
IJCSNS International Journal of Computer Science and Network Security, VOL.18 No.5, May 2018

151

Manuscript received May 5, 2018
Manuscript revised May 20, 2018

 Hybrid Approach for Improving Efficiency of Apriori Algorithm
on Frequent Itemset

Arwa Altameem and Mourad Ykhlef

Dept of Information Systems
Computer and Information Sciences

King Saud University, Riyadh, Saudi Arabia

Summary
Apriori algorithm is one of the most popular algorithms that is
used to extract frequent itemsets from large database. It requires
multiple scans over the database resulting in a large number of
disk reads and placing a huge load on the system. This study
proposed an improved version of Apriori Algorithm to overcome
the deficiency of the basic one. The improved version is more
efficient which takes less time and hence reflects in high
efficiency.
Key words:
Improved Apriori, Data Mining, Frequent Itemset, Hybrid Apriori.

1. Introduction

The concept of data mining is considered critical in
obtaining specified information from a given large database.
Data mining is sometimes referred to as knowledge
discovery in the database. Implicit knowledge within the
databases can afford important patterns like association
rules that are helpful in decision support making, medical
diagnosis and many other applications. The process of
retrieving information from the database involves special
procedures that analyze the abstract patterns of the data
before making the final decisions (Jeon Y. et al., 2017). It
is important to note that pattern evaluation module works
with data mining modules to generate the interested
patterns. The patterns are then compared with the limits
defined by the minimum support to decide the number of
entries relevant for extraction (Hadzic, Tan & Dillon, 2011).
Association mining is one of the most important
functionalities in data mining. Association rule mining is a
task of finding interesting association or correlation
relationships among large databases. It is considered
effective in detecting unknown relationships and thereby
produce results (Shi, 2011). There are two distinct phases
that are used to mark the association rules, detection of the
frequent item sets and generation of the association rules.
Apriori is one of the most famous and basic methods in
mining association rules and finding the frequent item sets.
It will be introduced in the next section.

2. Basic Apriori Agorithm

The history of Apriori algorithm can be traced back to 1994
when it was first proposed by Agarwal and Srikant. The
algorithm was first proposed to operate on databases that
constituted customer transactions. Later it was developed to
assess the association patterns in the items contained in the
database (Agrawal et al., 1993). The algorithm makes use
of a bottom-up approach which investigates different
regular subsets that appear in the database. Every item in
the database is evaluated at a time. At times, different
groups of items can be investigated against data. The
algorithm starts by first identifying the individual items that
are frequently sought in the database. It then proceeds and
extends to large and larger item sets along the support set
by the user. The process of scanning through the database
is completed when there are no further successful
associations and extensions that are realized from the
database. The algorithms work best on items that appear
frequently and sufficiently in the database (Tank, 2012).
The items identified are then used to determine the
association rules which are used to establish trends in the
database. The pseudo code of basic Apriori algorithm is
illustrated in Figure. 1.

Fig. 1 Basic Apriori Algorithm

IJCSNS International Journal of Computer Science and Network Security, VOL.18 No.5, May 2018 152

2.1 Example

The Apriori algorithm of searching frequent itemsets is
explained with the database of Table 1.

Table 1: Database D
T Items
10 ACD
20 BCE
30 ABCE
40 BE

The algorithm assumes the minimum support threshold to
be “2”. First, the frequent 1-itemsets L1 is found. In the
algorithm each Lk generated must scan database one time,
Ck is generated from Lk-1. L2 is generated from L1 and so
on, until no more frequent k-itemsets can be found and then
algorithm ceases. An example is illustrated in Figure. 2.

3. Problem Description

Even though effective algorithms like Apriori are reported
for Association mining, they still inherit the issue of
scanning the whole database many times and most of time
has been consumed in accessing the database .The Apriori
algorithm makes many searches in database to find frequent
itemsets. Moreover, basic Apriori Algorithm generates a
large set of candidate sets if database is large. Hence, it still
suffers from the cost of producing a huge number of
candidate sets and scanning the database continually to
produce a large set of candidate itemsets. In another words,
it is required to produce 2100 candidate itemsets to obtain
frequent itemsets of size 100 (Figure. 3). Another drawback
is the tedious work of support counting for each itemset.
These limitations and other related issues are the motives
of this research. A number of conducted surveys in many
researches indicates that more consideration is required to
address the issues related to Apriori (Yuan, X., 2017;
Suneetha and Krishnamoorti, 2011). There is a need to
diminish the number of database scan, and also to reduce
memory space since Apriori results in a large number of
disk reads (Yu, S., & Zhou, Y., 2016).

Fig. 2 Finding set of candidate and frequent itemsets with Apriori.

4. Approaches of Improving Apriori

Various improved algorithms have been proposed by many
researchers to overcome the weaknesses of Apriori
algorithm :

• Hash-based: This approach decreases the size of
candidate set through filtering any k-item set whose
corresponding hashing count below the threshold. It
shows improvement in execution time and utilization
of space.
• Bhardwaj et. Al. (2015) used a data structure that
directly represents a hash table. This algorithm
proposes overcoming some of the weaknesses of the
Apriori algorithm by reducing the number of
candidate k-itemsets .
• Transaction reduction: A transaction that does not
contain any frequent k-item set is useless in
subsequent scans. Mohammed Al‐ Maolegi and
Bassam Arkok (2014) indicated the limitation of the
original Apriori algorithm of wasting time for
scanning the whole database searching on the frequent
item‐sets, and presented an improvement on Apriori
by reducing that wasted time depending on scanning
only some transactions.

IJCSNS International Journal of Computer Science and Network Security, VOL.18 No.5, May 2018 153

Fig. 3 The huge number of possible itemsets (given d items, there is 2d
possible itemsets)

• Partitioning: A partitioning can be used to
distribute the entire dataset into smaller sub sets. The
dataset is divided into n non-overlapping
partitions .Each partition is mined separately. Any
item set that is potentially frequent in DB must be
frequent in at least one of the partitions of DB. As
Albshiri (2013) made use of a vertical data
partitioning or a horizontal data segmentation
technique to distribute the input data amongst a
number of agents.
• Sampling: Sampling is mining a random sampled
small subset from the entire dataset. Since there is
no guarantee that we can find all the frequent
itemsets, a lower support threshold should be used
(Aggarwal and Sindhu, 2015).

However each one of these approaches has it’s own
drawbacks like high computational requirement, high
memory utilization, data deviation and less accuracy.
Hence, to overcome the negatives and to combine the
positives, a hybrid approach is being introduced in the next
section.

5. Improved Apriori Approach

This study proposes an improved Apriori algorithm with
hybrid approach. This algorithm shrinks original database
by integrating user’s domain knowledge, eliminating any
nonrelated items and then mining k-frequent itemsets using
the new database. Therefore, it is necessary to delete the
useless transactions in the database in order to reduce the
scale of database and reduce itemsets generated from Ck by
the join procedure.

Furthermore, the proposed algorithm reduces time
consuming for candidates itemset generation. This
accomplished by:
 Generating Ck without scanning the whole DB Ck

will be generated fast.
 Add attribute called (Tindex) to store positions of items.
 Common transactions= Support count.
The pseudo code of improved algorithm is illustrated in
Figure. 4. The approach reduces number of transactions
when focusing on preferable items and thus, reduces
number of comparisons. Further, there is no need to scan
database every time, the approach demands only one scan
to generate first candidate set. It also facilitates support
counting of itemset as it is not necessitate matching every
candidate against every transaction to count support.

Fig. 4 Improved Apriori Algorithm

5.1 Stepwise Description of the Pseudocode

1- Scan the database to get C1, and store for each itemset c
∈C1 , the transaction numbers in Tx.
2- Make sure the proper minsupport to get frequent itemset
L1.
3- Generate Ck (k=2) though joining two frequent itemsets
that belong to Lk-1. The mth item in the first Lk-1 should
join with the m+1th item of the second Lk-1. To count
minsupport for each c, get the number of common tx∈Tx
between i1^i2 | i1*i2=c (parents of c) .

null

AB AC AD AE BC BD BE CD CE DE

A B C D E

ABC ABD ABE ACD ACE ADE BCD BCE BDE CDE

ABCD ABCE ABDE ACDE BCDE

ABCDE

IJCSNS International Journal of Computer Science and Network Security, VOL.18 No.5, May 2018 154

4- Generate Lk by adding items of Ck to Lk if the support
of the item is greater than minsupport.
5- If Lk+1= ∅, the algorithm terminates. Otherwise, k=k+1,
continue to the second step in circle until Lk+1=∅ .

5.2 Example

 The performance of the new algorithm is compared with
that of Apriori algorithm with the help of an example
(Figure. 5). The example used a new database D’ (Table.
2) after eliminating useless items according to user
preferences (user is interested in B). The minimum support
threshold is the same as previous which is “2”.

Table 2: Database D’
T Items
20 BCE
30 ABCE
40 BE

As shown below, figure. 5 illustrates step-wise working of
the proposed approach.

Fig. 5 Finding set of candidate and frequent itemsets with improved
Apriori

6. Theoritical Comparision of the
Performance

The theoretical estimation of the performance is presented
in this section. The total run time for basic Apriori
algorithm is defined as in equation (1) (Suneetha and
Krishnamoorti, 2011) :

n
Σ (ts * mk + tc + l k+1 * k+1 / 2 * ts * nk /A) (1)
i=1
where, ts be the time cost of a single scan of the database,
tc be the time cost of generating Ck+1 from Lk , mk is set
to be the amount of item sets in Ck, the variable lk+1 is set

to be the amount of item sets in Ck+1 and the variable nk is
set to be the amount of item sets in Lk. A denotes the
amount of the records in the database and n denotes the
dimension of the data.
The total estimated run time for improved version of
Apriori algorithm is indicated in equation (2):

 K+1
ts * m’k + Σ (tc + 2*tx* l k+1) (2)
 i=2

7. Experiment

For the purpose of performance evaluation, both improved
Apriori algorithm and basic Apriori have been run on the
same platform under same conditions --windows RAM etc.
The programming language used for the implementation
algorithms is java (jdk 1.5.0).
The experimental runs have been conducted with two
different sized datasets. It has been found that the proposed
algorithm always takes less time than basic Apriori and the
interesting information can be mined in a shorter time.
The time comparison of both the algorithms
is shown in Figure. 6

Fig. 6 Time Consumption Comparison Between Apriori and Modified
Apriori with Different Groups of Transactions

7. Conclusion

Apriori algorithm is a popular algorithm that is used for
scanning frequent item sets in the data mining. In this paper,
we discussed the problems exist in Apriori algorithm and

IJCSNS International Journal of Computer Science and Network Security, VOL.18 No.5, May 2018 155

we proposed an improved algorithm. Our proposal helps to
decrease the times of scanning database, optimize the
process that generates candidate itemsets and facilitate
support counting. Theoretical and practical experiments
results show that the proposed algorithm outperforms the
Apriori algorithm in computational time.

Acknowledgements

This work was supported by Deanship of Scientific
Research and Research Center of College of Computer and
Information Sciences, King Saud University. The authors
are grateful for this support.

References
[1] Aggarwal S. , Sindhu R. (2015). An Approach of

Improvisation in Efficiency of Apriori Algorithm.
[2] Al-Maolegi B. & Arkok B. (2014). An Improved Apriori

Algorithm for Association Rules. International Journal on
Natural Language Computing (IJNLC), 3.1.

[3] Bender, M., Sethia, S., & Skiena, S. (2004). Data structures
for maintaining set partitions. Random Struct.
Alg., http://dx.doi.org/10.1002/rsa.20025.

[4] Berry, M., & Linoff, G. (2004). Data mining techniques.
Indianapolis: Wiley.

[5] Bhardwaj, S., Chhikara, P., Vinayak, S., Pai, N., & Meena,
K. Improved Apriori Algorithm Association Rules.
International Journal of Technical Research and Applications.
ISSN: 2320-8163.

[6] Bondugula, P., & Taghva, K. (2006). Implementation and
analysis of apriori algorithm for data mining.

[7] Chattamvelli, R. (2011). Data mining algorithms. Oxford:
Alpha Science International.

[8] Cox, E. (2005). Fuzzy modeling and genetic algorithms for
data mining and exploration. Amsterdam: Elsevier.

[9] Fang, S., & Venkatesh, S. (1999). Learning finite binary
sequences from half-space data. Random Struct.

[10] Gala, D., & Taghva, K. (2006). Analyzing association rules
produced by applying the apriori algorithm to structured data.

[11] Ghosh, A., Dehuri, S., & Ghosh, S. (2008). Multi-objective
evolutionary algorithms for knowledge discovery from
databases. Berlin: Springer.

[12] Guo, Y., & Grossman, R. (2002). High-performance data
mining. New York: Kluwer Academic.

[13] Gupta, G. (2006). Introduction to data mining. New Delhi:
Prentice-Hall of India.

[14] Hadzic, F., Tan, H., & Dillon, T. (2011). Mining of data with
complex structures. Berlin: Springer-Verlag.

[15] Jeon Y., Cho C., Seo J., Kwon K., Park H., Chung IJ. (2017)
Rule-Based Topic Trend Analysis by Using Data Mining
Techniques. Lecture Notes in Electrical Engineering, vol 448.
Springer, Singapore.

[16] Larose, D. (2005). Discovering knowledge in data. Hoboken,
N.J.: Wiley-Interscience.

[17] McCue, C. (2007). Data mining and predictive analysis.
Amsterdam: Butterworth-Heinemann.

[18] Olson, D., & Delen, D. (2008). Advanced data mining
techniques. Berlin: Springer.

[19] Pappa, G., & Freitas, A. (2010). Automating the design of
data mining algorithms. Heidelberg: Springer.

[20] Rakesh Agrawal, Tomasz Imielinski, Arun Swami,(1993).
Mining Association Rules between Sets of Items in Large
Databases, Proceedings of the 1993 ACM SIGMOD
Conference Washington DC, USA.

[21] Shi, Z. (2011). Advanced artificial intelligence. Singapore:
World Scientific.

[22] Suneetha K. R. and Krishnamoorti R. (2011). Web Log
Mining using Improved Version of Apriori
Algorithm. International Journal of Computer
Applications 29(6):23-27.

[23] Tank, D. (2012). Real-Time Business Intelligence &
Frequent Pattern Mining Algorithm. Saarbrücken: LAP
LAMBERT Academic Publishing.

[24] Yuan, X. (2017). An improved Apriori algorithm for mining
association rules. In AIP Conference Proceedings (Vol. 1820,
No. 1, p. 080005). AIP Publishing.

[25] Yu, S., & Zhou, Y. (2016). A Prefixed-Itemset-Based
Improvement For Apriori Algorithm. arXiv preprint
arXiv:1601.01746.

[26] Zhong, Z. (2013). Proceedings of the International
Conference on Information Engineering and Applications
(IEA) 2012. London: Springer.

