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Summary 
The cell dynamics simulation (CDS) technique is elaborated for 
the lamellar system of A-B diblock copolymer. In which, the 
averaging operator (Laplacian) plays a key role for ensuring the 
isotropy. To achieve this objective, the original Laplacian used in 
CDS has been replaced by various other Laplacian schemes to 
observe more isotropic results. Generally, the CDS is used to 
evaluate the Time–Dependent Ginzburg–Landau (TDGL) 
equations where analysis remains inconclusive for optimal 
isotropy. In this paper, the stencil size with focus on its behavior 
for two dimensional Laplacian operators are considered. In 
simulations, the short stencil 5-point 5P was found anisotropic 
produced anisotropic results while the 9-point PK, BV1, BV2 
and BV3 were found isotropic. 
Key words: 
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1. Introduction 

In mathematics, the differential or integral operators have 
been applied to several numerical solutions. The Laplacian 
( ∆) operator that comes from the divergence of the 
gradient and the form of this operator is given as follows 
[1]: 

𝛻𝛻. (𝛻𝛻𝛻𝛻) = ∆𝜓𝜓 = �
𝜕𝜕2𝜓𝜓
𝜕𝜕𝑥𝑥𝑖𝑖2

𝑛𝑛

𝑖𝑖=0

,        

𝑓𝑓𝑓𝑓𝑓𝑓 𝑥𝑥𝑖𝑖 = 𝑥𝑥, 𝑦𝑦, 𝑧𝑧… .𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑   (1) 

where 𝛻𝛻 is called Nabla. For numerical solutions or 
approxiamtions, the discretizations of these operators are 
carried out to satisfy certain conditions using several 
methods by maintaining stability, accuracy, conservation 
and consistency. Usually, the discretizations of operators 
are made free from anisotropies. In fact, the anisptropic 
operators are containing error terms (or artefacts) in the 
any numerical approximation of partial differential 
equations (PDEs) [1]–[3]. The cell dynamics simulation 
method, for diblock polymers, involves PDEs and the 
discretizaiton of mathematical operator, such as Laplacian 

operator, is considered an essential feature. The use of 
isotropic Laplacians help to relieve anisotropies in 
describing the phenomenon of physical system, i.e., 
diblock copolymers. If the discretization of a Laplacian 
operator lacks isotropy or is not optimally isotropic, then 
the different values are generated from two identical edges 
formed at different angles. In numerical approximation, 
such type of anisotropic descretization of operator 
produces artefacts (error terms) due to which outlining 
edges remain inexplicit [4].  Therefore, the study of 
isotropic Laplacians is considered an important part and in 
this work two-dimensional Laplacian operators have been 
thoroughly investigated for cell dynamics simulation 
(CDS) method which has been used for the modelling of 
A-B forming system in diblock polymers. Mainly, the 
stability and isotropy of the CDS depend on these 
Laplacians. The Forward Euler’s method as a finite 
difference approach had been used in original CDS 
method [5]. Several researchers have talked about 
employing isotropic Laplacians for different methods, i.e., 
Thampi et al. [1] suggested two- and three-dimensional 
Laplacians for Hybrid Lattice Boltzman simulation 
method. Various discretizations techniques have been 
carried out for approximating Laplacians to handle 
anistropic terms and to put best possible isotropic 
Laplacians in stencils. The isotropy of a two-dimensionl 
isotropic 9-point stencil and many 27-point stencil 
formulas have been discussed completely based on spatial 
discretizations. The quantification of the Laplacian 
schemes has been given by a rigorous comparison by using 
Fourier transformations at different planes. For a 9-point 
Laplacian, two methods are used for a 9-point Laplacian: 
the finite difference and finite volume method. The 9-point 
stencil was observed less isotropic in the spatial 
discretization through finite volume method. To measure 
isotropy, a comparison has been done for a 9-point 
Laplacian with an optimal isotropic 9-point Laplacian 
which was used by Shinozaki and Oono in a study of 
spindol decomposition based on CDS [5], [6]. It must be 
noted that in this work, the comparisons of stencils will 
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also be done with Shinozaki and Oono’s 9-point isotropic 
Laplacian [5]. 

Various studies have been done regarding the isotropic 
Laplacians. A finite difference time domain (FDTD) 
method called the Yee algorithm was developed to 
approximate Maxwell’s equations where two-dimensional 
5-point, 9-point and 25-point stencils were put to practice 
to avoid anistorpic Laplacians [7]. A better version of the 
Yee algorithm was introduced by applying FDTD to 
approximate partial differential operator (Laplacian) for 
Maxwell’s equations.  These schemes of finite difference 
methods were based on high-dimensional isotropic 
operators which reduced the anisotropies to larger extent 
[8]. Kumar [9] also worked on isoropic finite difference 
for Laplacians, he explains that anisotropy produces due to 
the directional bias of artefacts in the finite difference 
approximations. He has proposed a finite difference 
scheme with lowest error order terms with exception of 
directional bias. 

In this work, the isotropic Laplacian schemes have been 
discussed and the numerical results have presented. These 
Laplacian operators are from CDS equations and the 
numerical results are obtained from simulations of A-B 
diblock copolymer lamellae forming system. In section 2 a 
brief introduction of A-B diblock copolymer for lamellae 
forming system is given along with the CDS frame work. 
In section 3, the isotropic Laplacian operator are discussed 
and derived. Section 4 discusses simulation results based 
on different Laplacian schemes and section 5 gives 
conclusion. 

2. Cell Dynamics Simulation (CDS) method 
used for A-B diblock copolymers 

Block copolymer is basically the two or more chemical 
blocks formed in a long chain of molecules of polymers. 
This chain comes into formation due to the molecular 
reaction. These molecules are called monomers. The block 
copolymer structures are found in melts, solutions, blends 
or solvents with different ranges [10].  The size of these 
chemical blocks range from nanometre to millimetre on 
the scale [11]. The polymer blocks in a chain of molecules 
are covalently bonded into one macromolecule and the 
blocks of two different monomers A and B are called A-B 
diblock, A-B-A triblock or multiblock copolymers [12]. 
The block copolymers, due to their innate ability can shape 
of nanostructures like lamellae, spheres, hexagonal-packed 
cylinders, gyroid, body-centred cubic structures, etc. [13], 
[14]. 

There are many applications of block copolymers in 
various fields, these are mainly applied by creating 
templates in soft nanotechnology and nanoelectronics. 

Furthermore, these are applicable for mechanical flow 
fields, nanoparticle synthesis, catalyst materials, electric 
fields, separation nonporous membranes, photonic crystals 
[15]–[19]. The applications of block copolymers are also 
found in medical science, i.e. drug delivery, and in 
commercial products such as bottle stoppers and jelly 
candles [20]. 

In science laboratories, the chemical bonding in polymers 
are observed through microscopies and further theories 
and interpretations of these complex systems are made 
based on mathematical models for their use in various 
applications. These processes are very long and time-
consuming which require a lot effort. Therefore, the 
computer technology is an aided advantage and is 
inevitable to use. Thus, the study and the analysis of these 
complex systems become more convenient and take less 
time for the orientation in a broader view through 
simulations [13]. 

The block copolymers have been studied through various 
simulation techniques which include Molecular Dynamics 
(MD) [11], Lattice Boltzman (LB) method [11], [21], 
Dissipative Particle Dynamics (DPD) [22], Brownian 
Dynamics (BD) [23], Monte Carlo (MC) [24], Self-
Consistent Field Theory (SCFT) [25] and Time Dependent 
Ginzburg Landau (TDGL) via CDS method [11], [13], 
[14], [26]. The cellular automaton CDS technique of 
Ginzburg Landau type is commonly used for modelling 
block copolymers due to its better efficiency, more 
accuracy and fast speed. The CDS is employed to study 
the evolution of an order parameter in microphase 
sepration in binary blends, alloys and diffusive structures 
in block copolymers [5], [6], [27]–[29]. 

The frame work of CDS for modelling lamellae forming 
system of A-B diblock copolymer is presented here and 
the numerical results obtained from simulations using 
isotropic Laplacians are presented in Results section. An 
order parameter 𝜓𝜓(𝑡𝑡, 𝑖𝑖)  of block copolymer with time 
variable t evaluated at cell i in a grid can be defined as 
follows [14]: 

𝜓𝜓 = 𝜙𝜙𝐴𝐴 − 𝜙𝜙𝐵𝐵 + (1 − 2𝑓𝑓)    (2) 

where 𝜙𝜙𝐴𝐴 and 𝜙𝜙𝐵𝐵  are local volume fractions of A and B. 
Total volume fraction of monomer A is defined as 𝑓𝑓 =
𝑁𝑁𝐴𝐴/ (𝑁𝑁𝐴𝐴 + 𝑁𝑁𝐵𝐵) and the evolution of an order parameter in 
a single cell: 

𝜓𝜓(𝑡𝑡 + 1, 𝑖𝑖) = 𝑔𝑔(𝜓𝜓(𝑡𝑡, 𝑖𝑖))    (3) 

where 𝑔𝑔(𝜓𝜓) is the map function. In a nonconserved case 
for diffusive dynamics, the time evolution of an order 
parameter is given as:  

𝜓𝜓(𝑡𝑡 + 1, 𝑖𝑖) = 𝑔𝑔�𝜓𝜓(𝑡𝑡, 𝑖𝑖)� + 𝐷𝐷[〈〈𝜓𝜓(𝑡𝑡, 𝑖𝑖〉〉 − 𝜓𝜓(𝑡𝑡, 𝑖𝑖)] 
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= 𝒯𝒯[𝜓𝜓(𝑡𝑡, 𝑖𝑖)]     (4) 

In equation (4), D is taken as phenomenological diffusion 
constant in diffusive dynamics term and the 〈〈𝑋𝑋〉〉 − 𝑋𝑋 is 
the isotropized discrete Laplacian. The two-dimensional 
form of this Laplacians in a square lattice is: 

〈〈𝜓𝜓(𝑡𝑡, 𝑖𝑖)〉〉 = 𝑊𝑊1 ∑ 𝜓𝜓(𝑡𝑡, 𝑖𝑖)𝑁𝑁𝑁𝑁 + 𝑊𝑊2 ∑ 𝜓𝜓(𝑡𝑡, 𝑖𝑖)𝑁𝑁𝑁𝑁𝑁𝑁  (5) 

where Ws are considered as wegiths, e.g.,  𝑊𝑊1 = 1/6 and 
𝑊𝑊2 = 1/12  and NN and NNN stand for nearest 
neighbours and next nearest neighbours [13], [14]. The 
artefacts which generate due to the interrelation between 
its neighbouring cells, the conserve case is considered to 
maintain isotropy and equilibrium in the system. After a 
net change in the cells, the order parameter in a conserved 
case is given as follows: 

𝒯𝒯[𝜓𝜓(𝑡𝑡, 𝑖𝑖)] − 𝜓𝜓(𝑡𝑡, 𝑖𝑖)    (6) 

and the CDS for order parameter evolution becomes: 

𝜓𝜓(𝑡𝑡 + 1, 𝑖𝑖) = 𝒯𝒯[𝜓𝜓(𝑡𝑡, 𝑖𝑖)] − 〈〈𝒯𝒯[𝜓𝜓(𝑡𝑡, 𝑖𝑖)] − 𝜓𝜓(𝑡𝑡, 𝑖𝑖)〉〉.    (7) 

The equation (7) with an additional term –𝐵𝐵𝐵𝐵(𝑡𝑡, 𝑖𝑖) 
becomes:  

𝜓𝜓(𝑡𝑡 + 1, 𝑖𝑖) = 𝒯𝒯[𝜓𝜓(𝑡𝑡, 𝑖𝑖)] 

−〈〈𝒯𝒯[𝜓𝜓(𝑡𝑡, 𝑖𝑖)] − 𝜓𝜓(𝑡𝑡, 𝑖𝑖)〉〉–𝐵𝐵𝐵𝐵(𝑡𝑡, 𝑖𝑖).   (8) 

Equation (7) is finite difference approximation of the 
Cahn-Hilliard-Cook (CHC) equation [13]: 

𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

= K𝛻𝛻2 �𝛿𝛿𝛿𝛿[𝜓𝜓]
𝛿𝛿𝛿𝛿

�,     (9) 

where is 𝐹𝐹[𝜓𝜓]  a free energy functional and K is the 
phenomenological mobility constant. Equation (3) and (8) 
together can be written as [13]:     

𝒯𝒯(𝑡𝑡 + 1, 𝑖𝑖) = 𝑔𝑔�𝜓𝜓(𝑡𝑡, 𝑖𝑖)� − 𝐵𝐵𝐵𝐵(𝑡𝑡, 𝑖𝑖) 

+𝐷𝐷[〈〈𝜓𝜓(𝑡𝑡, 𝑖𝑖〉〉 + 𝜓𝜓(𝑡𝑡, 𝑖𝑖)]    (10) 

and the map function 𝑔𝑔�𝜓𝜓(𝑡𝑡, 𝑖𝑖)� in equation (10) is given 
as: 

𝑔𝑔(𝜓𝜓) = [1 + 𝜏𝜏 − 𝐴𝐴(1 − 2𝑓𝑓)2 ]𝜓𝜓 

−𝑣𝑣(1 − 2𝑓𝑓)𝜓𝜓2 − 𝑢𝑢𝑢𝑢    (11) 

where 𝜏𝜏 denotes temperature and A,v,u are constants [13], 
[14]. 

3. Laplacian Schemes 

Two-dimensional Laplacian schemes and their properties 
are discussed and in a form, that these Laplacian schemes 

are used in CDS method is also elaborated. The Laplacian 
in equation (1) in the Fourier space can be written as: 

−∇.∇⇔ k2     (12) 

where k is wave factor and the finite difference 
approximation of equation (12) is: 

∆= 𝑆𝑆 + 𝑂𝑂(ℎ𝑛𝑛)     (13) 

where S denotes stencils (grid cells) and 𝑂𝑂(ℎ𝑛𝑛) denotes 
truncation error up to order n. 

Basically, the use of mathematical operators is essential in 
describing physical phenomena. Therefore, isotropy in 
numerical approximations of these operators must be 
ensured for better results. Nevertheless, the Laplacian 
operator is rotationally invariant but all the discretizations 
of this operator are not isotropic. The isotropy in natural 
phenomena can be defined as an identical appearance or 
behaviour of an object when it is measured or viewed from 
any direction. In other words, the isotropy is considered as 
homogeneousness in all positions [30]. The discretization 
of any Laplacian scheme is considered isotropic if it is 
without directional bias or preferences otherwise 
anisotropic due to the presences of directional bias [9]. 

The Laplacian schemes are formulated depending the size 
of the stencils, e.g., two-dimensional 5-point stencil, 9-
point stencil or 25-point stencil formula and three-
dimensional 7-point stencil or 27-point stencil formula. 
We are discussing here only the two-dimensional 9-point 
Laplacian schemes. In Figure 1, a two-dimensional 9-point 
stencil can be seen and we use DmQn notation for a model 
Laplacian to observe the number of dimensions m and the 
number of points n used for numerical calcualtion. 

 

Fig. 1  The 9–point stencil shape of Laplacian 

The first scheme can be formulated including its central 
cell (see dark circle in Figure 1) and the nearest 
neighbouring points to central cell (see dark square boxes). 
These be in total 5 points and a 5-point stencil is formed, 
that is D2Q5 [4], [31]. The Laplacian operator for D2Q5 is 
given in equation (14) and the Laplacian operators for 
D2Q9 are given in equations (15) and (16). 

∆(𝜓𝜓)𝑃𝑃5 = 1
ℎ2
�∑ 𝜓𝜓𝑖𝑖

(1) − 4𝜓𝜓(0)4
𝑖𝑖=1 �   (14) 

∆(𝜓𝜓)𝑃𝑃𝑃𝑃 = 1
6ℎ2

�4∑ 𝜓𝜓𝑖𝑖
(1)4

𝑖𝑖=1 + 4∑ 𝜓𝜓𝑖𝑖
(2)4

𝑖𝑖=1 − 20𝜓𝜓𝑖𝑖
(0)� (15) 
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∆(𝜓𝜓)𝑂𝑂𝑂𝑂 = 1
2ℎ2

�∑ 𝜓𝜓𝑖𝑖
(1)4

𝑖𝑖=1 + 1
2
∑ 𝜓𝜓𝑖𝑖

(2)4
𝑖𝑖=1 − 6𝜓𝜓𝑖𝑖

(0)� (16) 

The subscript P5 in equation (14) is meant to show that the 
Laplacian operator is based on 5-point stencil formula and 
the subscripts PK and OP in equations (15) and (16) stand 
for Patra-Karttunen and Oono-Puri respectively.  Patra and 
Karttunen [32] have mentioned equation (14) to be 
anisotropic and Equation (15) to be isotropic. Puri and 
Oono employed equation (16) for simulation of spindol 
decomposition via CDS and they obtained optimal 
isotropic results of simulation images. Tomita [33] also 
mentioned Equation (16) to be the optimal choice for 
isotropy. The Equations (14), (15) and (16) for their 
corresponding Fourier transforms are given as follows: 

Γ(k)𝑃𝑃5 = 2
(∆𝑥𝑥)2 

�cos(k𝑥𝑥∆𝑥𝑥) + cos�k𝑦𝑦∆𝑥𝑥� − 2� (17) 

Γ(k)𝑃𝑃𝑃𝑃 = 2
3(∆𝑥𝑥)2 

�2cos(k𝑥𝑥∆x) + 2cos�k𝑦𝑦∆x� +
1
2
�cos�(k𝑥𝑥 + k𝑦𝑦)∆𝑥𝑥� + cos�(k𝑥𝑥 − k𝑦𝑦)∆𝑥𝑥�� − 5� (18) 

Γ(k)𝑂𝑂𝑂𝑂 = 1
2(∆𝑥𝑥)2 

�2cos(k𝑥𝑥∆x) + 2cos�k𝑦𝑦∆x� +
cos�(k𝑥𝑥 + k𝑦𝑦)∆𝑥𝑥� + cos�(k𝑥𝑥 − k𝑦𝑦)∆𝑥𝑥� − 6� (19) 

Expanding cos (𝑥𝑥) in the equations (17), (18) and (19) at x 
= 0 gives respectively: 

Γ(k)5𝑃𝑃 = −�k𝑥𝑥2 + k𝑦𝑦2� + (∆𝑥𝑥)2

12
�k𝑥𝑥2 + k𝑦𝑦2�

2 − (∆𝑥𝑥)2

6
k𝑥𝑥2k𝑦𝑦2 +

𝑂𝑂(k6)      (20) 

Γ(k)𝑃𝑃𝑃𝑃 = −�k𝑥𝑥2 + k𝑦𝑦2� + (∆𝑥𝑥)2

12
�k𝑥𝑥2 + k𝑦𝑦2�

2 + (∆𝑥𝑥)2

3
k𝑥𝑥2k𝑦𝑦2 +

𝑂𝑂(k6)      (21) 

Γ(k)𝑂𝑂𝑂𝑂 = −�k𝑥𝑥2 + k𝑦𝑦2� + (∆𝑥𝑥)2

12
�k𝑥𝑥2 + k𝑦𝑦2�

2 + (∆𝑥𝑥)2

12
k𝑥𝑥2k𝑦𝑦2 +

𝑂𝑂(k6)      (22) 

The Laplacian operators have been studied since long time 
for their isotropic properties in various two- and three-
dimensional stencil types. The work in [34] proposed a 
different technique to evaluate a three-dimensional 
isotropic 27-point stencil operator. This technique and 
stencil operator was also used by Fraaije et al. [35] to 
enhance the efficiency and accuracy of a linkage operator 
in a standard lattice model. In this model, they achieved 
the optimal isotropy by employing proper scaling 
conditions for the stencil operator. In this article, the same 
technique has been applied for a two-dimensional 9-point 
family stencil operators (Laplacians). Likewise, we 
calculate the weights dα for a 9-point stencil operator and 
the method is following. 

Consider a half point finite difference:  

𝐷𝐷𝛼𝛼(𝑓𝑓)(𝑥𝑥) = ∑ 𝑑𝑑𝛼𝛼
𝑓𝑓�𝑥𝑥+ℎ2𝑟𝑟𝛼𝛼�−𝑓𝑓�𝑥𝑥−

ℎ
2𝑟𝑟𝛼𝛼�

‖ℎ𝑟𝑟𝛼𝛼‖
𝑚𝑚=9
𝛼𝛼=1   (23) 

In Fourier space, the discrete half point derivative operator  
𝐷𝐷𝛼𝛼  in direction 𝛼𝛼 is: 

𝐷𝐷𝛼𝛼 = 2𝑖𝑖
‖ℎ𝑟𝑟𝛼𝛼‖

sin(ℎk𝑟𝑟𝛼𝛼
2

)    (24) 

where αr  is a grid direction in positive half–space: 

𝑟𝑟𝛼𝛼 = �(1,0)
(0,1)� 𝑑𝑑10 . 

𝑟𝑟𝛼𝛼 = � (1,1)
(1,−1)� 𝑑𝑑11 .    (25) 

A vector length |k| is taken as positive half space where 
k = 𝜋𝜋 and The directions are fixed for vectors as  (|k|, 0) 
and (|k|/√2, |k|/√2). The symbol 𝑆𝑆(k)  is used as 𝛻𝛻2 =
−k. k. 

−𝑞𝑞2 → 𝑆𝑆(k)  = ∑ 𝑑𝑑𝑎𝑎𝐷𝐷𝛼𝛼𝐷𝐷𝛼𝛼𝛼𝛼    (26) 

The values of weights 𝑑𝑑𝑎𝑎  are evaluated by employing 
following two scaling and isotropy conditions given 
respectively in equations (27) and (28): 

𝜕𝜕𝑆𝑆2

𝜕𝜕𝑥𝑥𝑖𝑖
2 = −2, where  𝑥𝑥𝑖𝑖 = 𝑥𝑥, 𝑦𝑦   (27) 

𝑆𝑆(𝜋𝜋, 0) = 𝑆𝑆 � 𝜋𝜋
√2

, 𝜋𝜋
√2
�    (28) 

From the above method of [34] (B.A.C van Vlimmeren), 
the stencil is obtained with weights 𝑑𝑑10 = 0.53015  and 
𝑑𝑑10 = 0.53015 and 𝑑𝑑11 = 0.469849, The stencil BV1 is 
given as follows: 

S(k)𝐵𝐵𝐵𝐵1 = 0.53015 �−4𝑠𝑠𝑠𝑠𝑠𝑠 �k𝑥𝑥∆𝑥𝑥
2
�
2
− 4𝑠𝑠𝑠𝑠𝑠𝑠 �k𝑦𝑦∆𝑥𝑥

2
�
2
� +

0.469849 �−2𝑠𝑠𝑠𝑠𝑠𝑠 �(k𝑥𝑥+k𝑦𝑦)∆𝑥𝑥
2

�
2
− 2𝑠𝑠𝑠𝑠𝑠𝑠 �(k𝑥𝑥+k𝑦𝑦)∆𝑥𝑥

2
�
2
� . 

      (29) 

For 𝐵𝐵𝐵𝐵1  case the vector choice is taken as 𝑆𝑆(𝜋𝜋, 0) =
𝑆𝑆�𝜋𝜋/√2,𝜋𝜋/√2�. There are two other cases 𝐵𝐵𝐵𝐵2 and 𝐵𝐵𝐵𝐵3 
where the vector choices vary. For 𝐵𝐵𝐵𝐵2 case, the vector 
choice is fixed as 𝑆𝑆(𝜋𝜋/2,0) = 𝑆𝑆�𝜋𝜋/2√2,𝜋𝜋/2√2� and for 
𝐵𝐵𝐵𝐵3  case, the vector choice is taken as 𝑆𝑆(3𝜋𝜋/4,0) =
𝑆𝑆�3𝜋𝜋/4√2, 3𝜋𝜋/4√2�. The stencils for 𝐵𝐵𝐵𝐵2 and 𝐵𝐵𝐵𝐵3 case 
are given as follows: 

S(k)𝐵𝐵𝐵𝐵2 = 0.63778 �−4𝑠𝑠𝑠𝑠𝑠𝑠 �k𝑥𝑥∆𝑥𝑥
2
�
2
− 4𝑠𝑠𝑠𝑠𝑠𝑠 �k𝑦𝑦∆𝑥𝑥

2
�
2
� +

0.362218 �−2𝑠𝑠𝑠𝑠𝑠𝑠 �(k𝑥𝑥+k𝑦𝑦)∆𝑥𝑥
2

�
2
− 2𝑠𝑠𝑠𝑠𝑠𝑠 �(k𝑥𝑥+k𝑦𝑦)∆𝑥𝑥

2
�
2
� . 

      (30) 
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S(k)𝐵𝐵𝐵𝐵3 = 0.597131 �−4𝑠𝑠𝑠𝑠𝑠𝑠 �k𝑥𝑥∆𝑥𝑥
2
�
2
− 4𝑠𝑠𝑠𝑠𝑠𝑠 �k𝑦𝑦∆𝑥𝑥

2
�
2
� +

0.402869 �−2𝑠𝑠𝑠𝑠𝑠𝑠 �(k𝑥𝑥+k𝑦𝑦)∆𝑥𝑥
2

�
2
− 2𝑠𝑠𝑠𝑠𝑠𝑠 �(k𝑥𝑥+k𝑦𝑦)∆𝑥𝑥

2
�
2
� . 

      (31) 

The stencils in equations (29)-(31) are in k domain and for 
employing in CDS technique for simulation these need to 
be transformed to real analogues. The corresponding real 
analogues of equations (29)-(31) are given as follows:  

𝑆𝑆(k)𝐵𝐵𝐵𝐵1 = 1
(∆𝑥𝑥)2

�0.53015�2 cos(𝑘𝑘𝑥𝑥∆𝑥𝑥) +

2 cos�𝑘𝑘𝑦𝑦∆𝑥𝑥�� + 0.234925�2 cos�(𝑘𝑘𝑥𝑥 + 𝑘𝑘𝑦𝑦)∆𝑥𝑥� +
2 cos�(𝑘𝑘𝑥𝑥 − 𝑘𝑘𝑦𝑦)∆𝑥𝑥� ��    (32) 

𝑆𝑆(k)𝐵𝐵𝐵𝐵2 = 1
(∆𝑥𝑥)2

�0.63778�2 cos(𝑘𝑘𝑥𝑥∆𝑥𝑥) +

2 cos�𝑘𝑘𝑦𝑦∆𝑥𝑥�� + 0.362218�2 cos�(𝑘𝑘𝑥𝑥 + 𝑘𝑘𝑦𝑦)∆𝑥𝑥� +
2 cos�(𝑘𝑘𝑥𝑥 − 𝑘𝑘𝑦𝑦)∆𝑥𝑥� ��    (33) 

𝑆𝑆(k)𝐵𝐵𝐵𝐵3 = 1
(∆𝑥𝑥)2

�0.597131�2 cos(𝑘𝑘𝑥𝑥∆𝑥𝑥) +

2 cos�𝑘𝑘𝑦𝑦∆𝑥𝑥�� + 0.402869�2 cos�(𝑘𝑘𝑥𝑥 + 𝑘𝑘𝑦𝑦)∆𝑥𝑥� +
2 cos�(𝑘𝑘𝑥𝑥 − 𝑘𝑘𝑦𝑦)∆𝑥𝑥� ��    (34) 

In CDS the form of the Laplacian is used as ≪ 𝑋𝑋 ≫ −𝑋𝑋 
and correspondingly the we need modify the Laplacian 
operators in the form ≪ 𝑋𝑋 ≫ to be used in simulations, the 
modifications for Laplacian operators (14)-(16) and (29)-
(31) are given as follows: 

≪ 𝜓𝜓 ≫5𝑃𝑃= 1
4
∑ 𝜓𝜓𝑁𝑁𝑁𝑁     (35) 

≪ 𝜓𝜓 ≫𝑃𝑃𝑃𝑃= 1
5
∑ 𝜓𝜓𝑁𝑁𝑁𝑁 + 1

20
∑ 𝜓𝜓𝑁𝑁𝑁𝑁𝑁𝑁    (36) 

≪ 𝜓𝜓 ≫𝑂𝑂𝑂𝑂= 1
6
∑ 𝜓𝜓𝑁𝑁𝑁𝑁 + 1

12
∑ 𝜓𝜓𝑁𝑁𝑁𝑁𝑁𝑁    (37) 

≪ 𝜓𝜓 ≫𝐵𝐵𝐵𝐵1= 0.173235∑ 𝜓𝜓𝑁𝑁𝑁𝑁 + 0.076765∑ 𝜓𝜓𝑁𝑁𝑁𝑁𝑁𝑁  (38) 

≪ 𝜓𝜓 ≫𝐵𝐵𝐵𝐵2= 0.63778∑ 𝜓𝜓𝑁𝑁𝑁𝑁 + 0.362218∑ 𝜓𝜓𝑁𝑁𝑁𝑁𝑁𝑁  (38) 

≪ 𝜓𝜓 ≫𝐵𝐵𝐵𝐵3= 0.597131∑ 𝜓𝜓𝑁𝑁𝑁𝑁 + 0.402869∑ 𝜓𝜓𝑁𝑁𝑁𝑁𝑁𝑁  (38) 

In simulation results section, we refer Laplacian operators 
with their subscripts used. For equations (14)-(16) and 
(29)-(31), the subscripts are referred as 5P, PK, OP, BV1, 
BV2 and BV3 respectively.  

4. Simulation Results 

A coarse–grained discretization CDS technique is used to 
model the A–B diblock copolymers [13] where various 
two-dimensional Laplacian operators are employed to 
investigate isotropic simulation results. For this purpose, a 
detailed discussion has been given to understand the 
evolution of order parameter in microphase separation and 

front propagation for A–B dibblock copolymer systems via 
CDS method. Fortran 90 programming language is used 
for CDS code. The CDS code was run on the machine with 
Linux 3.7 desktop Opensuse 12.3. 

Following are the steps in CDS algorithm by considering 
the discrete equations (10) and (11): 

1. Setting random initial values for order parameter 𝜓𝜓; 
2. Setup of periodic boundary conditions in both 

dimensions, i.e. x and y 
3. Evaluation of first (inner) Laplacian for order 

parameter 𝜓𝜓, i.e. ≪ 𝜓𝜓 ≫ −𝜓𝜓; 
4. Mutiplying step 3 by diffusion constant D, i.e. 

𝐷𝐷[≪ 𝜓𝜓 ≫ −𝜓𝜓]; 
5. Evaluation of the map function (11) and assigning 

parameter to specific constants; 
6. Combining steps 4 and 5; see equation (10); 
7. Evaluation of second (outer) discrete Laplacian for 

the result of step 6, as follows: 
    ≪ Γ(𝑡𝑡, 𝑖𝑖) ≫ −Γ(𝑡𝑡, 𝑖𝑖); 

8. Computing new values for an order parameter;  

A morphology defines shapes which are found during the 
evolution process in microphase separation of A–B 
diblock copolymers at different times. Different 
morphologies were discovered: lamellae, bicontinuous, 
cylinders and spheres [14]. The constant values in map 
function (see equation (11)) decide any certain 
morphology. The simulation details are presented Table 1 
[14]. 

Table 1: Simulation parameters 
τ  f u v B D A Morphology 

0.36 0.48 0.38 2.3 0.02 0.7 1.5 Lamellae 
0.33 0.44 0.38 2.3 0.02 0.5 1.5 Bicontinuous 
0.30 0.40 0.38 2.3 0.02 0.4 1.5 Cylinders 
0.20 0.40 0.38 2.3 0.01 0.5 1.5 Spheres 

 
We choose lamellae morphology for the simulations. For 
all simulations, the grid size was chosen to be 128 × 128 
with grid spacing ℎ = ∆𝑥𝑥 = ∆𝑦𝑦 = 1 and at the initial state, 
the parameter was set randomly by 𝜓𝜓 = ±0.3. Simulations 
were performed without any specific time scale to generate 
numerical values of 𝜓𝜓. 
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Fig. 2  Results of CDS based on OP (9–point stencil), equation (16). 

Real space simulation snapshots in (a), (b) and (c) are for 
100th, 10000th and 100000th time steps by following Table 
2. Real space simulation snapshot in (d) is for 100000th by 
following Table 3. 

 

 

 

 

 

 

 

 

 

 

Table 2: System parameters for Lamellae morphology 
CDS Parameters τ  f u v B D A Initial random values 

Lamellae Morphology 0.36 0.48 0.38 2.3 0.02 0.7 1.5 30.i ±=ψ  

Table 3: System parameters used in cell dynamical method for binary blend 
CDS Parameters τ  f u v B D A Initial random values 

Lamellae Morphology 0.36 0.48 0.38 2.3 0.0 0.7 1.5 01030 ..i ±−=ψ  

 
The simulation results in Figure 2 were obtained by using 
OP of D2Q9 model Laplacian (equation (16)). In Figure 2 
(a), (b) and (c), the snapshots show different stages of 
evolution of lamellae in a microphase separation of A–B 
diblock copolymers. In Figure 2 (a), the microphase 
separation starts with respect to time and lamellae can be 
seen with some shapes in Figure 2 (b). In Figure 2 (c), the 
red coloured lamellae with an interfacial yellow colour are 
basically microphase–separated in either A or B block.  
The simulation for lamellar forming system becomes 
stable at 10000th time step as shown in Figure 2 (b), that is, 
the microphase separation has reached at its equilibrium 
state. Simulation results in snapshots (a), (b) and (c) of 
Figure 2 were obtained by using the parameter values 
given in Table 2. On the other hand, (d) snapshot of Figure 
2 shows a binary blend where OP Laplacian scheme was 
employed and the simulation parameters were used from 
Table 3. It is also lamellar forming system simulation by 
setting B=0. A macrophase separation takes place rather 
than microphase separation in a pore system. In this case, 
two subdomains can be seen where yellow interfacial parts 
macrophase-separate red coloured A-rich and blue 
coloured B-rich subdomains. The well-defined lamellae 

formations in Figure 2 (b) and (c) are basically isotropic. It 
must be noted that in this work, the simulation results in 
Figure 2 are referred as default CDS results. All the 2D 
simulation results based on other Laplacian schemes will 
be compared with these default results. 

 

Fig. 3  Laplacian scheme 5P 

In Figure 3, the simulation results were obtained by using 
Laplacian scheme 5P. In snapshots (a) and (b) of Figure 3, 
the parameters were employed from Table 2 and Table 3 
respectively.  It can be observed that the lamellae 
formations in Figure 3 (a) are not very well-defined 
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compared to Figure 2 (c). In Figure 3 (b), subdomains 
form rectangular shapes which create a clear difference 
compared to Figure 2 (d). Therefore, it can be inferred that 
the Laplacian scheme 5P did not perform well to produce 
isotropic results and it can be termed as anisotropic 
Laplacian scheme. 

 

Fig. 4  CDS results based on Laplacian scheme PK 

 

Fig. 5  CDS results based on Laplacian scheme BV1 

 

Fig. 6  CDS results based on Laplacian scheme BV2 

 

Fig. 7  CDS results based on Laplacian scheme BV3 

The CDS results given in Figures 4,5,6 and 7 were 
obtained using Laplacian schemes PK, BV1, BV2 and 

BV3 respectively. It can be observed in snapshot (a) of 
these figures, the lamellae formations are well aligned and 
well defined and proper lamellar chains are proper in 
shape. The Laplacian schemes PK, BV1, BV2 and BV3 
produce isotropic results of microphase separation. The 
snapshots in (b) parts of these figures were obtained the 
similar results as those of default CDS using Laplacian OP, 
i.e. circular shapes of red subdomains. Thus, these 
Laplacians performed at an optimum level for the 
simulations. 

5. Conclusion 

The stencil, as a computational molecule, is considered an 
important entity for the evolution of an order parameter. 
Therefore, this study has been carried out for the 
investigation of several different two-dimensional stencil 
operators based on Laplacian schemes. It is analysed that 
the original averaging (Laplacian OP) operator is not only 
the discrete representation of Laplacian in CDS and in 
CDS, the TDGL equations should not only be considered 
for producing isotropy. From the simulations, the 5P 
Laplacian scheme was found unstable for simulations and 
not on isotropic scale as required. On the other hand, PK 
was found isotropic and performed like default Laplacian 
scheme OP. The 9-point isotropic BV1, BV2 and BV3 
stencils were found isotropic and stable for simulations 
like default CDS Laplacian scheme. The study of different 
isotropic discrete Laplacian schemes provides a direction 
to use more isotropic Laplacian schemes and to avoid the 
grid related artefacts (anisotropies). 
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