
IJCSNS International Journal of Computer Science and Network Security, VOL.18 No.6, June 2018

49

Manuscript received June 5, 2018
Manuscript revised June 20, 2018

C-RLE: Energy efficient compression approach for Wireless
Sensor Networks

Marwen Roukhami1*, Younes Lahbib2, Abdelkader Mami1

1UR-LAPER, Faculty of Sciences of Tunis, University of Tunis El-Manar, 2092 Tunis, Tunisia
2LR-EµE, ENICarthage, University of Carthage, 2035 Tunis, Tunisia

Summary
In wireless sensor network (WSN), data transmission and
acquisition are the two main activities. However, the actual
transmission / reception of the collected data is often the most
energy consuming task, which affects the lifetime of WSN. One
promising approach to reduce the total power consumption of the
sensor node is data compression before transmission. In this
article, we propose and evaluate a new compression approach,
called C-RLE. It is based on the principle of the K-RLE
algorithm. Proposed C-RLE solves the problem of trade-off
between energy consumption and compression rate efficiency in
K-RLE. To prove the effectiveness of our proposed solution, we
compare its performance with both RLE and K-RLE algorithms
using real-world datasets. We checked this effectiveness also
using software and hardware implementations. The C-RLE
proposed algorithm is firstly coded in C and implemented on
Cortex-M3 based CPU. Then, a hardware architecture is
descripted in VHDL and integrated on Spartan 3A FPGA
platform. Experimentation shows that our proposed C-RLE
approach keeps the same K-RKE's performance in term of
compression ratio while the energy consumed can decrease up to
27.03% et 16.67% compared to the K-RLE and RLE algorithms,
respectively.
Key words:
Wireless sensor networks (WSNs), low power data compression,
energy efficiency, hardware design FPGA, Cortex-M3 STM32L1.

1. Introduction

A wireless sensor network (WSN) is made up of a set of
sensor nodes containing sensing and processing devices
with a wireless communication and a small battery. The
functionality of these WSN nodes is constrained by its
power consumption and its limited computational
complexity that the hardware can support. However, these
nodes are mainly powered by non-rechargeable embedded
batteries, making energy consumption one of the crucial
characteristics in WSN, which consequently causes special
challenges with energy efficiency in data processing and
communication [1].
Various studies, such as [2] [3] demonstrated that the
energy consumed to transfer or receive one bit of
information is equal to the energy consumed to execute
three thousands of instructions in the processing unit.

Therefore, one of the main goals of the WSN designers is
reducing the radio transmission, using data aggregation
and/or compression techniques to reduce the amount of
packets sending. These techniques have the potential to
limit the power supply nodes in order to increase the life
time of WSN.
On the other hand, data compression in WSN is highly
discussed as a promising solution to energy optimization.
In fact, the complexity of the same data compression can
cause an increase in the processing energy. However,
traditional compression algorithms, such as LZW, JPEG
and WinZip, are not suitable for use in WSN due to their
processing complexity and required hardware resources [4]
[5], which increase energy consumption. As a result, it is
better to use the ad-hoc compression algorithms in WSN.
This paper studies the performance of one of the
compression ad-hoc algorithm which is K-RLE [9] and
shows that that the trade-off between its energy
consumption and compression efficiency is related to both
implementation method and the definition of the precision
parameter K. By defining a new precision parameter C, a
new optimized K-RLE implementation is proposed, called
C-RLE. The latter achieves an important gain in both
compression ratio and energy consumption. Experimental
results on an ultra-low power microcontroller show that C-
RLE has a similar compression ratio as the K-RLE. It has
in contrary, efficient energy consumption compared to the
K-RLE and the traditional RLE algorithm.
In addition, a hardware design for the new C-RLE
approach is proposed, which can be used in sensor nodes
using reconfigurable hardware devices as proposed in [6]
[7] [8]. The performance of the hardware implementation
are evaluated on FPGA Spartan 3A according to a real-
world datasets. A comparison against RLE algorithm is
processed on the same platform with same condition.
Results show that with our proposed C-RLE we can reduce
the energy consumption more than 16.87% compared to
the basic RLE algorithm.
The remainder of this paper is organized into five sections.
Section 2 discusses the related works. Section 3 gives a
brief theoretical description of both RLE and K-RLE
algorithms and details the new proposed implementation of
K-RLE. Section 4 presents our software solution with

IJCSNS International Journal of Computer Science and Network Security, VOL.18 No.6, June 2018 50

the measurement results obtained. In section 5, our
hardware implementation of C-RLE and its performance in
terms of execution time and energy consumption are
presented. Finally, concluding remarks are drawn in
section 6.

2. Related works

In literature, two main compression ad-hoc algorithms
have been proposed especially for WSN [10] [11] [12], S-
LZW and K-RLE. They are derived from traditional
algorithms and used as a reference to evaluate the
performance of a new compression algorithm in WSN [13].
S-LZW [14], for Sensor-LZW, is an adaptation version of
the popular data compression algorithm ZLW [15]. It is a
lightweight algorithm to use with the constrained resources
of sensor nodes. K-RLE [9], is proposed to improve the
effectiveness of the RLE algorithm to be useful in WSN. It
is inspired from the RLE principle, namely by adding a
precision parameter called K. This latter represents the
difference between two input data streams and takes the
same unit as the Pascal of pressure, the degrees of
temperature, etc. In this article, our study focuses on the K-
RLE algorithm.
In [9], the K-RLE implementations show a trade-off
between efficiency of compression and energy
consumption. When k equals to 2, 2-RLE affords the best
compression ratio compared to both S-LZW and RLE [9].
Compression ratio exceeds to 40% than RLE, but energy,
in contrary, is more consumed by 2-RLE than S-LZW and
RLE [9]. In this regard, two other K-RLE implementations
have been done in [16] and [17]. In Ref. [16], R.S. Pisal
presented a software implementation of K-RLE on ARM7
microcontroller; and in Ref. [17], K. Yamin et al presented
a hardware implementation on FPGA using the VHDL
language. Both works proved again that K-RLE is widely
better than RLE in terms of compression ratio, without
improvements in terms of energy consumption.
In this paper, we propose a new optimized implementation
of K-RLE called C-RLE, which overcomes the
disadvantages of both original RLE and K-RLE algorithms.
It is able to achieve the effectiveness in both energy
consumption and compression ratio.

3. Theoretical background of K-RLE and C-
RLE approach

In this section, a brief introduction of the RLE lossless
compression algorithm is given. The K-RLE is then
introduced showing the required details for the proposed
C-RLE. Finally, the new proposed C-RLE solution is
discussed.

3.1 RLE algorithm

Run Length Encoding (RLE) is a simplest lossless
compression technique which takes advantage of repetitive
values in a sequence of data. Generally, it is used to
decrease the physical size of longer data sequences, which
consists of repeating characters. In practice, this
compression algorithm can be used to monitor every
repetitive and redundant data, such as pressure, humidity,
temperature, etc.
The main idea behind RLE is described in [18] as follows:
"If a data item d occurs n consecutive times in the input
stream, we replace the n occurrences with the single pair
nd". A specific character is added before every single pair
nd in the data compression to discover the new data pack
compressed during the process of decompression.
Moreover, the RLE is a lossless data compression, where
the original data are restored without loss of information.
However, the simplicity of RLE is an asset compared to
limitations related to the resources of the sensor nodes,
such as the storage capacity and the lack of computing
power. The effectiveness of RLE is narrowly related to the
repetition number of the same data in the input data. Capo-
Chichi et al. [9] overcome this limitation and proposed a
new algorithm named K-RLE inspired from RLE to
improve the effectiveness of RLE technique compression.

3.2 Principle of K-RLE algorithm

The main idea behind K-RLE algorithm is to improve the
performance of RLE in terms of compression ratio. Based
on a new parameter called K, the principle of the K-RLE
algorithm is summarized as follows [9]: "If a data item d,
d+K or d-K occurs n consecutive times in the input stream,
we replace the n occurrences with the single pair nd".

IJCSNS International Journal of Computer Science and Network Security, VOL.18 No.6, June 2018 51

Start

Read next Value
newST

EOT

C=C+1

C=1

No

newTemp-k=<Temp=<newTemp+K

R=<4

R = 1
ST = newST

Temp = newTemp

Yes Write ST
 R Time

No

Write compressed
format

R=<255 Yes R = R+1

Yes ST = newST
Temp = newTemp

R=<4 Yes Write ST
 R Time

No

Write
compressed

format
Stop

Choice of K, Count C=0,
 Reapt R=1

Recalculate Analogic Value of
Temperature newTemp = f (newST)

Step1:
Reading

new data

Step2:
Processing of

New data

Step3:
Comparison

Using K
 parameter

Step4:
Writing

Compressed
Format

Yes

No

Yes

Fig. 1 Flowchart of K-RLE compression algorithm.

Fig. 1, shows the flowchart of K-RLE algorithm.
Compared with that of RLE, the orange columns indicate
the instructions added with the presence of new precision
parameter K. This new precision parameter K is the
allowed margin between two successive values, which
allows to consider the elements d, d + K or d-K as identical.
This technique can be useful when small variations in the
input data is not significant. Finally, it is important to note
that K has the same unit as the supervised data.
The performance of this algorithm is compared to two data
compression algorithms (RLE and S-LZW) in terms of
compression ratio and energy consumption. This study [9]
is made on a low power microcontroller which is MSP430
using a real temperature dataset. The obtained
experimental results prove that for K equal to 2, 2-RLE
offers a better compression ratio that can achieve 40%
greater than the RLE. On the other hand, its energy
consumption is higher than RLE and S-LZW, hence the
trade-off between compression efficiency and energy
consumption [9].
In the next section, we propose a new method called C-
RLE to implement the K-RLE algorithm where we show
that the problem related to energy over- consumption lies
in the definition of the precision parameter K.

3.3 Proposed C-RLE approach

In this section, we present the C-RLE approach, which is
our main contribution to preserve the compression ratio as
in K-RLE but with reduced the energy consumption.
As shown in Fig. 2, the K-RLE execution stages constitute
a sequence of four main steps: ADC conversion for reading
a new value, Data processing, Comparison phase and Data
compression. The first step consists of reading the data
derived from sensors after the analog-to-digital conversion
process. Secondly, because the parameter K has the same
unit as the oversaw data, it is necessary to retrieve each
analog value for the comparison stage. This implies going
through the phase of data processing to recover the
converted values into analog one again. Once the analog
value is processed, it will be used in the comparison phase
with the precision parameter K. At the end, data
compression is carried out.
Comparing the execution of RLE to that of K-RLE, it is
not mandatory to go through the processing phase to
recalculate the analog value. In fact the RLE does not
introduce the term of precision parameter to execute
additional instructions or to spend additional time to
recover each supervised analog value as in the case of K-
RLE. This explains the over-consumption of energy for K-
RLE despite its best result concerning compression ratio.

IJCSNS International Journal of Computer Science and Network Security, VOL.18 No.6, June 2018 52

Fig. 2 The main execution stages of the compression algorithm K-RLE.

Proposed solution is founded on a new precision parameter
C, which is proportional to the K-parameter. This new C-
parameter will be used directly with digital values derived
from the conversion phase without going through the data
processing phase. Consequently, it will not be necessary to
recalculate the analog values and execute additional

instructions. This new precision parameter C, hence the
label C-RLE, will not take any unit because it will be
considered as the allowed margin between two successive
digital values.

Fig. 3 The main execution stages of the proposed compression algorithm C-RLE.

According to Fig. 2 and Fig. 3, the conversion period
TADC and compression period TCOMP are the same
during C-RLE or K-RLE execution. The data comparison
times TC and TK are approximately the same. However,
an extra processing period (TPROC) is performed for
reconverting digital data to real analog data in the case of
K-RLE, which is not necessary in our new C-RLE method.
Theoretically, our method will decrease the number of
instructions and the execution time needed for this
compression task.
The power consumption of the nodes is estimated
according to P = IDD * VCC, where IDD is the average of
the current MCU in a given period T and VCC is the
polarization voltage. The energy consumption is calculated
as follows E = P*T = IDD * VCC * T. As the MCU
performs the same processing during the coordinated
periods, the MCU will consume the same current (IDD).
Consequently, an extra energy consumption is estimated in
the case of the K-RLE implementation as presented in
equations (1) and (2):

)***(*V CC COMPCOMPCCADCADCRLEC TITITIE ++=−

 (1)

PROCPROCCC

CC

T*I*V
)***(*V

+
++=− COMPCOMPKKADCADCRLEK TITITIE

(2)

In order to achieve the main objective of this study, two
separate physical implementations are performed. The first
one, a software implementation of the RLE, K-RLE and C-
RLE algorithms on an ultra-low power microcontroller, the
STM32L1. We demonstrate the effectiveness and benefits
of our C-RLE approach compared to previous proposals
K-RLE and RLE. On the other hand, a hardware
implementations of C-RLE and RLE algorithms on a
Programmable Device (FPGA Spartan 3A). We present the
hardware design of C-RLE and its performances compared
with respect to the RLE in terms of execution time and
energy consumption.
The performances of previous compression algorithms for
both implementations are evaluated using a real-world
benchmark of temperature datasets of 2196 bytes. This
temperature data sets are collected from the Weather
Underground website [24] during the period from the 1st
of January 2016 up to the 31st of August 2016 in Tunis
(Tunisia), Paris (France) and Toronto (Canada).

IJCSNS International Journal of Computer Science and Network Security, VOL.18 No.6, June 2018 53

Fig. 4 The representation of the temperature archives of Tunis.

We choose different locations with different variances
between the successive input data to study the behavior of
the previous algorithms in different real conditions. During
the compression task, these digital data will be used from
the memory RAM of the STM32L1 or the FPGA.

4. Software implementation

The software implementation is intended to validate the
performance and the efficiency of our proposed C-RLE. In
this section we present the developmental tools and the
experimental steps used in this implementation to measure
the execution time, the number of cycles and the energy
consumption for each algorithm RLE, K-RLE and C-RLE.
Finally, we present the experimental results of the software
implementation.

4.1 Implementation of C-RLE and measurement
Framework

The standard STM32L1 discovery board was used in this
practice. It is based on an Ultra-low power microcontroller
STM32L152R including a high-performance
Microprocessor ARM cortex-M3. The choice of this card
is made for two reasons. First, this board includes an ultra-
low power microcontroller which shows its effectiveness in
several studies and very usefulness as a solution in wireless
sensor nodes [19] [20] [21] [22]. Secondly, an integrated
circuit in this card allows to measure the real current
consumption of the microcontroller in various modes like
run mode, sleep mode, etc… It is useful in our studies to
find the power consumption during the execution of the
algorithms and also in separate processing periods.
The software tool used in this section is the Integrated
Development Environment (IDE) Keil vision ®, which can
be interfaced with the ST-link debugger. In the debugging
and simulation phases, this software has the advantage of
supervising the real execution of the algorithms, instruction
by instruction into the microcontroller, as well as

estimating the execution time and the number of cycles for
each program in real time.

Fig. 5. GUI logic analyzer of keil development tools.

After measuring the execution time and the number of
cycles required to execute each compression algorithm, we
proceed to calculate its consumed energy through its
consumed current, which is measured by the integrated
circuit (IDD) in the STM32L1 board.
It should be noted that all the measurements of the current
are read via a dedicate jumper called JP1 in the STM32L1
board by connecting it to a high-resolution ammeter.
The performance evaluation of our C-RLE method in this
software implementation is described in the following
section.

4.2 Software implementation results

Firstly, we check the compression ratio obtained with our
compression approach. As mentioned above, to study the
behavior of the previous algorithms in different real
conditions, we use three different locations with variable
deviations between the successive input data. Table.1
presents the data size of different datasets used for our
evaluation as well as the size of the compressed data and
the compression ratio obtained.

IJCSNS International Journal of Computer Science and Network Security, VOL.18 No.6, June 2018 54

Table 1: Compression results by applying various compression implementations
 Algorithm
 Data RLE K-RLE C-RLE

1K-RLE 2K-RLE 1C-RLE 2C-RLE

Tunis
Original Size (Byte) 732 732 732 732 732
Compressed Size (Byte) 717 558 348 558 348
Compressed Ratio 2.05% 23.77% 52.46% 23.77% 52.46%

Paris
Original Size (Byte) 732 732 732 732 732
Compressed Size (Byte) 726 633 498 633 498
Compressed Ratio 0.82% 13.52% 31.97% 13.52% 31.97%

Toronto
Original Size (Byte) 732 732 732 732 732
Compressed Size (Byte) 732 678 639 678 639
Compressed Ratio 0% 7.38% 12.7% 7.38% 12.7%

As shown in Table.1, the RLE compression algorithm
supplies an overly low compression ratio in the three
different data sets. For example, processing the data
collected from Toronto, RLE provides a compression ratio
of 0%. We can clearly see that RLE algorithm is highly
dependent on the repetitive nature of data stream, which
underlines the importance of using the precision parameter
in K-RLE and C-RLE.
On the other hand, K-RLE and C-RLE achieve an
improved compression ratio using different values of the
precision parameter compared to the RLE. With a
precision parameter equal to 2, the compression ratio in
both K-RLE and C-RLE cases are respectively 52.46% and
31.97%. But, it can be noted that the high variance
between the successive values influences the compression
ratio. For example, for the data collected from Toronto, the
compression ratio is equal to 12.7% even with a precision
parameter equal to 2.
Finally, it can be seen that K-RLE and C-RLE provide the
same compression ratio since theoretically they have the
same principle, but with a difference in the definition of
the precision parameter.
In a second step, we analyze the number of cycles and the
execution time required for each algorithm during the
compression task with an MCU frequency equal to 1 MHz.
Also, we present the effect of the new precision parameter.
We recall that with the new approach introduced to
implement the k-RLE algorithm, there is no need to
recalculate the analog value for each value deal.
Fig. 6 shows that 1K-RLE and 2K-RLE use more cycles
compared to the other algorithms. There is a difference in
the average of about 20.59% between 2K-RLE and RLE,
which affirms the results obtained in [9]. However, we can
see that the best results are obtained by our approach.
From Fig. 6, it is clear that the C-RLE, with two precision
parameters 1 and 2, is better than K-RLE and RLE
algorithms.

Fig. 6 Number of cycles required in various compression
implementations.

Finally, the number of cycles required by K-RLE to
perform the compression task of the data used for this
study is reduced in the average of 28.06% when the new C-
RLE approach is used. Also, the average gain for C-RLE
can reach 15.17% compared to RLE.
These previous results have a direct effect on the execution
time which is proportional to the frequency of the CPU
system as well as the number of cycles needed for each
task.

IJCSNS International Journal of Computer Science and Network Security, VOL.18 No.6, June 2018 55

Fig. 7 Execution time required in various compression implementations.

Fig. 7 illustrates the execution time of the previous
algorithms with different precision parameters, which
enhances the previous evaluation of the number of cycles.
Finally, we present the most important evaluation criteria,
the energy consumption, which is dependent on the
execution time and the power consumed by the MCU.

Fig. 8 Energy consumed for different compression implementations.

Fig. 8 shows the energy consumption for each algorithm
according to different precision parameters. We can see
that the energy needed to compress the data collected from
Paris by RLE is 0.024 mj and most of the energy
consumed by 2K-RLE is about 0.0294 mj. But, 2C-REL
uses about 0.0209 mj, which is lower than the others.
It is clear, that the K-RLE algorithm is the most energy-
intensive for all different cases. On the other hand, RLE
and C-RLE approximately provide the same results for
C=1, but for C= 2, C-RLE consumes less energy than RLE.
In summary, Fig. 8 shows that our approach can save more
than 27.03% of the required energy compared to the K-
RLE algorithm. Also, compared to the original algorithm
RLE, energy consumption is reduced to about 9.82% when
C=2 and to 2.52% for C=1.

5. Hardware implementation

The goal of the hardware implementation is to present the
hardware design of the C-RLE and evaluate its efficiency
compared to the basic RLE algorithm in a reconfigurable
device, which can be used in the future in sensor nodes
either based on reconfigurable resources or as a co-
processor. Yet, if we want to implement the K-RLE
algorithm in sensor nodes, its hardware structure required
to implement the transfer equations of each sensor used,
which is a very complex and costly task.
This section presents the implementation details of the
hardware design of the C-RLE compression technique, the
developmental tools and the experiment steps used to
measure the execution time and the energy consumption.
Finally, we present the experimental results of this
hardware implementation.

5.1 Architecture of C-RLE compression system

The details of our proposed Hardware architecture of C-
RLE are presented in Fig. 9 which includes three basic
modules.
The first module (read and compare a new value) is in
charge of the comparison between the new value that is
measured by the sensor and the previous one which was
stored on a parallel 12-bit register. The result of this
comparison “Eg” is sent to the second module, FSM
controller, which has the role of generating the necessary
signals either to increment the repeating counter "rep" as
well as reading the next new value or allowing the
processing of the compression phase. For the third module
(compression formatting), by using the repeat value "rep",
the decoder selects the compression form either the
specific character "&" followed by the repeat value and the
data repeated or the data repeated directly if this repeat
value "rep" does not exceed 4.

IJCSNS International Journal of Computer Science and Network Security, VOL.18 No.6, June 2018 56

In this proposed design, we take into consideration that the
FPGA supports fully-parallel execution. We have
implemented the two modes of comparison and
compression to run at the same time just after the first data
compression operation, which obviously results in a gain in

the execution time. Regarding the implementation
architecture of RLE, it is totally identical to that of C-RLE
except the small comparator block, where the RLE does
not use any precision parameter.

Fig. 9 The detailed architecture of the C-RLE compression.

These proposed hardware designs are synthesized and
simulated on the Spartan 3A FPGA using the Xilinx 14.2
tools. While its embedded simulator ISim is used to verify
the correct operation of our implementation and the
process of “behavioral simulation” is used to determine the
execution time for each algorithm.
On the other hand, measuring the power consumption for
the internal core of FPGA can be a challenging procedure,
especially if the board in which the experiments are carried
out is not specifically designed for such experiments.
Furthermore, most of the boards of FPGA do not provide
the possibility of measuring the power consumption of
FPGA itself.
In this framework, the reference of FPGA Spartan 3A
starter kit has been created to conduct experiments and
measurements in order to determine the actual power
consumption. As described by Chapman in [23], the power
dissipation of any hardware design for the FPGA Spartan
3A is presented in equation (3) [23] as follows:

)I*(3.3v)I*(1.2v (mw)P

)I*(V)I*(V (mw)P

ccauxccintdissip

ccauxccauxccintccintdissip

+=

+=
 (3)

Where the Iccint is the current provided for the internal
FPGA core with a voltage Vccint equal to 1.2V and the
Iccaux is the current provided for the I/O pins with a
voltage Vccaux equal to 3.3V. All the measurements of
currents Iccint and Iccaux are read by two available pins
available on the board using an ammeter.

5.2 Hardware implementation results

The two hardware proposed design of the C-RLE and RLE
algorithms are implemented in the FPGA Spartan 3A. The
results of the resource occupation are presented in Table 2.

Table 2: Resources occupation for the Hardware implementations of C-
RLE and RLE

Resources C-RLE RLE
Number of Slices (5888) 140 (2%) 118 (2%)

Number of input LUTs (11776) 257 (2%) 214 (2%)
Number of IOBs (372) 26 (6%) 26 (6%)

Table.2 shows that a large amount of FPGA resources are
still available for the implementation of other tasks in
parallel.
In order to prove the efficiency of our C-RLE proposed
approach with the hardware implementation, we measure

IJCSNS International Journal of Computer Science and Network Security, VOL.18 No.6, June 2018 57

the processing time and the energy consumption reached
during the execution of C-RLE and RLE on the
reconfigurable device FPGA Spartan 3A.
These measurements are performed just during the
compression of the data collected from Tunis with
different frequencies between 1 MHz and 50 MHz.

Fig. 10 Execution time required by the hardware design proposed.

With regard to the Fig. 10, we can see that the C-RLE with
different precision parameters needed fewer execution time
than RLE for all different frequencies. There is a
difference of about 11.38 % in the average time between
C-RLE and RLE. Although the two architectures of C-RLE
and RLE are completely identical except the compression
block, these results are mainly related to the use of
precision parameter by the C-RLE algorithm, which also
affirms the software results.
In this final part, we measure the energy consumption of
our C-RLE approach and RLE algorithm for its hardware
implementations. To do so, we measure the power
consumption of the FPGA during the processing of
compression tasks, which is in the order of 37.66 mW.
Fig. 11 illustrates the comparison of energy consumption
between the hardware implementations of the C-RLE and
RLE algorithms.

Fig. 11 Energy consumption of the hardware design proposed.

It is remarkable that RLE consumes more energy than C-
RLE, for example RLE uses 0.036 mj to compress data
with a frequency equal to 1 MHz while 2C-RLE uses about
0.03 mj. Due to this hardware design, the C-RLE can
reduce the energy consumption more than 16.67%
compared to the basic RLE algorithm.
In summary, results of software and hardware
implementations obviously show that with our approach
we can keep the performance of the K-RLE in terms of the
compression ratio, which is higher than RLE, without
having any overconsumption of energy.

6. Conclusion

A simple new approach named C-RLE is proposed based
on the principle of the K-RLE algorithm, which shows a
trade-off between energy consumption and compression
efficiency. This solution focuses on the definition of the
precision parameter K and exploits its principle to get an
efficient data compression in WSN. Firstly, the
performance of our proposed approach is compared to
RLE and K-RLE algorithms on an ultra-low power
microcontroller which is STM32L1using real temperature
data sets from three different places. This software
implementation shows that our proposed C-RLE
implementation keeps the performance of the K-RKE in
terms of the compression ratio and decreases the consumed
energy to 27.03% and 9.82% compared to the K-RLE and
RLE algorithms, respectively.
Next, a hardware design of our approach is presented and
the performance of this hardware implementation is
evaluated on FPGA Spartan 3A with real-world
experiments and compared to the basic RLE algorithm.
Based on the hardware implementation results, we have
demonstrated also that C-RLE needs less execution time
and energy consumption than the RLE algorithm.

References
[1] M.L. Kaddachi, A. Soudani, V. Lecuire, K. Torki, L.

Makkaoui, JM. Moureaux: ‘Low power hardware-based
image compression solution for wireless camera sensor
networks’, Computer Standards & Interfaces, Vol.34 (1), pp.
14-23, January 2012.

[2] N. Kimura, S. Latifi: ‘A survey on data compression in
wireless sensor networks’, In: Proceedings of the
International Conference on Information Technology:
Coding and Computing (ITCC’05), pp.8-13, 2005.

[3] G.P. Pottie, W.J. Kaiser: ‘wireless integrated sensor
networks’, Magazine Communications of the ACM, Vol.43
(5), pp.51-58, May 2000.

[4] D. Faundez, V. Lecuire:’ Error Resilient Image
Communication with Chaotic Pixel Inter-leaving for
Wireless Camera Sensors’, In: Proceedings of the 2008
Workshop on Real-World Wireless Sensor Networks
(REALWMSN’08), 2008.

http://www.sciencedirect.com/science/journal/09205489/34/1

IJCSNS International Journal of Computer Science and Network Security, VOL.18 No.6, June 2018 58

[5] K.C. Barr, K. Asanović: ‘Energy-aware lossless data
compression’, ACM Transactions on Computer Systems,
Vol.24 (3), pp.250-291, Aug. 2006.

[6] Y. E. Krasteva, J. Portilla, J. M. E. de la Torre, and T.
Riesgo, “Remote HW-SW Reconfigurable Wireless Sensor
Nodes,” Proc. of 34th Annual Conference of IEEE
Industrial Electronics (IECON2008), pp. 2483- 2488, Nov.
2008.

[7] H. Hinkelmann, P. Zipf, and M. Glesner, “Design Concepts
for a Dynamically Reconfigurable Wireless Sensor Node,”
Proc. of the 1st NASA/ESA Conference on Adaptive
Hardware and Systems (AHS’06), pp. 436-441, Jun 2006.

[8] A. M. Obeid, F. Karray, M. W. Jmal, M. Abid, S. Manzoor
Qasim and M. S. BenSaleh, “Towards realisation of wireless
sensor network-based water pipeline monitoring systems: a
comprehensive review of techniques and platforms”, IET
Science, Measurement & Technology, Vol.10 (5), August
2016.

[9] E.P. Capo-Chichi, H. Guyennet, J.-M. Friedt: ‘K-RLE: a
new data compression algorithm for wireless sensor
network’, In: Proceedings of the 3rd International
Conference on Sensor Technologies and Applications
(SENSORCOMM '09), pp. 502–507, June 2009.

[10] Jonathan Gana Kolo, S. Anandan Shanmugam, DavidWee
Gin Lim, Li-Minn Ang, and Kah Phooi Seng: ‘An Adaptive
Lossless Data Compression Scheme for Wireless Sensor
Networks’, Journal of Sensors Volume 2012.

[11] CH. Eugene, F. Jean-Michel, G. Herve: ‘Using Data
Compression for Delay Constrained Applications in
Wireless Sensor Networks’, 4th International Conference on
Sensor Technologies and Applications, pp.101-107, 2010.

[12] Kolo Jonathan Gana, Li-Minn Ang, Kah Phooi Seng, S.R.S.
Prabaharan: ‘Performance comparison of data compression
algorithms for environmental monitoring wireless sensor
networks’, International Journal of Computer Applications
in Technology, Vol.46 (1), pp.65-75, January 2013.

[13] E.A. Maher, GH. Alia, T. Samar, F. Ghaddar: ‘Resource-
Efficient Floating-Point Data Compression Using MAS in
WSN’, International Journal of Ad hoc, sensor &
Ubiquitous Computing (IJASUC), Vol.4 (5), October 2013.

[14] Ch.M. Sadler, M. Martonosi: ‘Data compression algorithms
for energy-constrained devices in delay tolerant networks’,
In: Proceedings of the ACM Conference on Embedded Net-
worked Sensor Systems (SenSys) 2006.

[15] T.A. Welch: ‘A technique for high-performance data
compression’, Computer, Vol.17 (6), pp.8–19, 1984.

[16] R.S. Pisal: ‘Implementation of Data Compression Algorithm
for Wireless Sensor Network using K-RLE’, International
Journal of Advanced Research in Electronics and
Communication Engineering (IJARECE), Vol.3 (11),
November 2014.

[17] K. Yamini, K.S.N. Raju, K. Miranji: ‘Low Power Data
Compression Algorithm For Wireless Sensor Networks
Using VHDL’, International Journal Of Engineering And
Computer Science. Vol. 3 (11), November 2014.

[18] D. Salomon, G. Motta: ‘Handbook of Data Compression’,
5th Edition, Springer-Verlag London Limited, pp.31-33,
2010.

[19] H. Kacem, M. Glaoui, A. Gharsallah: ‘Power Saving
Solution For WSN Cases Studies based on Interrupt handler

versus DMA’, In: 12th International Multi-Conference on
Systems, Signals & Devices, 2015.

[20] H. Kacem, M. Glaoui, A. Gharsallah: “Enhancing DPM
Techniques in Outdoor Industrial WSN Applications”,
International Journal of Distributed Sensor Networks,
Vol.12 (7), July 2016.

[21] I. Ioanna Tsekoura, G. Rebel, P. Glöseköttery, M.
Berekovic: ‘An evaluation of energy efficient
microcontrollers’ In: 9th International Symposium on
Reconfigurable and Communication-Centric Systems-on-
Chip (ReCoSoC), 2014.

[22] S. Nabiha, KH. Zaatouri, W. Fajraoui, T. Ezzeddine: ‘New
Design of Low Power Consumption Mote in Wireless
Sensor Network’, International Journal of Computer
Science and Electronics Engineering (IJCSEE), Vol.3 (1),
2015.

[23] K. Chapman, "Practical power testing", Reference Design
for Spartan-3A FPGA Starter Kit, Feb 2008, Xilinx Ltd.

[24] The Weather Underground website,
https://www.wunderground.com/

Marwen ROUKHAMI received the master's degree in
Electronic, Electrotechnical and Automatic (EEA) from the
Faculty of Sciences of Tunis in 2013. Between 2013 and 2016,
he occupies a teaching assistant position at the National
Engineering School of Carthage (Tunisia). Currently, he is a PhD
student in Electronics at the Faculty of Sciences of Tunis in the
laboratory of the energy efficiency and renewable energies
(LAPER), Tunis. His research interests include embedded system
design and wireless sensor network.

Younes LAHBIB holds his Engineer diploma in electrical and
electronic engineering from ENIM-Tunisia (Ecole Nationale
d'Ingénieurs de Monastir-2000), his Master's (Electronic Devices
and Materials) and his Ph.D (Physics-Microelectronics) degrees
from the Faculty of Sciences-Monastir (2002-2006 respectively).
He worked at ST Microelectronics from 2001 to 2006 as R&D
engineer preparing his PHD. His research interests included HLS,
SystemC SoC modeling and assertions-based verification of
hardware systems. Since 2007, he is Assistant Professor in
microelectronics and embedded systems at the University of
Carthage (Department of electrical engineering and computer
sciences, Ecole Nationale d'Ingénieurs de Carthage). He is also
member of the EµE laboratory working on embedded
cryptographic systems, DSP and FPGA accelerations methods.

Abdelkader MAMI received his Dissertation H.D.R (Enabling
to Direct Research) from the University of Lille, France, in 2003.
He is currently a Professor at the Faculty of Sciences of Tunis
(FST) and a member of scientific advisor in the Faculty of
Science of Tunis (Tunisia). He is president of the thesis
committee of electronics at the Faculty of Sciences of Tunis and
the Director of the laboratory of the energy efficiency and
renewable energies (LAPER), Tunis.

http://www.inderscienceonline.com/author/Jonathan+Gana%2C+Kolo
http://www.inderscienceonline.com/author/Ang%2C+Li-Minn
http://www.inderscienceonline.com/author/Seng%2C+Kah+Phooi
http://www.inderscienceonline.com/author/Prabaharan%2C+SRS
http://www.inderscienceonline.com/author/Prabaharan%2C+SRS
https://www.researchgate.net/publication/258255634_Resource-Efficient_Floating-Point_Data_Compression_Using_MAS_in_WSN
https://www.researchgate.net/publication/258255634_Resource-Efficient_Floating-Point_Data_Compression_Using_MAS_in_WSN
https://www.researchgate.net/publication/258255634_Resource-Efficient_Floating-Point_Data_Compression_Using_MAS_in_WSN
https://www.wunderground.com/

