
IJCSNS International Journal of Computer Science and Network Security, VOL.18 No.5, May 2018

109

Manuscript received May 5, 2018
Manuscript revised May 20, 2018

SQL Anomaly Detection and Reconstruction of Queries to
Eliminate the Denial of Service

Muhammad Sohaib Yousaf(1), M. Sheraz Arshad Malik(2), Muhammad Asif(3*),
Farhat Naz(1), Ijaz Ali Shoukat(4)

(1)Department of Computer Science, Virtual University, Pakistan
(2)Department of Information Technology, Government College University Faisalabad, Pakistan

(3)Department of Computer Science, National Textile University, Pakistan.
(4)Riphah College of Computing, Riphah International University, Faisalabad Campus, Pakistan

*Corresponding Author

Abstract
Different access control mechanisms are used to secure the
database against an unauthorized access by either an intruder or
extruder. Currently employed mechanisms are either orthodox or
they failed considerably to secure the database from authorized
and malicious users. There were various techniques, employed
previously to detect SQL anomalies and to impede the query from
execution. Although the solutions were appropriate to some extent,
there was no authentic and stubborn shield available to embark a
solid resolution against the reconstruction of queries to minimize
the occurrence of denial of service DoS. Various reasons are there
for the occurrence of denial of service DoS in the database. The
DoS may happen when an SQL query is detected as anomalous
and intercepted by the database. Things are even embroiled when
some process issues a query and waiting for a reply from the
database; certainly, that process has to wait forever for the
response by the database. This situation cannot be justified for the
organizations which are working with databases in the real time
environments. To overcome the issues of DoS, this work proposes
a technique of SQL injection detection and purifies those queries
from the malicious codes, usually injected by intruders. This work
is formed as the next section represents the introduction, literature
review, methodology and finally the references section.
Key words:
SQL; Anomaly; DoS; Query

1. Introduction

Secrecy and privacy of data are important to the
organizations especially those who have challenging
business competitors. The data is vulnerable to several types
of attacks that may initialize by the attackers living outside
or may come from within the organization. The attempt of
data theft can be resulted either from an ex-filtration by
insiders or intrusion from the outside world. Insiders are
most perilous because they have the valid credentials and
hence considered as legitimate users so, they can easily
penetrate into the system [1]. No network firewall impedes
their malicious activities because the insiders have full
permissions of doing any kind of activity. The access
control lists provide some constraints, but to a limited extent
only because, it does not provide a thorough mechanism for

securing the data from insiders that can damage even more
scarily [2]. Normally the intrusion activity is done by
injecting some malicious SQL code to the actual query,
driven by the application program to traverse, insert, update
or delete the data. There are various mechanisms to detect
the SQL injection attacks. The problem in almost all the
approaches was their incapability to clean sweep some
hidden and unexploited paths, which creates enough room
for the intruders to come in and steal the data. All the novel
methods certainly have some advantages when compared
with other ones, but the dilemma is their inability to cope
with changing environments, i.e. the dynamism which is
now considered as a landmark in the computer industry.
This dynamism has its clear implications in the form of not
only the occurrence of fragility in the sophisticated systems
but also in fortifying such systems. This approach uses the
signature-based anomaly detection mechanism that matches
the patterns of all the SQL queries and application paths that
have a possibility of running in this system during execution.
A database of these patterns is maintained that are used to
compare the SQL queries which are received at the time of
query comparison [3]. As a result, the queries that are
matched to the query patterns, maintained in a database are
considered as benign queries while the rests that do not
match are considered as the malicious and assumed to be
issued by an intruder. This work not only detects the SQL
injections in the queries but also eliminates the augmented
parts from that query which is somehow to be executed by
the database. The elimination of this malicious code is
called as query reconstruction. For reconstruction, a novel
mechanism is introduced to find the victim query usually
maligned by someone. This victim query is extracted by
making a comparison of already formed queries in Backus
normal form. The next step is certainly to sanitize the
victim query by removing the injected parts from the query.
In this regard, a subtraction is made to detract from the
inoculated parts. As far as this research is concerned, the
following section is composed of the related work, the
anomaly detection schemas, then the methodology section,
after both these sections the experiment results and
experiences are discussed that ensures the successfulness of

IJCSNS International Journal of Computer Science and Network Security, VOL.18 No.5, May 2018 110

this study. In the later stages the analysis of the work is
written down and at the last, a brief conclusion and future
dimensions are also proposed that can be adapted to
augment this work for betterment.

2. Literature Review

Anomaly detection is important to the security of databases
even if a proper firewall and spam filters are installed in the
system. It is just like a house where locks are appropriately
installed to all the doors and windows so that no intruder is
permitted to enter the house without permission. So in such
situations, one may think that there is no need to install the
alarms because the house is already protected and secure,
but what about the situations where the administrator of the
house may forget to punch the lock at the backyard gate.
These loopholes are more dangerous than a vigilant security
of an open yard. There is a common concern of Buffer
Overflows, Intrusions, Denial of Service, Sniffer Attacks
and sometimes Application layer attacks. Spam filters and
Firewalls are also in place but intrusions are too complex
for these firewalls to detect and refrain them from attacking
the database. In literature review phase various methods are
discussed by which intrusions can be handled by employing
different techniques and tools so that intrusion can be
detected at the fledgling phase of the attack. In the same
way different techniques regarding the reconstruction of the
queries are also discussed. The material on the
reconstruction is not adequate and available, but a humble
attempt is made while writing the related literature of the
problem domain.

Dalai and Jena (2017) proposed a novel method for
detecting the SQL injection attacks against online
applications. The methodology behind this work was the
extraction of SQL queries which the user inputs. This
method of detecting the SQL attacks was tested on web
applications that had a heavy interaction with the database.
This work employed both manual and the model-based
method which was used to test the effectiveness of this
approach. The proposed approach was especially beneficial
for detecting the web applications. A plus point to this
research was its ability to detect the SQL injection attacks
that belonged to either code injection, command injection
or the file injection.

Bossi et al. (2016) fed light on the insider attacks which
were more detrimental to the organizational data than the
external attacks. Some internal attestation techniques were
to be used to get rid of malicious users, but it might be
proved useless because these attestations only run at the
start of the application and during the runtime, there was no
such mechanism available and also the malicious user could
also modify the application for its own use. The proposed
system tried to minimize the number of false positives and

false negatives and finally, time delays should also be
minimized. A new technology for finding anomalies in the
database accesses was introduced and called the DetAnom.
Forgetting all possible paths this system exercised the
concolic testing mechanism that had two kinds of execution
one was symbolic execution and the other one was concrete.
The queries were built using the signatures and the
constraints that were used to issue the query to the database.
Hence a novel method was introduced to cope with the
challenging anomaly detection scenarios.

George et al. (2016) proposed the concept of reconstruction
of queries that resulted due to SQL injection attacks. The
basic concept behind this approach was to minimize the
denial of the service request and an enhancement in the
performance of the database. The basic components of the
proposed idea were the SQL query pattern retriever, a
template mapper, and a template translator which
reconstruct the queries for the sake of eliminating the denial
of service situation. The basic concept behind this was to
develop the query template for automatically generating the
SQL templates. The proposed system detected the multi-
variant type of queries such as tautology based injected
queries, statement injection, union query, logically
incorrect queries, stored procedures, piggybacked queries
and alternate encoding queries etc.

Shu et al. (2015) focused on resolving the issue of stealthy
attacks that were considered as almost impossible to resolve.
The research that had already done in this regard belonged
to the legal software attestation and short call sequence
verification issues. In this paper, a two-stage algorithm
mechanism was introduced to unearth the diverse normal
correlation patterns. Most of the anomaly detection
mechanisms were divided into two categories, the one was
the short call sequence validation and first-order automation
transition verification and it used the probabilistic and
deterministic verification. The basic approach behind the
large-scale execution window was the development of
constrained agglomerative algorithms that faces the
behavior diversity challenge. A two-stage modeling
technique was adopted. In the first stage, the montage
anomalies were also detected while in the second stage
frequency anomalies were detected.

Xu et al. (2015) proposed the current trends of generating
anomalies that were changing nowadays. One example of
these stealthy attacks was by using return-oriented
programming i.e. normally called as code reuse. The
distinction of such attacks was their not using the SQL
strings with the normal strings to malign the original query
but they were issued by the application programs to the
databases. This paper introduced a novel anomaly detection
technique that probabilistically modeled and learns a
program’s control flows for high-precision behavioral
reasoning and monitoring. Linux platform was used and the

IJCSNS International Journal of Computer Science and Network Security, VOL.18 No.5, May 2018

111

mechanism was named as STILO. STILO stands for
STatically Initialize Markov. New techniques were devised
to detect the anomalous behavior that was the new
probabilistic control flow model. It extracted the control
flow information both statically and dynamically.

Sallam et al. (2017) proposed the DBSAFE architecture to
detect the database anomalies that occurred when some
insider tried to attempt the ex-filtration of data related to
some particular organization. RDBMS was highly
vulnerable to the exfiltration of data by the insiders which
was really challenging. Some conventional methods were
used in this paper to build the profile which guessed the
behavior of the application in a normal routine and if any
inconsistency was detected in the proceedings, the system
immediately ran the predefined policies or alerts. The good
thing about the DBSAFE was it's not imposing its constraint
on the type of DBMS.

3. Anomaly Detection and Reconstruction
Schemas

Most of the researchers proposed an SQL injection
detection mechanism to detect SQL anomalies by either
employing a static or a dynamic analysis mechanism. The
detection mechanism only focused on exploring the
anomalies in the queries without bothering about the
correction and reconstruction. Hence the recent works were
beneficial for the purpose of securing the data against the
intruders, but the system definitely responded in the denial
of services (DoS), because the actual query passed to the
database was blocked by an intrusion detection system. The
purpose of this work is to make the system available for the
users by correcting and reconstructing the malicious queries
before they go to the database for execution. The process
works in two phases, the first phase consists of finding the
anomalies in the SQL queries while the second phase deals
with detecting the anomalies which are to be reconstructed
and enable the system to reduce the denial of service state.

The structure of finding the anomalies in the queries is
performed by developing a profile, i.e. the signature
development and augmenting the required constraints with
all the submitted queries [1]. In the dynamic analysis, the
signatures of the submitted queries and the constraints are
attached during runtime of the application, in that all the
hidden paths are continuously explored on a regular basis
[4]. The mechanism behind this approach is to issue a query
by the application, in the next run, the query is evaluated
against the context of the application, i.e. what type of
queries can be submitted to the database? So if the query is
according to the current context, the query is legitimated
otherwise the query is declared as anomalous [5]. The main
components of the anomaly detection System are the SQL
Receiver, Constraint Extractor, Signature Generator, Profile

Binder and Signature Comparator. A centralized module
exists between the Anomaly detection module (ADM) and
the query reconstruction module (QRM) i.e. the (QDM).
The Query Delegation module (QDM) gets its input from
the ADM and in the case of legitimate query it transfers the
query to the database for execution otherwise it forwards
the query to the QRM where the query is evaluated for
eliminating the augmented parts. The third component of
this system is the query reconstruction module which has
the signature parser and anomaly remover for finding the
victim query and removes that anomalous part of the query.
The anomaly detection module has the central role in this
technique as it receives the query from the application and
forwards it to either the database or the anomaly
reconstruction module. After receiving the query, the ADM
interprets the query by making an effective comparison of
the signatures along with the query by using a matrix. After
an inclusive comparison the query is considered as
legitimate in the case when the stored signatures resemble
with current query otherwise the query is declared as
anomalous if any sort of mismatch is detected [6].

A. Profile Generation Module

The profile generation module fetches an SQL query from
the web application and populating the query with
signatures and constraints. These signatures and constraints
are considered as prerequisites for transferring the query to
the database. The profile generation module contains
further two submodules, i.e. the signature generation
submodule and the constraints generation submodule. Both
these sub-modules are combined to form the aggregate
profile of the database which contains all the expected
queries [7].

B. Signature Generation Sub Module

The signature generation sub-module generates signatures
for the query. It actually shows how the query looks like?
The signatures prove to be useful for detecting the
anomalies in the system. The signature generation is a
technical task which can be formulated by generating the
codes against different queries such as Select, Insert,
Update or Delete [8]. The methodology used to generate the
signatures is the Backus Normal form. The Backus normal
form is used to encode the SQL syntax in a way that
facilitates an easy comparison among different queries. It is
an unambiguous meta-language for describing the syntax of
other languages [9]. Let’s consider a query.

SELECT [DISTINCT] [ATTRIBUTES_LIST]
FROM [TABLES_LIST]
WHERE [QUALIFICATION_LIST];

IJCSNS International Journal of Computer Science and Network Security, VOL.18 No.5, May 2018 112

Now the system is going to consider, how the signature
generation method converts different SQL query
components into the signature codes.

For “SELECT” command, the mnemonic S is used to
represent the query. Similarly, U, I and D for the update,
insert and delete commands respectively. The proper
method for assigning the signature codes is to give some
digit value that may start from some discreet value like ‘301’
or ‘401’ or ‘501’ etc. if the value 300 is given to a table, its
columns should start from 301 and consecutively assigns
values.

SELECT pin_code, user_name, password
FROM tbl_users
WHERE id=243;

The signature for the above SQL string is as under.

(S, {302,303,304}, {300}, {301}, 1)

In the same way, the signatures of other queries like Insert,
Update, and Delete commands can also be designed e.g.

INSERT INTO {Table Name}
{Attributes List}
VALUES {Attributes Values}

The query looks like this.

INSERT INTO tbl_employees
(pin_code, User_name, Password)
VALUES (244533, ‘SohaibYousaf’, ‘abc@123’)

Here in the case of an insert command, only a single relation
is being used. The column names are also displayed
proceeding by the values that are assigned to those columns
respectively. So the signatures for an insert command may
look like.

(I, {COLUMN NAMES}, {TABLE NAME}, ∅, 0)

4. The Concolic Execution

The concolic execution is used to explore the execution
paths of an application. It works by taking the application
as input to the concolic execution engine. The concolic
execution works by traversing all the execution paths of an
application. The traversal of execution paths is done purely
for creating a database of all the possible execution path
flows. The execution engine works by following the branch
conditions by taking the concrete inputs initially and fetches
the other execution paths subsequently. The concolic
execution takes constraints solver to reverse the branch
conditions [10]. These reverse branch conditions enable to
explore more execution paths and this execution is repeated

for a number of times, so this way almost all the execution
paths are traversed and the database is populated with
execution paths. The core of concolic execution is the
profile generation phase in which the constraints are added
to the query and finally the signatures are extracted [11].

5. Profile Creation

Profile creation phase demonstrates how the query records
are built by the profile builder? How are these query records
arranged to form a profile of the application? The
application profile can be considered as a directed tree
which is denoted by P. The relation between the profile P
the tree T can be described as T (VP, EP). The nodes of a
tree can be represented by Vi and Vi ∈ Vp which is a query
record of query qi and it can be represented as <sig(qi),ci>.
Here in this equation sig (qi) represent the signature of qi.
Ci in the equation represents the constraints used to execute
the query in the database. The edge eij ∈ EP which denotes
the actual query qj which is executed just after the query qi
and the node vj behaves as a child of node vi. The concolic
execution traverses the branch conditions in a well-defined
instrumented environment.

Example: Concolic Execution Path Finder

1- Private void PriceManagement (int decrease_amount,
item_id, increase_amount){
2-Statement s;
3-int sales_count = 0;
4-String query_1 = "SELECT SUM (sales_quantity) as
Total_Sales FROM tbl_items WHERE item_no=item_id;
5-result_Set1 = s.executeNonQuery (query_1);
6-result_Set1.last();
7-if (Total_Sales < =10000) {
8-String query_2 =SELECT Item_Size as Product_Size
FROM tbl_items WHERE item_no=item_id AND
sales_price>=500;
9-result_Set2= s.executeNonQuery (query_2);
10-if(result_Set2.getRow()>=100){
11-String query_3 = "UPDATE tbl_items SET item_price
= item_price - decrease_amount WHERE
item_no=item_id AND Item_Size= Product_Size ";
12-result_Set3= s.executeNonQuery(query_3);
13- }
14- else {
15-//Do some other operations
16-}
17-else {
18-String query_4 = "UPDATE tbl_items SET item_price
= item_price + increase_amount WHERE
item_no=item_id ";
19-result_Set4= s.executeNonQuery(query_4);
20-} Return 0;
21-}

IJCSNS International Journal of Computer Science and Network Security, VOL.18 No.5, May 2018

113

The theory behind this concolic execution is the input that
it takes in the form of an intermediate language such as a
Java bytecode. The Java bytecode is used to find the branch
conditions and also to execute it in an instrumented
environment. The program shown above describes the price
control system of the commodities to increase the sale.

Table 1: Constraints In Profile Creation
Constraint Type Condition

C_1 Database X1<=10000.0
C_2 Database X2 >= 100.0
C_3 Database X2 <100.0
C_4 Database X1 > 10000.0

Table 2: Query Signatures
Query Type Signature

Query_1 Select {S,{201},{200},{202}, 1}
Query_2 Select {S, {203},{200},{202}{204} ,2}
Query_3 Update {U,{200},{204},{202},{205},2}
Query_4 Update {U,{ 200},{204}, {202}, 1}

The instrumented environment means to execute the branch
conditions in an order without getting the dynamic requests
by blocking these requests and passing the bytecode
automatically generated values by the instrumented
environment. To implement this, concolic execution passes
the values in a way so that all the branch conditions should
be executed one by one and no path should be left as un-
traversed [12]. In the above example of the program, the
price control mechanism uses a “0” value that is passed to
the “price management” function as a parameter to prove
the first condition as a true.

In the first condition i.e. 0<=10000 proves true and the first
query is executed that means there is less sale than expected
figure and the price of the costly commodities needs to be
lessened. The constraints imposed by these statements are
shown in the constraints table as c_1; similarly, the query is
also depicted in the queries table. The methodology behind
executing this particular bytecode is that the query does not
reach the real database but they are blocked by the
environment instrumentation, rather than executing it by the
database [13]. Hence all the signatures, constraints,
signature profiles are shown in their respective tables as
shown below. On the other hand, the complete profiles are
shown in the Query Profile figure below.

Table 3: Query Profile Signature
Query Profile Signature
PQ_1 <sig(query_1),c_1>
PQ_2 <sig(query_2),c_2>
PQ_3 <sig(query_3),c_3>
PQ_4 <sig(query_4),c_4>

Fig. 1 Query Profiles

6. Anomalies Detection Module

In the anomaly detection phase, it is decided which queries
are considered as legitimate and which are not? There are
various mechanisms to detect the anomalous queries [14].
One of the two methods is discussed in this work, i.e.
comparison can be made by either of the two methods. One
is named as linear algorithm while the other one is the
Hirschberg algorithm, however, the linear algorithm is
followed in this work.

6.1 Anomaly Detection Algorithm

In the first phase, linear algorithm is discussed for detecting
the SQL anomalies. The algorithm is as under:

1:Start
2:Input: Branch Conditions in Application Profile
3: Nr = root node
4: while program executes
5: Qi = issued query
6: Ci = input constraints
7: The signature generator generates required signature
sig(q)
8: Flag = false
9: for each child Ni of Nr
10: if Ci satisfied
11: signature comparator compares profile signatures sig(q)
to query signatures sig(queryi)
12: if matches
13: set Legal Query
14: Nr = Ni
15: else
16: set Anomalous Query
17: end if
18: flag = true
19: break
20: end if
21: end for
22: if flag == false and Nr is an incomplete node then
23: set WARNING
24: end if
25: end while
26: End

IJCSNS International Journal of Computer Science and Network Security, VOL.18 No.5, May 2018 114

The detection of the anomalous queries is performed by
passing the queries to the query delegation module which
forwards the query to the anomaly detection module rather
than directly to the database.

7. Query Reconstruction Module

The query reconstruction module (QRM) takes the
anomalous query as input and makes an effective
comparison of the number of columns and the number of
predicates of the stored query in the query profile. As it is
already known, the numbers of predicates are stored in the
profiles of the query so it will become very easy to
distinguish the input query from the already stored query in
the query profiles. Here one thing to mention is the system’s
completeness because the system proves effective only in
the case when the profiles are developed in a complete and
comprehensive manner otherwise the system will only
manage to produce the warning messages that are no more
constructive and reliable because sometimes during the
profile creation phase the depth bound search is reached
before the profile is completely generated. The comparison
of the input query with the already stored query is quite
simple as

String query_1 = "SELECT SUM (sales_quantity) as
Total_Sales FROM tbl_items WHERE item_no=item_id;
2-result_Set1 = s.executeNonQuery(query_1);
3-result_Set1.last();
4-if (Total_Sales < =10000) {

Table 4: Constraints
Constraint Type Condition

C_1 Database X1<=10000.0

Table 5: Database Constraints
Constraint Type Condition

C_2 Database X2 >= 100.0
C_3 Database X2 < 100.0
C_4 Database X1 > 10000.0

Table 6: Query Signatures
Query Type Signature

Query_1 Select
{S,{201},{200},{20

2}, 1}

Query_2 Select
{S,

{203},{200},{202}
{204} ,2}

Query_3 Update {U,{200},{204},{2
02},{205},2}

Query_4 Update
{U,{ 200},{204},

{202}, 1}

Table 7: Queries Comparison
Sr.
No 0 1 D1 2 D2 3 D3 4 D4

1 Query
Type {S} {S} 00 {S} 00 {U} Ø {U} Ø

2 Columns {201} {201} 00 {203} 01 {200} Ø {200} Ø
3 Tables {200} {200} 00 {200} 00 {204} Ø {204} Ø
4 Predicates {202},

{400} {202} 01 {202},{
204} 01 {202},{

205} Ø {202} Ø

5 Predicates
Count {2} {1} 01 {2} 00 {2} Ø {1} Ø

6

The
difference

with
predicates

count

 02 02 Ø Ø

7
Difference

without
predicates

count
 01 02 Ø Ø

8
Net

Difference
(6+7)

 03 04 Ø Ø

The query in the constraints table belongs to the select
statement and the constraints are checked in the constraints
table to ensure the correctness of the query. Two simple
options are available i.e. either the Total_Sales is lesser than
10000.0 or it is greater than 10000.0

The queries in the database constraints table prove true and
result_Set1 returns records that are less than 10000.0. The
constraint C_1 is satisfied and the query is forwarded to the
Signature generator module. Let’s say the constraints in the
query signatures table results in something illegal from the
constraints defined, then the query is illegitimate here but it
will rarely happen because the constraints usually display a
complete range of values that surely come otherwise. In
such situations, the query is forwarded to the signature
generator module. In this case, a queries table is used
instead.

The query in this example matches to the Query_1 signature.
Because one knows that only single column is used in this
query which is (sales_quantity) as Total_Sales which is
denoted as {201} in the signature i.e. {S, {201}, {200},
{202}, 1}

The table name is denoted by {202} in the signatures that
denote the ‘tbl_items’ in the items table. And the number of
predicates is also defined unambiguously in the signatures,
i.e. a ‘1’. In the case of this query

item_no = item_id;

The item number is compared to the number stored in the
database. In this way, the query is legitimated in an
effective manner. In another case where the query is not
considered as legitimate and an illegal query is issued by the
application, the query format may correspond to the
following.

IJCSNS International Journal of Computer Science and Network Security, VOL.18 No.5, May 2018

115

String query_1 = "SELECT SUM (sales_quantity) as
Total_Sales FROM tbl_items WHERE item_no=item_id
and ‘1’=’1’;

7. Extraction of Victim Query

In the query reconstruction phase the thing that is clearly
understood is the problem in the received query usually
somewhere in the syntax of the query, so in the
reconstruction, the most important thing which is to be
identified is the identification of which query is actually
augmented with a malicious code. There is a need for a
comprehensive mechanism to detect the affected query.

For this purpose, a table is drawn by the Anomaly
Reconstruction module.

The mechanism behind the reconstruction of the queries is
depicted in a tabular form as the first field of the table shows
the serial No. The characteristics of the queries are shown
in the second field of the table. The third column ‘0’
represents the anomalous query which is issued by an
intruder. The query properties and predicates are separated
in different tuples of the table. The next fields are ‘1’, ‘2’,
‘3’ and ‘4’ represents the query signatures which are already
stored in the database. The subsequent columns contain the
differences between the anomalous query and the signatures
respectively. Here in the query described above belongs to
the “Select” type so a comparison can only be made among
the signatures of the same selected type while the update
signatures are discarded and shown by a ‘Ø’ in the table,
hence no difference can be calculated of these types. After
that, the difference of the anomalous queries is calculated
with all the stored signatures. The final step at this point is
to calculate the net difference which is analyzed further to
reach a final decision. Now it can be seen that the net
difference is minimum at the query_1 so query_1 is
assumed to be the query which is maligned by the outsider.
Now the procedure got simpler in a sense as it becomes very
easy to differentiate the augmented parts from the actual
query.

A. Victim Query Detection Algorithm

The anomaly reconstruction algorithm is devised to alter the
structure of an already catch query so that the query is
reconstructed and forwarded to the delegation module for
submission to the database:

1: Start
2: Input: Query to be Reconstructed
3: Qp = Array of Profile Query
4: Qa = Array to store the Query
5: Qi = Array to Store input Query
6: Dw = Difference with Predicate Count

7: Do = Difference without Predicates Count
8: Di = Array to store the Difference
9: Dn = Net Difference
10: While program executes
00: While true
11: if Qi equals Qp
12: Difference is stored in Di
13: End if
14: End While
End While
15: for each index Dn of Dw
16: Difference without Predicates count is stored in Do
17: Difference with Predicates count is stored in Dw
18: Dn = Do + Dw
19: End for
20: Min = Dn
21: For each index of Dn
22: if Min is smaller than Dn
23: Min=Dn
24: End If
25: End for
26: Return
27: End

B. Query Reconstruction

The query reconstruction involves, establishing an
application that took the malicious query and eliminates the
augmented parts. In this work, it is performed by using a
matrix in which several columns are used to produce the
original query [15].

The first and second column in the table: VIII represents the
serial number and the properties of the query respectively,
while the rest of the columns include the original query
having column number ‘0’, the signature column having
column ‘1’, and the difference column having the heading
‘D1’. The ‘Difference’ column shows the calculated results
by subtracting the predicates in the anomalous query from
the signatures column and the last column contains the
reconstructed query i.e. the actual query. Hence the column
with the ‘Actual Query’ heading contains the desired query.

Table 8: Query Reconstruction
Sr.
No 0 1 D1 Differ

ence
Actual
Query

1 Query
Type {S} {S} 00 00 {S}

2 Colum
ns {201} {201} 00 00 {201}

3 Tables {200} {200} 00 00 {200}
4 Predica

tes
{202},
{400} {202} 01 {400} {202}

5
Predica

tes
Count

{2} {1} 01 {01} {01}

So the actual query formed is the {S, {201}, {200}, {202},
01};

IJCSNS International Journal of Computer Science and Network Security, VOL.18 No.5, May 2018 116

The actual query is reconstructed by the reconstruction
module by setting the constraints into actual column names
e.g.

String query_3 = "UPDATE tbl_items SET item_price =
item_price - decrease_amount WHERE item_no=item_id
AND Item_Size= Product_Size ";

C. Query Reconstruction Algorithm

As when the victim query is found, the next task is to
reconstruct the actual query so that the query should be
forwarded to the database for the execution of the query to
minimize the denial of service state. The algorithm for the
reconstruction of the actual query is written below.

1: Start
2: Input: Victim Query
3: Qp = Array of Profile Query
4: Qs = Array to store the Query
5: Qv = Array to Store victim Query
6: Di = Array to store the Difference
7: Da = Array to store the actual query
9: While true
10: if Qv equals Qp
11: Difference is stored in Di
12: End if
14: End While
15: for each index of Di
16: if value of Di equals 0 then
17: Da = Di
18: Else
19: Da=Di – Dv
20: End if
21: End for
22: Return
23: End

9. Query Reconstruction Implementation

The next phase describes how the reconstruction of queries
is performed in this system.

A. Finding the Victim Query

This is the first step in the reconstruction of the queries.
Here a matrix is made to extract the differences among the
queries. The matrix forms as the ‘0’ field of the matrix
contain the anomalous query while the next ‘1’ field of the
matrix contains the other query signatures that have already
been stored in the database so consequently every field next
to the stored signature contains the difference field of every
query. The difference count of the queries is also
maintained in the net difference field of the query. The

query with the minimum net difference is declared as a
maligned query.

B. Extracting the Anomalous Parts

The original query extraction phase utilizes the same
mechanism as in the case of finding the victim query by
utilizing the matrix for extracting the differences between
the anomalous query and the stored signatures in the
database. The work follows as the field ‘0’ contains the
augmented query while the field ‘1’ contains the stored
query signatures so a difference is calculated at the field ‘D1’
and the augmented parts in the field “Difference”.
Subsequently, the actual query is positioned as the last field
of the matrix which is in-fact the same field as the field ‘1’.

C. Rebuilding the Original Query

The original query is reconstructed by developing a matrix
as in the case of finding the victim query. The difference
between the anomalous query and the query signature forms
the actual query. The whole work is done to eliminate the
denial of service state which might come when an anomaly
is detected in the query. After the reconstruction, the query
is forwarded to the database for execution and as a result, a
response is sent to the computer from where that query was
originated. But in a case when the query has not constructed
the control backtracks to the anomaly detection module
where the system just generated a warning message that the
query is anomalous and the system is unable to reconstruct
it.

10. Experimental Evaluation

The workflows as the complete system are to be developed
where both the modules i.e. the anomaly detection module
and anomaly reconstruction module are transformed into
two different servers or a single server with two modules.
These servers need to be installed in such a manner that one
server or module receives the query from the client
computer and it just checks the legitimacy of the query. In
the case when the query is declared as a legal query it should
forwards the query directly to the database where the query
should be executed without any further delay but if the
query is declared as anomalous, the query is diverted
towards the anomaly reconstruction server or module for
subtracting the anomalous parts from the query and when
the query is declared as purified, the query is transferred to
the database to eliminate the denial of service.

11. Threats to Validity

The created application has a thorough mechanism of
finding database anomalies but certain points are there

IJCSNS International Journal of Computer Science and Network Security, VOL.18 No.5, May 2018

117

which should be considered while assuring the validity of
the application e.g. owing to the volume of the application,
instrumentation of all the instances of a big application may
not always be possible. In some situations, time constraints
may come intact because this application may install on a
large number of computers and update all those computers
may not be an easy task to do. There are some technical
issues as well, such as some environments completely deny
the exposing of corresponding API’s for any type of
intermediate code or languages. Sometimes the
performance may also be affected because a large number
of computers are connected to the application which may
create performance overhead. The time constraints in this
framework are quite a complicated issue because the profile
generation is a time-consuming task because it has to
traverse all the execution paths of the system. The
importance of false positives and false negatives also proves
to be an obligation for the system because it only creates
overhead for an already crowded system. Sometimes it may
happen that a wrong query will be selected as a victim query,
but it does not happen very often because the query, in this
case, carries the complete predicates, this is why the chance
of selecting a wrong query as the victim query has a
minimum probability. This can be a case where the query is
dissected and several of its parts are eliminated from the
actual query.

12. Conclusion and Future Work

The system is developed with the intent to abstain the
attacker from executing the queries which are anomalous.
The reconstruction module performs correction tasks by
eliminating the malicious parts of the query. The
mechanism provides a dynamic analysis that creates
constraints and signatures and stores that information in the
profiles [16]. The proposed work also makes some
arrangements for reconstructing the SQL queries that
contain the SQL injections. A brief comparison of the
queries is made to dissect those parts from the actual query
that are injected by some malicious user for the intent of
making a loss to the individual or company [17]. The
responsibility of the system is to minimize the response time
by eliminating the denial of service situation.

For managing online applications, there is a need to
systematize the development and management process
because online applications are more vulnerable to security
threats. In dynamism, the next goal of this work will be to
enhance the signature generation by providing information
about the constants, variables in the where clause of the
query. Similarly, better models and algorithms can be
devised to reconstruct the queries. There is a need to
develop a process by which the queries are not re-tested that
has already been tested. Similarly, there is a need to lessen
the time depletion while doing the detection and correction

work. A comprehensive plan can be developed which will
automate the reconstruction process with better utilization
of the parameters.

References
[1] Bossi, L., Bertino, E., & Hussain, S. R. (2017). A System for

Profiling and Monitoring Database Access Patterns by
Application Programs for Anomaly Detection. IEEE
Transactions on Software Engineering, 43(5), 415-431.

[2] Bertino, E., & Ghinita, G. (2011). Towards mechanisms for
detection and prevention of data exfiltration by insiders:
keynote talk paper. In Procou8eedings of the 6th ACM
Symposium on Information, Computer and Communications
Security (pp. 10-19). ACM.10-19.ISBN: 978-1-4503-0564-8.

[3] Valeur, F., Mutz, D., & Vigna, G. (2005). A learning-based
approach to the detection of SQL attacks. In International
Conference on Detection of Intrusions and Malware, and
Vulnerability Assessment (pp. 123-140). Springer, Berlin,
Heidelberg.

[4] Tajpour, A., Ibrahim, S., & Masrom, M. (2011). SQL
injection detection and prevention techniques. International
Journal of Advancements in Computing Technology, 3(7),
82-91.

[5] Garcia-Font, V., Garrigues, C., & Rifà-Pous, H. (2016). A
comparative study of anomaly detection techniques for smart
city wireless sensor networks. International Journal of
Sensors, 16(6), 868.

[6] Patcha, A., & Park, J. M. (2007). An overview of anomaly
detection techniques: Existing solutions and latest
technological trends. Computer networks, 51(12), 3448-3470.

[7] Lee, I., Jeong, S., Yeo, S., & Moon, J. (2012). A novel
method for SQL injection attack detection based on removing
SQL query attribute values. Mathematical and Computer
Modelling, 55(1-2), 58-68.

[8] Som, S., Sinha, S., & Kataria, R. (2016). Study on sql
injection attacks: Mode detection and prevention.
International Journal of Engineering Applied Sciences and
Technology, Indexed in Google Scholar, ISI etc., Impact
Factor: 1.494, 1(8), 23-29.

[9] Lee, K. D. (2008). Programming languages: An active
learning approach. International journal of Springer Science
and Business Media.

[10] Sen, K. (2007). Concolic testing. In Proceedings of the
twenty-second IEEE/ACM international conference on
Automated software engineering (pp. 571-572). ACM.

[11] Majumdar, R., & Sen, K. (2007). Hybrid concolic testing. In
Proceedings of the 29th international conference on Software
Engineering (pp. 416-426). IEEE Computer Society.

[12] Kapus, T., & Cadar, C. (2017). Automatic testing of symbolic
execution engines via program generation and differential
testing. In Proceedings of the 32nd IEEE/ACM International
Conference on Automated Software Engineering (pp. 590-
600). IEEE Press.

[13] Jensen, C. S., Prasad, M. R., & Møller, A. (2013). Automated
testing with targeted event sequence generation. In
Proceedings of the 2013 International Symposium on
Software Testing and Analysis (pp. 67-77). ACM.

[14] Ciampa, A., Visaggio, C. A., & Di Penta, M. (2010, May). A
heuristic-based approach for detecting SQL-injection
vulnerabilities in Web applications. In Proceedings of the

IJCSNS International Journal of Computer Science and Network Security, VOL.18 No.5, May 2018 118

2010 ICSE Workshop on Software Engineering for Secure
Systems (pp. 43-49). ACM.

[15] Sadotra, P. (2015). Hashing Technique-SQL Injection Attack
Detection & Prevention. International Journal of Innovative
Research in Computer and Communication Engineering, 3(5),
4356-4365.

[16] Alwan, Z. S., & Younis, M. F. (2017). Detection and
Prevention of SQL Injection Attack: A Survey. International
Journal of Computer Science and Mobile Computing. 6(8).
5-17.

[17] Kindy, D. A., & Pathan, A. S. K. (2011). A survey on SQL
injection: Vulnerabilities, attacks, and prevention techniques.
In Consumer Electronics (ISCE), 2011 IEEE 15th
International Symposium on (pp. 468-471). IEEE.

[18] Dalai, A. K., & Jena, S. K. (2017). Neutralizing SQL
Injection Attack Using Server Side Code Modification in
Web Applications. Security and Communication Networks,
2017.

[19] George, T. K., & Jacob, P. (2016). A Proposed Architecture
for Query Anomaly Detection and Prevention against SQL
Injection Attacks. International Journal of Computer
Applications, 137(7), 11-14.

[20] Shu, X., Yao, D., & Ramakrishnan, N. (2015). Unearthing
stealthy program attacks buried in extremely long execution
paths. In Proceedings of the 22nd ACM SIGSAC Conference
on Computer and Communications Security (pp. 401-413).
ACM.

[21] Xu, K., Yao, D. D., Ryder, B. G., & Tian, K. (2015).
Probabilistic program modeling for high-precision anomaly
classification. In Computer Security Foundations
Symposium (CSF), 2015 IEEE 28th (pp. 497-511). IEEE.

[22] Sallam, A., Bertino, E., Hussain, S. R., Landers, D., Lefler,
R. M., & Steiner, D. (2017). DBSAFE—an anomaly
detection system to protect databases from exfiltration
attempts. IEEE Systems Journal, 11(2), 483-493.

