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Summary 
The Cell Dynamics Simulation (CDS) technique is considered 
computationally very efficient and is usually used to investigate 
large systems, e.g., block copolymers. The CDS method is 
mainly used for solving the partial differential equations (PDEs). 
It is recommened by many researchers due to its accuracy and 
efficiency as compared to the simulators of the same line. This 
paper provides a detailed study of CDS based on diblock 
copolymers. It is implemented in Alternating Direction Implicit 
(ADI) finite difference (FD) method. This FD method is 
unconditionally stable and second-order accurate compared to 
conventional Forward Euler’s method, which is fast but not very 
stable.  
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1. Introduction 

A long chain of molecules caused as a result of reaction is 
called polymers. These molecules are called monomers 
and a formation of polymers comprised of two or more 
different chemical blocks is called block copolymer [1]. 
Thee chemical formation in melts, blends or solutions are 
basically polymer based structures in different ranges. The 
size of these structures varies from nanometer to 
millimetre scales [2, 3]. There are many applications of 
block copolymers in variety of fields such as in soft 
nanotechnology where templates are created for 
nanoelectronics and further the block copolymers are 
applicable for catalyst materials, electric fields, 
mechanical flow fields, nanoparticle synthesis, separation 
nonporous membranes, temperature gradients, photonic 
crystals and others [4]-[8].  
Moreover, highly ordered and defect-free electronic 
devices, e.g., fuel cells, batteries and optoelectronics, all 
require the use of block copolymers in the product 
development. The block copolymers are also widely used 
by employing polymer nano-domains in structural 
materials such as thin films, high density hard drives and 
patterned magnetic drives [9], [10]. Other than structural 

materials, the use of block copolymers is also incorporated 
in commercial products, engineering, artificial organ 
technology and drug delivery [10].  
To develop applications based on block copolymers, a 
rigorous process is carried out where mathematical models 
are formulated and the experiments are interpreted with 
the help of computer technology. Algorithms are 
developed with various real time parameters such as 
temperature, volume, etc. [3]. Firstly, these complex 
systems are experimented through microscopic 
observation in laboratories and then with the help of aided 
advantage of computer models, these are presented in a 
broader view through simulated images for extensive study 
and analysis [11].  
Due to their existing properties, the block copolymers are 
studied in various aspects, for example, the phase behavior 
of the mixtures or blends and other identical monomeric 
units (homopolyme [11], [12]. The phase separation of 
polymeric alloys, blends and mixtures tend researchers to 
carry out broad analysis of associated mechanical, 
chemical and structural properties which are found in 
various forms of brass as solid phase from a mixture of 
copper and zinc, steel and carbon or the addition of other 
elements to iron.  
In this article, the studies are presented for block 
copolymers in computer simulations via CDS. In block 
copolymers, the polymer blocks bonded into one 
macromolecule arrange by own to different nanosturectues. 
These complex structures are lamellae, hexagonal-packed 
cylinders, spheres, body-centred cubic structures and 
gyroid [11].  
Some of the famous simulation techniques are, Monte 
Carlo (MC) [2], [13], Molecular Dynamics (MD) [2], 
Brownian Dynamics [14], Dissipative Particle Dynamics 
(DPD) [15], the Self-Consistent Field Theory (SCFT) [16], 
Lattice Boltzman (LM) method [2], [17], [18] and Time-
Dependent Ginzburg-Landau (TDGL) method [2], [19] 
using CDS. Amongst these the CDS based TDGL is 
commonly applied due its speed and accuracy for 
simulations. The CDS method yields convenience to study 
the evolution in microphase separation in binary blends 
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and diffusive structures of both, the polymers and alloys 
and [20]-[24] block copolymers [25].   
In recent research, the implementation of CDS have been 
reported in several other mathematical modelling and 
computational work which comprises the study of 
chemical reactions in reaction-diffusion systems of the 
Fisher type and popular dynamics and the study of 
additional factors which exist during the phase separation 
in block copolymers such as shear, noise, electric fields 
and confinement [11]. Further, It has been implemented to 
understand the phase ordering process and the mesoscopic 
structure in diblock copolymers at a large extent [26], [27].  
To study the pahse-ordering dynamics of unstable phases 
and to develop models of such system, Shinozaki and 
Oono [20], [23] employed CDS. They found CDS 
technique to be an optimal numerical approach for 
spinodal decomposition in comparison of Monte Carlo 
simulation technique. To study highly non-linear phase 
separation process, they replaced a time-consuming 
analytical formulation based on partial differential 
equations (PDEs) by using efficient CDS method. Similar 
studies were carried by Oono [28] by incorporating CDS 
method. A two-dimensional computer simulation based on 
CDS was also conducted by Kodma and Doi [29] to 
analyze the structural changes in lamellae under steady 
shear flow of block copolymers. Other various 
applications of CDS, described by Ren and Hamley [19] , 
are microemulations simulations, cross lined polymer 
blends, simulation of shear orientation of lamellar phases 
and kinetics of block copolymers and binary blends of 
hard particles.  In another analysis, the order parameter 
obtained from mesoscopic dynamics (MesoDyn) technique 
was found similar to CDS for the study of microphase 
separated structures of block copolymers [30].  
 
Keeping in view the above-mentioned applications of CDS 
technique in soft matter systems. The CDS method 
presents a significant importance to simulate, model and 
efficiently approximate PDEs involved in soft matter 
systems, e.g., TDGL and Cahn-Hilliard Cook (CHC) 
equations.  
 
In this piece of work, the CDS is implemented in a finite 
difference scheme called Alternating Direction Implicit 
(ADI) method [31]. The ADI method is configured. The 
similar parameters are also applied to the Euler method 
and the results are analyzed. 

2. The Details of CDS 

In this section, an overview of CDS method is presented 
where CDS is applied to lamellar forming diblock 
copolymers for one order parameter system.  Initially in 
CDS method, an order parameter 𝜓𝜓(𝑡𝑡, 𝑖𝑖) is evaluated for 

time variable 𝑡𝑡  at cell 𝑖𝑖  in discrete lattice. The order 
parameter of an A–B diblock copolymer can be taken as 
[9]: 

𝜓𝜓 = 𝜙𝜙𝐴𝐴 − 𝜙𝜙𝐵𝐵 + (1 − 2𝑓𝑓)  (1) 
 
where 𝜙𝜙𝐴𝐴  and 𝜙𝜙𝐵𝐵  are local volume fractions of A and B 
monomers and the volume fraction of A monomer is 
defined as 𝑓𝑓 = 𝑁𝑁𝐴𝐴/ (𝑁𝑁𝐴𝐴 + 𝑁𝑁𝐵𝐵) . In a single cell, the 
evolution of the order parameter is calculated as:    

 𝜓𝜓(𝑡𝑡 + 1, 𝑖𝑖) = 𝑔𝑔(𝜓𝜓(𝑡𝑡, 𝑖𝑖)) (2) 
 
where 𝑔𝑔(𝜓𝜓) is for map function. The time evolution of an 
order parameter in non-conserved order parameter 
considering diffusive dynamics can be given as:  
𝜓𝜓(𝑡𝑡 + 1, 𝑖𝑖) = 𝑔𝑔�𝜓𝜓(𝑡𝑡, 𝑖𝑖)� + 𝐷𝐷[〈〈𝜓𝜓(𝑡𝑡, 𝑖𝑖〉〉 − 𝜓𝜓(𝑡𝑡, 𝑖𝑖)] 

=𝒯𝒯[𝜓𝜓(𝑡𝑡, 𝑖𝑖)] 
(3) 

 
The above equation (3) is given by addition of chemical 
potential gradients and diffusive dynamics terms where a 
positive constant D is for phenomenological diffusion. The 
formation 〈〈𝑋𝑋〉〉 − 𝑋𝑋 shows isotropized discrete Laplacian 
and 〈〈𝑋𝑋〉〉 in two-dimensional square grid is given by:  

〈〈𝜓𝜓(𝑡𝑡, 𝑖𝑖)〉〉 = 𝑊𝑊1�𝜓𝜓(𝑡𝑡, 𝑖𝑖)
𝑁𝑁𝑁𝑁

+ 𝑊𝑊2 � 𝜓𝜓(𝑡𝑡, 𝑖𝑖)
𝑁𝑁𝑁𝑁𝑁𝑁

  (4) 

 
where Ws, NN and NNN stand for weights, nearest 
neighbors and remote nearest neighbors [9],  
The CDS model equations are again considered in a 
conserved case to avoid the anisotropy (artificats) which 
arise from the inclusion of surrounding cells. It is essential 
to maintain isotropy for Laplacian operator in a square 
lattice. Thus, after the net change in cell design, the order 
parameter is taken as: 

𝒯𝒯[𝜓𝜓(𝑡𝑡, 𝑖𝑖)] −𝜓𝜓(𝑡𝑡, 𝑖𝑖) (5) 
 
and the CDS for the evolution of order parameter becomes: 
𝜓𝜓(𝑡𝑡 + 1, 𝑖𝑖) = 𝒯𝒯[𝜓𝜓(𝑡𝑡, 𝑖𝑖)] − 〈〈𝒯𝒯[𝜓𝜓(𝑡𝑡, 𝑖𝑖)] − 𝜓𝜓(𝑡𝑡, 𝑖𝑖)〉〉. (6) 

 
The modified equation with additional term –𝐵𝐵𝐵𝐵(𝑡𝑡, 𝑖𝑖), is:  

𝜓𝜓(𝑡𝑡 + 1, 𝑖𝑖) = 𝒯𝒯[𝜓𝜓(𝑡𝑡, 𝑖𝑖)] 
−〈〈𝒯𝒯[𝜓𝜓(𝑡𝑡, 𝑖𝑖)] − 𝜓𝜓(𝑡𝑡, 𝑖𝑖)〉〉–𝐵𝐵𝐵𝐵(𝑡𝑡, 𝑖𝑖). (7) 

 
Equation (6) is basically the finite difference of the Cahn-
Hilliard-Cook: 

𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

= K𝛻𝛻2 �
𝛿𝛿𝛿𝛿[𝜓𝜓]
𝛿𝛿𝛿𝛿

�, (8) 

 
where K represents phenomenological mobility constant 
which is always kept as unity and 𝐹𝐹[𝜓𝜓] is showing free 
energy functional [11]. After algebraic manipulation, 
Equation (6) and (3) together can be written as: 

𝒯𝒯(𝑡𝑡 + 1, 𝑖𝑖) = 𝑔𝑔�𝜓𝜓(𝑡𝑡, 𝑖𝑖)� − 𝐵𝐵𝐵𝐵(𝑡𝑡, 𝑖𝑖) 
+𝐷𝐷[〈〈𝜓𝜓(𝑡𝑡, 𝑖𝑖〉〉 + 𝜓𝜓(𝑡𝑡, 𝑖𝑖)] 

 
(9) 
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where the map function is defined as [11] : 

 𝑔𝑔(𝜓𝜓) = [1 + 𝜏𝜏 − 𝐴𝐴(1 − 2𝑓𝑓)2 ]𝜓𝜓 
−𝑣𝑣(1 − 2𝑓𝑓)𝜓𝜓2 − 𝑢𝑢𝑢𝑢. (10) 

 
where 𝜏𝜏 denotes temperature.  

3. Implementation of ADI 

The implementation of finite difference scheme ADI based 
on CDS method is given in this section. The partial 
differential equations in CDS [32].  In first instance, the 
equation (9) can be written as:  

𝛿𝛿𝛿𝛿
𝛿𝛿𝛿𝛿

= −{𝛻𝛻2(𝑔𝑔(𝜓𝜓) + 𝐷𝐷𝛻𝛻2𝜓𝜓) + 𝐵𝐵𝐵𝐵}. (11) 

 
In equation (11), the order parameter 𝜓𝜓  is differentiated 
with respect to time 𝑡𝑡  and 𝛻𝛻2  is the Laplacian on a 
function of free energy. It is non–linear and non-
homogeneous partial differential equation containing 
fourth–order bi–Laplacian or biharmonic operator  𝛻𝛻4. 
After simplifying algebraically, the equation (11) can be 
written as: 

 
𝛿𝛿𝛿𝛿
𝛿𝛿𝛿𝛿

= −𝛻𝛻2𝑔𝑔(𝜓𝜓) − 𝛻𝛻2(𝐷𝐷𝛻𝛻2𝜓𝜓) − 𝐵𝐵𝐵𝐵. (12) 

 

𝜓𝜓𝑗𝑗,𝑘𝑘
𝑛𝑛+1 = 𝜓𝜓𝑗𝑗,𝑘𝑘

𝑛𝑛 −∆𝑡𝑡𝑡𝑡𝛻𝛻2�𝛻𝛻2�𝜓𝜓𝑗𝑗,𝑘𝑘
𝑛𝑛 −∆𝑡𝑡𝑡𝑡𝜓𝜓𝑗𝑗,𝑘𝑘

𝑛𝑛

𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 1   −∆𝑡𝑡𝛻𝛻
2𝑔𝑔�𝜓𝜓𝑗𝑗,𝑘𝑘

𝑛𝑛 �

𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝2          (13) 
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For Laplacian operator 𝛻𝛻2 in part 2 of the equation (13), 
the five–point stencil formula is used for approximation of 
the map function.  
The splitting operators are employed for finite differencing 
of part 1 of the equation (13), the operators 𝛿𝛿4/𝛿𝛿𝑥𝑥4�𝜓𝜓𝑗𝑗,𝑘𝑘� 
and 𝛿𝛿4/𝛿𝛿𝑦𝑦4�𝜓𝜓𝑗𝑗,𝑘𝑘� in thirteen-point formula are denoted by 
∆4

(𝑥𝑥)  and ∆4
(𝑦𝑦)  respectively. The ADI introduced by 

Doughlas and Gun [33] for mixed derivatives are applied. 
The mixed derivatives occur in biharmonic operator. 

3.1 Generalized ADI method 

In this section, the finite difference approximation for CDS 
based on ADI method [34] is presented from the method 
given by Witelski et al. [35], it is given below: 
   𝐿𝐿𝑥𝑥𝑤𝑤 = 𝜓𝜓𝑗𝑗,𝑘𝑘

𝑛𝑛 − ∆𝑡𝑡𝑡𝑡𝛻𝛻4𝜓𝜓𝑗𝑗,𝑘𝑘
𝑛𝑛 − ∆𝑡𝑡𝑡𝑡𝜓𝜓𝑗𝑗,𝑘𝑘

𝑛𝑛 − ∆𝑡𝑡𝛻𝛻2𝑔𝑔 �𝜓𝜓𝑗𝑗,𝑘𝑘
𝑛𝑛 �,             

   𝐿𝐿𝑦𝑦𝑣𝑣 = 𝑤𝑤,           𝜓𝜓𝑗𝑗,𝑘𝑘
𝑛𝑛+1 = 𝜓𝜓𝑗𝑗,𝑘𝑘

𝑛𝑛 + 𝑣𝑣 
 

(14) 

 
where: 

 
 

    𝐿𝐿𝑥𝑥 = �𝐼𝐼 + ∆𝑡𝑡𝑡𝑡𝑡𝑡
2

+ ∆𝑡𝑡𝑡𝑡
2
∆4

(𝑥𝑥)�  

    𝐿𝐿𝑦𝑦 = �𝐼𝐼 + ∆𝑡𝑡𝑡𝑡𝑡𝑡
2

+ ∆𝑡𝑡𝑡𝑡
2
∆4

(𝑦𝑦)� 
(15) 

The values of the vectors w and v in equation (14) are 
calculated in a penta-diagonal matrix M by employing 
periodic boundary conditions. The definition of 𝐿𝐿𝑥𝑥 and 𝐿𝐿𝑦𝑦 
in equation (15) in computer algorithm is 𝐿𝐿𝑥𝑥 = 𝐿𝐿𝑦𝑦 = 𝑀𝑀. M 
is given by: 

 

 
Equation (14) is manipulated in three steps. At first step it 
is approximated for its explicit part on the right hand side 
where size N vector is evaluated from grid size of 𝑁𝑁 × 𝑁𝑁. 
It is clarified that non-homogeneous part of CDS equation 
(12) is also combined there in the first step and vector w is 
approximated in x-direction implicitly. At second step, the 
vector v is approximated in y-direction implicitly from 

vector w and the last step calculates new values for an 
order parameter 𝜓𝜓  as usual. The LU decomposition 
technique has been employed to settle down matrix 
operations for various system of equations.  
The results are shown in Figure 1 and Figure 2 for forward 
Euler’s method and ADI method respectively. The images 
are shown for the simulation images at 1000th and 
100000th time steps from both methods. 
The details of parameters used in simulations are given in 
Table 1. For both methods, the simulations were run for 
100000 time steps using periodic boundary conditions and 
the initial values for an order parameter were set as 
𝜓𝜓 =  ±0.3.  

Table 1: Parameters and Value as [9] 
 Parameter  
Name τ  f u V B D A 

Value 0.36 0.48 0.38 2.3 0.02 0.7 1.5 

 
Different stages of evolution are shown in Figure 1 and 
Figure 2. The results were successfully obtained from 
newly implemented generalized ADI method, which are 
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shown in Figure 2. Figure 3 represents a clear comparison 
can be observed between two methods. Suitable time steps 
are chosen and are shown in that figure where Figure 3 (a) 
depicts curves of for 1000th time step and Figure 3 (b) 
depicts curves of values for 100000th time step.  Two line 
curves of two different colors in each Figure can be seen. 
The order parameter values on the vertical axis have been 
maped against the horizontal axis which shows total grid 
size. In Figure 3 (a), Only a little difference can be 
observed between 40 and 50 which is negligible. 
Otherwise, overall tendency of numerical values seems to 
be isotropic. In Figure 3 (b), difference of the numerical 
values exists between 40 - 60 and between 80 - 100 on the 
horizontal axis and the overall tendency is likewise. In 
simulations, there can be observed no obvious difference 
in microphase separation process.   

4. Conclusions 

The Implementation of ADI method has been carried out 
for the CDS method for A-B forming system of diblock 
copolymers. Since long time, the CDS model equations 
were Euler discretized due to which time step stability of 
was questionable. The forward Euler method is not 
adequately stable, however when compared it is faster 
method. On the other hand, CDS is a powerful method and 
to make it stronger, a new method of discretization, so 
called ADI, was implemented and successful results were 
obtained. The choice of parameters for simulations in both 
methods were taken same to observe the performance. 
Different time intervals values were also used to examine 
the stability of the newly adopted method. The forward 
Euler method does not allow flexibility for using different 
time interval values and is first-order accurate. The 
implementation of ADI for CDS techniques has broken all 
the limitations and has made the CDS more flexible in 
terms of time stability, speed and accuracy. 
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