be an excellent method of 
image-based medical examination. It also enables grading 
and staging of tumors. This method of diagnosis is also 
considered to be a cost-effective as reduces unwarranted 
expenses. Conventional image processing and machine 
learning techniques require extensive pre-processing, 
segmentation and manual extraction of specific visual 
features before classification. However, deep learning 
approaches have surpassed human performance in visual 
tasks by utilization of automated hierarchical feature 
extraction and classification by multi layers. These kinds 
of approaches can be applied for cancer diagnosis using 
tumor tissue images. The first application of the image 
processing on analytical pathology for cancer detection 
was introduced by True et al. [33]. This kind of 
application showed the implication of morphological 
features in diagnostic methods for malignant tumors. They 
used a series of morphological features including area 
fraction, shape, size and object counting to detect cell 
abnormalities. A large body of evidence has been 
published concerning cancer detection using various 
image processing and machine learning techniques. 
Application of these methods is limited due to manual 
feature extraction of the features. On the other hand, deep 
learning approach offers an automated, accurate and 
sensitive method to feature extraction from medical 
images. There emerged several deep learning based neural 
network systems that could identify different kinds of 
cancer. Incidentally, the Neighboring Ensemble Predictor 
(NEP) coupled with Constrained Convolutional Neural 
Network (CCNs) could lead to nucleus detection in colon 

cancer [8]. In agreement with this, four deep learning 
network architectures including GoogLeNet, AlexNet, 
VGG16 deep network [35] and ConvNet with 3, 4, and 6 
layers were recently applied to identify breast cancer. 
Despite improvements in image analysis and 
interpretation, numerous questions related to the 
reliability and sensitivity of appropriate pathological 
diagnosis systems, particularly for breast cancer 
classification, have remained to be answered. In particular, 
there were no significant, comprehensive and promising 
solutions for discrimination of breast cancer subtypes. 
This study presents the accuracy comparison between two 
deep learning Inception (V1, V2) and ResNet-50 
(InceptionV1) architectures to discriminate microscopic 
cancerous imaging. We demonstrate a highly accurate 
automatic framework for cancer detection and 
classification of its sub-types. Our framework employs 
data augmentation and advanced pre-processing. The 
paper is organized as follows: Section 2 describes related 
research, Section 3 describes the proposed approach, 
Section 4 describes materials and methods used in the 
present study, Section 5 describes the performance of our 
model on the BreakHis dataset as well as compare with 
the present findings, and we conclude our paper in Section 
6. 

2. Related work 

Both Image Analysis and Machine Learning 
Methodologies include the CAD systems. As the name 
implies the Computer Aided Diagnosis systems have been 
designed to aid doctors to diagnose cases. They were 
attentively developed as second opinion systems and yield 
in such advantages as raising the efficiency level of the 
diagnostic process as well as the cost benefits and helping 
specialists save effort. Owing to the aforementioned 
advantages and in more particular terms, cancer diagnosis 
method has been the focus and several replications have 
been noted. The analysis of nuclei morphology, for 
example, can be clear enough to categorize a tissue 
malignant or benign. As a result, many research 
concentrated on the nuclei analysis malignant-benign 
categorization. Kowal et al. [11], however, employed a 
different classification of the algorithms for nuclei 
dissection on fine needle biopsy microscopic images. In 
order to reach a precision level that ranges from 84% to 
93%, measured on 500 images of 50 patients, 
morphological, topological and texture traits were 
implemented. As for the Patient-wise clustering which has 
been performed by a great majority that voted on 10 
images each, results indicated an accuracy level of 96–
100%. Concomitantly, Filipczuk et al. [12] and George et 
al. [13] used the fine needle biopsies from which they 
excerpted nuclei-based traits. As a matter of fact, the 
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circular Hough transform was performed in order to 
identify nuclei subjects. Afterward, machine-learning and 
Otsu threshold were used to reduce false- positive 
variables. George et al. [13], on the other hand, the nuclei 
refinement was further segmented by watershed. In these 
studies, texture and shape traits were employed so as to 
train different classifiers. Filipczuk et al. [12] reached 
98.51% accuracy by majority voting over 11 images for 
each of the 67 patients. However, George et al. [13] used 
92 images results ranged from 71.9% and 97.15%in 
individual image classification. For the binary 
classification of more complex images, Belsare et al. [14] 
used tissue organization in addition to the nuclei. These 
researchers assessed 70 images extracted from a private 
40× magnification breast histology H&E dataset. In order 
to divide the epithelial layer around the lumen of the cells, 
Spatio-color-texture graphs were employed while the 
statistical texture features were used in order to train the 
final classifiers. This resulted in accuracy between 70% 
and 100%. Many other scholars considered a more 
complex 3-classes classification of breast cancer histology 
images. Brook et al. [15] and Zhang et al. [16], for 
instance, divided the tissue images of breast cancer into 
normal, in situ carcinoma and invasive carcinoma. In 
order to reach such classification, these authors referred to 
the database from the Israel Institute of Technology [17]. 
Further to this, Brook et al. [15] dichotomized the images 
through the multiple threshold values and made use of 
related component statistics for the training of a support 
vector machine (SVM) classifier. They asserted that an 
average accuracy of 93.4% has been reached but can rise 
to 96.4 % in case 20% of the images were rejected. The 
cascade classification approach was used by Zhang et al. 
[16]. They randomly fed Subsets of Curvelet Transform 
and local binary pattern (LBP) features as the first set of 
parallel SVM classifiers. The images whose classifiers do 
not conform were disregarded and analyzed by another set 
of artificial neural networks (ANN) over other random 
feature subsets. Again, all images whose classifiers do not 
agree were rejected. This operation led to 97% accuracy 
with 0.8% rejection rate. In the recent years, the 
technology boom in computing power and dataset sizes 
helped the smooth application of Convolutional Neural 
Networks (CNNs) to visualize clustering problems. In 
contrast to the old approach of hand-crafted feature 
extraction methods, CNNs employed effective features 
directly from the training image patches by the 
optimization of the classification function loss. These 
deep learning models have resulted in achieved effective 
performance in image classification difficulties in 
different fields [18],[19], such as medical image analysis 
[20], and the histopathology images [21]. In addition, the 
CNNs helped reduce the field-knowledge that was 
required to develop a classification system. Accordingly, 
the methods' performance is less biased by the dataset 

used and thus similar network architectures can achieve 
more reliable results. Indeed and using multiple 
magnifications. Spanhol et al. [22] employed CNN 
architecture in the Imagenet network [18] in order to 
divide the samples of H&E breast tissue biopsy for benign 
and malignant tumors. In this study, 32 × 32 and 64 × 64 
pixels patches were excerpted from the initial images and 
used to train the CNN. The last clustering was reached 
through the combination of the probabilities with the sum, 
the product or maximum rules. As a matter of fact, two 
patch extraction methods were investigated namely; 
sliding window and random extraction. The extraction of 
patches helped decrease the complexity of the model by 
reducing the input in the successive layers. The authors 
acknowledged the drop of the accuracy level for higher 
magnifications, which entails that their CNN architecture 
cannot extract relevant features for higher magnifications. 
In fact, only nuclei edge-related features are extracted for 
higher magnifications, as it will be discussed in this work. 
Other researchers, however, have successfully attuned the 
architecture of the CNN to breast histology related-
problems. Ciresan et al. [19], for example, and in an 
attempt to train a CNN for mitosis detection in H&E 
stained breast biopsy slides, employed 101 × 101 patches. 
The architecture used helped to explore nuclei of different 
sizes and their districts. This method gained the ICPR 
2012 Mitosis Detection Contest with an F1-score of 0.782. 
In order to identify invasive carcinoma regions in breast 
histology slides, Cruz-Roa et al. [23] trained a CNN on 
100 × 100 pixels whole-slide patches, extracted using grid 
sampling. Owing to the global nature of the problem, 
however, the CNN feature-extraction scale ranges from 
nuclei to overall tissue organization. This method 
outperformed other state-of-the-art methods, achieving an 
F1-score of 0.780. For these last two works, the model 
was slipped through the image so as to reach a probability 
map and then the detection result was obtained via 
thresholding. In [19], the training, dataset size, and 
complexity were increased by using random rotations and 
mirroring the training occurrences. 

2.1 Proposed Approach 

In this study, we developed and introduced an accurate 
and reliable computer-based technique empowered with 
deep learning approaches to classify breast cancer sub-
types from histopathological images derived from 
Hematoxylin and eosin stain (H&E). Our framework 
contains five steps: (a) Image acquisition and applying 
stain normalization, (b) Data augmentation (c) Deep 
learning pre-processing, (d) Transfer learning and fine-
tuning pre-trained models, and (e) Hierarchical feature 
extraction and classification with Inception and ResNet 
networks. All steps have been illustrated in figure 2. 
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Fig.  2 Proposed approach 

3. Materials and methods 

3.1 Datasets 

The dataset [22] used in this project was the Breast 
Cancer Histopathological Database or BreaKHis. The 
BreaKHis database is composed of 7,909 microscopic 
images of breast tumors. The images were collected from 
82 different patients with 4 (40X, 100X, 200X, 400X) 
different magnifying factors. The database is separated 
into 2 super classes, benign and malignant, with 4 
subclasses each. There are 2,480 benign and 5,429 
malignant samples. The distribution of the sample is given 
in Table 1. 

Table 1: BREAKHIS STRUCTURE 
Magnification Benign Malignant Total 
40X 652 1370 1995 
100X 644 1437 2081 
200X 623 1390 2013 
400X 588 1232 1820 
Total of Images 2480 5429 7909 

The benign(B) subclasses are as follows: adenosis (A), 
fibroadenoma (F), phyllodes tumor (PT), and tubular 
adenoma (TA); and the malignant(M) subclasses are as 
follows: carcinoma (DC), lobular carcinoma (LC), 
mucinous carcinoma (MC) and papillary carcinoma (PC), 
in Figure 3 represent different types of breast cancer 
tumors. The subclasses represent different types of breast 
cancer tumors. Different types of breast tumors are known 
to have different prognoses and need a different kind of 
classification. Each image filename contains information 
about the actual tissue itself. For example, SOB_B_TA-
14-4659-40-001.png tells us that the biopsy procedure 
employed was SOB, the class B means that it was for the 
benign class, the TA means that the subclass of the tissue 
was a tubular adenoma, the patient identification number 
is 14-1659, magnification factor was 40X, and this was 
image 1. 
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Fig.  3 Samples of BreaKHis subclasses. 

3.2 Stain normalization. 

Before analyzing them, images were normalized [37]. 
This method takes into account the staining technique 
used for the histology slides preparation. As a starting 
point and through the use of a logarithmic transformation, 
the colors of the images were converted into optical 
density (OD). Secondly, singular value decomposition 

(SVD) was implemented to the OD tuples in order to find 
the 2D projections with higher variance. The resulting 
color space transform is then applied to the original image. 
As a final step, the image histogram is overextended so as 
the dynamic range covers the lower 90% of the data. 
Figure 4 displays the two images before and after being 
normalized. 

 

Fig.  4 Histology image normalization. A and C original images; B and D images after normalization. 

3.3 Data Augmentation 

Data augmentation is an essential step to have enough 
diverse samples which are required to train a deep 
network to learn from the images. Several studies 
investigated the role of data augmentation in deep 
learning [28].We considered data augmentation for breast 
cancer sub-types due to the existing differences in the 
number of images among different sub-type classes. 

Technically, data augmentation was accomplished on data 
acquired from Augmentor Python library by using and 
rotating and flipping methods (see Figure 5).In the 
Augmentor input images are rotated at 270 degrees, and 
then, the input images are flipped top-bottom to right with 
0.6 probabilities and are recorded. Each output image was 
further processed on Protocol Buffers to convert to it a 
format called TFRecord. 

 

Fig.  5 Data augmentation techniques including rotating, flipping. 
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3.4 Pre-Processing Steps 

Macenko normalization and data augmentation were 
followed by pre-processing steps as a preliminary 
recommended phase to prepare data for further feature 
extraction and analysis. Previous studies ([10],[11], [12], 
[13], [14] ) proposed different pre-processing methods 
because of the nature of their data. This work proposed a 
series of calculation, divided into five steps. The first step 
focused on stain normalization and augmentation, 
followed by TFRecord [6] format conversion based on 
Protocol Buffers [7]. In the third step, TFRecords were 
normalized to [0, 1]. Afterward, whole image bounding 
box was re-sized to (299 × 299 × 3) or (224 × 224 × 3) 
according to the recommended model image size for 
Inception and ResNet architectures. Finally, as Inception 
and ResNet pre-processing, input training images were 
randomly flipped left to right horizontally and then 
cropped to create image summaries to display the 
different transformations on images. In order to improve 
the power of learning and to make the network invariant 
to aspects of the image that do not affect the label. 

3.5 Transfer Learning 

Transfer learning is defined as exporting knowledge from 
previously learned source to a target task ([24], [3]). 
Learning from clinical images from scratch is often not 
the most practical strategy due to its computational cost, 
convergence problem [31], and an insufficient number of 
high quality labeled samples. A growing body of 
experiments has investigated pre-trained models in the 
presence of limited learning samples [36].Pre-trained 
ConvNets alongside fine-tuning and transfer learning lead 
to faster convergence and outperform training from 
scratch [31]. Our target data-set consists of total 7909 
breast cancer sub-types histopathological images) is 
obviously smaller than the used reference data-set 
(ImageNet; training data with 1.2M [32]. Therefore, we 
initialized weight of different layers of our proposed 
network by using ImageNet Inception and ResNetpre-
trained models. Then, we employed last layer fine-tuning 
on cancer images data-set. Therefore, the ImageNet pre-
trained weights were preserved while the last fully 
connected layer was updated continuously. Since the 
cancer data-sets analyzed here are large and very different 
from ImageNet, the full layer fine-tuning was applied to 
compare accurately classification of cancers with the last 
layer fine tuning[32]. 

3.6 Inception and ResNet Architectures 

Among various deep learning methods, we considered 
Inceptions and ResNet architectures. It is known that 
Inception models have migrated from fully-to-sparsely-
connected architectures. In order to add more non-

linearity capability, Inception module technically included 
1 × 1 factorized convolutional neural networks followed 
by the rectified linear unit (ReLU). Also, a 3×3 
convolutional layer was employed. Auxiliary logits with a 
combination of average pool, convolutional 1 × 1, fully 
connected, and softmax activation was applied to preserve 
the low-level detail features and tackle vanishing gradient 
problem in last layers. ResNet permanently utilized 
shortcut connections between shallow and deep networks 
to control and adjust training error rate [30]. This study 
examined different frameworks of Inception (V1 and V2) 
and ResNet V1 50 ([30], [24]) on cancer digital images. 
Furthermore, RMSProp adaptive learning rate was applied 
with start- (0.001), decay- (0.9), and end-points (0.0001) 
settings. Because of an insufficient number of available 
histopathological cancer images (section III-A) compared 
to numerous model parameters (up to 5 million in 
Inception and 10 million in ResNet), dropout 
regularization and batch normalization [25]were applied 
with batch sizes of 32 in training with 4,000, 6,000 epochs 
and 100 in evaluation steps. 

3.7 Computerized System Configuration 

Deep learning training with an extreme number of 
network parameters, computational tasks, and large data-
sets was significantly accelerated by a single computing 
platform with following specifications: Asus Intel i7 core, 
10 GB RAM, 1 TB HDD, Nvidia GeForce GTX 950m 
4GB with ubuntu 16.0.4 64-bit operating system and 
python 3.5. In addition, Tensorflow-GPU platform 
requires CUDA 8.0 toolkit and cuDNN 5.1. All GPU 
necessary settings and details were obtained from 
TensorFlow and TFslim documentations and NVIDIA 
GPUs support ([6]).   

4. Experiment Results  

4.1 Transfer learning the last  

The results were classified into eight sub-types of 
BreakHis cancer. Several standard performance terms 
such as true positive (TP), false positive (FP), true 
negative (TN), false negative (FN), were isolated from the 
confusion matrix. Using an 80% training set and a 20% 
test set, an 8 × 8 confusion matrix was used to represent 
prediction results of eight cancer histological types. 
Statistical performance measurements were summarized 
in Tables 3 and 4.  The result shows that ResNet V1 50 
Inception (V1 and V2) with fine-tuning all layers gave 
higher accuracy (95 %) than Inception V1 and V2 
Meanwhile, the each of the following Tables 2 and 3 is 
derived from data which were presented in Figure 6 and 7 
successively.  
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Table 2: The Last Layers Fine-Tuning of Breast Cancer sub-classes 
Model Epoch TP TN FP FN Accuracy Error rate selectivity 
Inception V1 4000 2287 65 147 29 34% 0.069 0.9509 
Inception V1 6000 2289 81 131 27 39% 0.062 0.9529 
Inception V2 4000 2296 51 161 20 27% 0.071 0.9422 
Inception V2 6000 2253 100 112 63 51% 0.069 0.9564 
ResNet-50 V1 4000 2285 166 46 31 82% 0.030 0.9897 

 

 

Fig.  6 The Last Layers Fine-Tuning of Breast Cancer sub-classes 

Table 3: The All Layers Fine-Tuning of Breast Cancer sub-classes 
Model Epoch TP TN FP FN Accuracy Error rate sensitivity 
Inception V1 4000 2314 74 138 2 46% 0.055 0.9647 
Inception V1 6000 2311 116 96 5 62% 0.039 0.9869 
Inception V2 4000 2316 19 193 0 41% 0.076 0.9339 
Inception V2 6000 2313 109 103 3 58% 0.041 0.9889 
ResNet-50 V1 4000 2297 201 11 19 95% 0.011 0.9992 

 
 

 

Fig.  7 The all Layers Fine-Tuning of Breast Cancer sub-classes 

0 

0.2 

0.4 

0.6 

0.8 

1 

Error rate Accuracy

0 

0.2 

0.4 

0.6 

0.8 

1 

Error rate Accuracy



IJCSNS International Journal of Computer Science and Network Security, VOL.18 No.4, April 2018 159 

5. Discussion 

This work examined data from BreakHis datasets to 
classify Carcinomas breast cancer sub-types. Previous 
studies ([26],[28],[29]) focused on binary benign-
malignant classification and did not perform the further 
quantitative assessment. In this work, we introduced 
automated breast cancer multi-classification methods. We 
suggested a generic CAD framework based on deep 
networks for learning histopathology images to avoid the 
error committed by hand-crafted pathological features. In 
this study, we compared the performance of Inception and 
ResNet deep learning models using transfer learning 
strategy on several large image datasets. We found that 
deep ResNet models were more sensitive. In recent 
comparative studies, ([29], [26], [4]), conventional 
machine learning methods (SVM, KNN, QDA, ASSVM, 
SSVM- SCAD, etc) hand-crafted feature extraction were 
used. In these approaches, the results were evaluated at 
various magnifications (i.e. 40X, 100X, 200X and 400X). 
These methods could achieve 90 to 93% accuracy in the 
benign and malignant classification. For example, 
AlexNet deep learning approach which used many 
learning parameters to classify benign and malignant 
Carcinomas showed an accuracy rate of 90% ([28]). 
Besides, Han and his colleagues ([1]) reported about a 
deep learning-based system for multi-classification of 
breast cancers that showed an average accuracy rate of the 
93.2%. Table 4 presents a comparison of the rate of 
accuracy between our proposed approach and some other 
architecture. 

Table 4: study comparison 
Approach  Accuracy 
([4],[26],[29]) 90% to 93% 
[28] 90% 
Proposed Approach 95% 

6. Conclusion 

This study suggests a modified approach to the existing 
ResNet approach for an effective and reliable strategy for 
the detection of Carcinomas subtypes. It suggests steps 
develop deep learning based convolutional neural network 
system which would reduce human errors in analyzing 
and classifying subtypes of cancer tumors in a manual 
study of histopathological images. In a comparative study 
between Inception V1, V2 and a modified deep learning 
based ResNet -50 V, it was established that the latter is 
highly efficient with 95% accuracy and low error rate 0.11 
in detecting eight subtypes of cancer carcinomas. This 
also showed that the modified ResNet -50 Coffers trivial 
false positive average values (0.3 out of 900 for four 
cancer types, 6.3 out of 809 for all breast cancer, 5 out of 

800 for benign and 0.3 out of 1000 for malignant). Thus 
this kind of efficient multi-classification system relieves 
the pathologists and medical experts workloads regarding 
analyze and interpretation of the Histopathological slides 
for assisting the doctors to choose more efficient 
therapeutic approaches. 
 
References 
[1] Global Burden of Disease Cancer Collaboration. 

Fitzmaurice C, Allen C, Barber RM, Barregard L, Bhutta 
ZA, Brenner H, Dicker DJ, Chimed-Orchir O, Dandona R, 
et al. Global, regional, and national cancer incidence, 
mortality, years of life lost, years lived with disability, and 
disability-adjusted life-years for 32 cancer groups, 1990 to 
2015: a systematic analysis for the global burden of disease 
study. JAMA Oncol. 2017;3:524–548. 

[2] M. T. Bahadori, Y. Liu, and D. Zhang.A general framework 
for scalable transductive transfer learning. Knowledge and 
information systems, 38(1):61–83, 2014. 

[3] L. Carey, E. Winer, G. Viale, D. Cameron, and L. Gianni. 
Triple-negative breast cancer: disease entity or title of 
convenience? Nature reviews Clinical oncology, 
7(12):683–692, 2010. 

[4] A. Chan and J. A. Tuszynski.Automatic prediction of 
tumour malignancy in breast cancer with fractal dimension. 
Open Science, 3(12):160558, 2016. 

[5] M. Colleoni, N. Rotmensz, P. Maisonneuve, M. 
Mastropasqua, A. Luini, P. Veronesi, M. Intra, E. 
Montagna, G. Cancello, A. Cardillo, et al. Outcome of 
special types of luminal breast cancer. Annals of oncology, 
23(6):1428–1436, 2011. 

[6] T. Google-Developers. Installing tensorflow on ubuntu. 
https://www. tensorflow.org/install/install linux, 2017. 

[7] T. Google-Developers. Protocol buffers. 
https://developers.google.com/ protocol-buffers/?hl=en, 
2017 

[8] A. Esteva, B. Kuprel, R. A. Novoa, J. Ko, S. M. Swetter, H. 
M. Blau, and S. Thrun. Dermatologist-level classification of 
skin cancer with deep neural networks. Nature, 
542(7639):115–118, 2017. 

[9] L. Gui, R. Xu, O. Lu, J. Du, and Y. Zhou. Negative transfer 
detection in transductive transfer learning.International 
Journal of Machine Learning and Cybernetics, pages 1–13, 
2017. 

[10] Veta M, Pluim JPW, Van Diest PJ, Viergever MA. Breast 
cancer histopathology image analysis: A review. IEEE 
Transactions on Biomedical Engineering. 2014;61(5):1400–
1411.  

[11] Kowal M, Filipczuk P, Obuchowicz A, Korbicz J, Monczak 
R. Computer-aided diagnosis of breast cancer based on fine 
needle biopsy microscopic images. Computers in Biology 
and Medicine. 2013;43(10):1563–1572.  

[12] Filipczuk P, Fevens T, Krzyzak A, Monczak R. Computer-
aided breast cancer diagnosis based on the analysis of 
cytological images of fine needle biopsies. IEEE 
Transactions on Medical Imaging. 2013;32(12):2169–2178.  

[13] George YM, Zayed HH, Roushdy MI, Elbagoury BM. 
Remote computer-aided breast cancer detection and 
diagnosis system based on cytological images. IEEE 
Systems Journal. 2014;8(3):949–964.  



IJCSNS International Journal of Computer Science and Network Security, VOL.18 No.4, April 2018 160 

[14] Belsare AD, Mushrif MM, Pangarkar MA, Meshram N. 
Classification of breast cancer histopathology images using 
texture feature analysis. In: TENCON 2015—2015 IEEE 
Region 10 Conference. Macau: IEEE; 2015. p. 1–5. 

[15] Brook A, El-Yaniv R, Issler E, Kimmel R, Meir R, Peleg D. 
Breast Cancer Diagnosis From Biopsy Images Using 
Generic Features and SVMs. 2007; p. 1–16. 

[16] Zhang B. Breast cancer diagnosis from biopsy images by 
serial fusion of Random Subspace ensembles. In: 2011 4th 
International Conference on Biomedical Engineering and 
Informatics (BMEI). vol. 1. Shanghai: IEEE; 2011. p. 180–
186. 

[17] Israel Institute of Technology dataset;. Availablefrom: 
ftp.cs.technion.ac.il/pub/projects/medic-image. 

[18]  Krizhevsky A, Sutskever I, Hinton GE. ImageNet 
Classification with Deep Convolutional Neural Networks. 
In: Advances in Neural Information Processing Systems 25; 
2012. p. 1106–1114. 

[19] Ciresan DC, Giusti A, Gambardella LM, Schmidhuber J. 
Mitosis detection in breast cancer histology images with 
deep neural networks. Lecture Notes in Computer Science 
(including subseries Lecture Notes in Artificial Intelligence 
and Lecture Notes in Bioinformatics). 2013;8150 
LNCS(PART 2):411–418. 

[20] Litjens G, Sánchez CI, Timofeeva N, Hermsen M, 
Nagtegaal I, Kovacs I, et al. Deep learning as a tool for 
increased accuracy and efficiency of histopathological 
diagnosis. Scientific Reports. 2016;6(January):26286  

[21] Sirinukunwattana K, Raza SEA, Tsang YW, Snead DRJ, 
Cree IA, Rajpoot NM. Locality Sensitive Deep Learning 
for Detection and Classification of Nuclei in Routine Colon 
Cancer Histology Images. IEEE Transactions on Medical 
Imaging. 2016;35(5):1196–1206.  

[22] Spanhol FA, Oliveira LS, Petitjean C, Heutte L. Breast 
Cancer Histopathological Image Classification using 
Convolutional Neural Networks. In: International Joint 
Conference on Neural Networks (IJCNN 2016). 
Vancouver; 2016. 

[23] Cruz-Roa A, Basavanhally A, González F, Gilmore H, 
Feldman M, Ganesan S, et al. Automatic detection of 
invasive ductal carcinoma in whole slide images with 
convolutional neural networks. In: Proc. SPIE. vol. 
9041.San Diego, California; 2014. p. 904103–904115. 

[24] K. He, X. Zhang, S. Ren, and J. Sun. Deep residual learning 
for image recognition. In Proceedings of the IEEE 
conference on computer vision and pattern recognition, 
pages 770–778, 2016. 

[25] S. Ioffe and C. Szegedy. Batch normalization: Accelerating 
deep network training by reducing internal covariate shift. 
In International Conference on Machine Learning, pages 
448–456, 2015. 

[26] M. A. Kahya, W. Al-Hayani, and Z. Y. 
Algamal.Classification of breast cancer histopathology 
images based on adaptive sparse support vector machine. 
Journal of Applied Mathematics and Bioinformatics, 
7(1):49, 2017. 

[27] W. H. Organization et al. Tumours of the breast and female 
genital organs. World Health Organization Classification of 
Tumours: Pathology and Genetics of Tumours of the Breast 
and Female Genital Organs. Lyon: International Agency for 
Research in Cancer, 2003. 

[28] A. A. A. Setio, F. Ciompi, G. Litjens, P. Gerke, C. Jacobs, 
S. J. van Riel, M. M. W. Wille, M. Naqibullah, C. I. 
Sanchez, and B. van Ginneken. ´ Pulmonary nodule 
detection in CT images: false positive reduction using 
multi-view convolutional networks. IEEE transactions on 
medical imaging, 35(5):1160–1169, 2016. 

[29] F. A. Spanhol, L. S. Oliveira, C. Petitjean, and L. Heutte.A 
dataset for breast cancer histopathological image 
classification. IEEE Transactions on Biomedical 
Engineering, 63(7):1455–1462, 2016. 

[30] C. Szegedy, V. Vanhoucke, S. Ioffe, J. Shlens, and Z. 
Wojna. Rethinking the inception architecture for computer 
vision.In Proceedings of the IEEE Conference on Computer 
Vision and Pattern Recognition, pages 2818–2826, 2016. 

[31] N. Tajbakhsh, J. Y. Shin, S. R. Gurudu, R. T. Hurst, C. B. 
Kendall, M. B. Gotway, and J. Liang. Convolutional neural 
networks for medical image analysis: Full training or fine 
tuning? IEEE transactions on medical imaging, 35(5):1299–
1312, 2016. 

[32] T. TensorFlow-Group. Tensorflow-slim image 
classification library. 
https://github.com/tensorflow/models/tree/master/slim, 
2016. [ Apache License, Version 2.0, Online; accessed 17-
July-2017]. 

[33] L. D. True. Morphometric applications in anatomic 
pathology. Human Pathology, 27(5):450 – 467, 1996. 

[34] G. Viale, N. Rotmensz, P. Maisonneuve, E. Orvieto, E. 
Maiorano, V. Galimberti, A. Luini, M. Colleoni, A. 
Goldhirsch, and A. S. Coates. Lack of prognostic 
significance of classic lobular breast carcinoma: a matched, 
single institution series. Breast cancer research and 
treatment, 117(1):211, 2009. 

[35] D. Wang, A. Khosla, R. Gargeya, H. Irshad, and A. H. 
Beck. Deep learning for identifying metastatic breast 
cancer.arXiv preprint arXiv:1606.05718, 2016. 

[36] P. Sermanet, D. Eigen, X. Zhang, M. Mathieu, R. Fergus, 
and Y. LeCun.Overfeat: Integrated recognition, localization 
and detection using convolutional networks. arXiv preprint 
arXiv:1312.6229, 2013. 

[37] M. Macenko et al., ‘A method for normalizing histology 
slides for quantitative analysis’, in 2009 IEEE International 
Symposium on Biomedical Imaging: From Nano to Macro, 
2009, pp. 1107–1110. 

http://ftp.cs.technion.ac.il/pub/projects/medic-image

