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Summary 
In wireless sensor network (WSN), data transmission and 
acquisition are the two main activities. However, the actual 
transmission / reception of the collected data is often the most 
energy consuming task, which affects the lifetime of WSN. One 
promising approach to reduce the total power consumption of the 
sensor node is data compression before transmission. In this 
article, we propose and evaluate a new compression approach, 
called C-RLE. It is based on the principle of the K-RLE 
algorithm. Proposed C-RLE solves the problem of trade-off 
between energy consumption and compression rate efficiency in 
K-RLE. To prove the effectiveness of our proposed solution, we 
compare its performance with both RLE and K-RLE algorithms 
using real-world datasets. We checked this effectiveness also 
using software and hardware implementations. The C-RLE 
proposed algorithm is firstly coded in C and implemented on 
Cortex-M3 based CPU. Then, a hardware architecture is 
descripted in VHDL and integrated on Spartan 3A FPGA 
platform. Experimentation shows that our proposed C-RLE 
approach keeps the same K-RKE's performance in term of 
compression ratio while the energy consumed can decrease up to 
27.03% et 16.67% compared to the K-RLE and RLE algorithms, 
respectively. 
Key words: 
Wireless sensor networks (WSNs), low power data compression, 
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1. Introduction 

A wireless sensor network (WSN) is made up of a set of 
sensor nodes containing sensing and processing devices 
with a wireless communication and a small battery. The 
functionality of these WSN nodes is constrained by its 
power consumption and its limited computational 
complexity that the hardware can support. However, these 
nodes are mainly powered by non-rechargeable embedded 
batteries, making energy consumption one of the crucial 
characteristics in WSN, which consequently causes special 
challenges with energy efficiency in data processing and 
communication [1]. 
Various studies, such as [2] [3] demonstrated that the 
energy consumed to transfer or receive one bit of 
information is equal to the energy consumed to execute 
three thousands of instructions in the processing unit. 

Therefore, one of the main goals of the WSN designers is 
reducing the radio transmission, using data aggregation 
and/or compression techniques to reduce the amount of 
packets sending. These techniques have the potential to 
limit the power supply nodes in order to increase the life 
time of WSN. 
On the other hand, data compression in WSN is highly 
discussed as a promising solution to energy optimization. 
In fact, the complexity of the same data compression can 
cause an increase in the processing energy. However, 
traditional compression algorithms, such as LZW, JPEG 
and WinZip, are not suitable for use in WSN due to their 
processing complexity and required hardware resources [4] 
[5], which increase energy consumption. As a result, it is 
better to use the ad-hoc compression algorithms in WSN. 
This paper studies the performance of one of the 
compression ad-hoc algorithm which is K-RLE [9] and 
shows that that the trade-off between its energy 
consumption and compression efficiency is related to both 
implementation method and the definition of the precision 
parameter K. By defining a new precision parameter C, a 
new optimized K-RLE implementation is proposed, called 
C-RLE. The latter achieves an important gain in both 
compression ratio and energy consumption. Experimental 
results on an ultra-low power microcontroller show that C-
RLE has a similar compression ratio as the K-RLE. It has 
in contrary, efficient energy consumption compared to the 
K-RLE and the traditional RLE algorithm. 
In addition, a hardware design for the new C-RLE 
approach is proposed, which can be used in sensor nodes 
using reconfigurable hardware devices as proposed in [6] 
[7] [8]. The performance of the hardware implementation 
are evaluated on FPGA Spartan 3A according to a real-
world datasets. A comparison against RLE algorithm is 
processed on the same platform with same condition. 
Results show that with our proposed C-RLE we can reduce 
the energy consumption more than 16.87% compared to 
the basic RLE algorithm. 
The remainder of this paper is organized into five sections. 
Section 2 discusses the related works. Section 3 gives a 
brief theoretical description of both RLE and K-RLE 
algorithms and details the new proposed implementation of 
K-RLE. Section 4 presents our software solution with 
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the measurement results obtained. In section 5, our 
hardware implementation of C-RLE and its performance in 
terms of execution time and energy consumption are 
presented. Finally, concluding remarks are drawn in 
section 6. 

2. Related works 

In literature, two main compression ad-hoc algorithms 
have been proposed especially for WSN [10] [11] [12], S-
LZW and K-RLE. They are derived from traditional 
algorithms and used as a reference to evaluate the 
performance of a new compression algorithm in WSN [13]. 
S-LZW [14], for Sensor-LZW, is an adaptation version of 
the popular data compression algorithm ZLW [15]. It is a 
lightweight algorithm to use with the constrained resources 
of sensor nodes. K-RLE [9], is proposed to improve the 
effectiveness of the RLE algorithm to be useful in WSN. It 
is inspired from the RLE principle, namely by adding a 
precision parameter called K. This latter represents the 
difference between two input data streams and takes the 
same unit as the Pascal of pressure, the degrees of 
temperature, etc. In this article, our study focuses on the K-
RLE algorithm. 
In [9], the K-RLE implementations show a trade-off 
between efficiency of compression and energy 
consumption. When k equals to 2, 2-RLE affords the best 
compression ratio compared to both S-LZW and RLE [9]. 
Compression ratio exceeds to 40% than RLE, but energy, 
in contrary, is more consumed by 2-RLE than S-LZW and 
RLE [9]. In this regard, two other K-RLE implementations 
have been done in [16] and [17]. In Ref. [16], R.S. Pisal 
presented a software implementation of K-RLE on ARM7 
microcontroller; and in Ref. [17], K. Yamin et al presented 
a hardware implementation on FPGA using the VHDL 
language. Both works proved again that K-RLE is widely 
better than RLE in terms of compression ratio, without 
improvements in terms of energy consumption. 
In this paper, we propose a new optimized implementation 
of K-RLE called C-RLE, which overcomes the 
disadvantages of both original RLE and K-RLE algorithms. 
It is able to achieve the effectiveness in both energy 
consumption and compression ratio. 

3. Theoretical background of K-RLE and C-
RLE approach 

In this section, a brief introduction of the RLE lossless 
compression algorithm is given. The K-RLE is then 
introduced showing the required details for the proposed 
C-RLE. Finally, the new proposed C-RLE solution is 
discussed. 

3.1 RLE algorithm 

Run Length Encoding (RLE) is a simplest lossless 
compression technique which takes advantage of repetitive 
values in a sequence of data. Generally, it is used to 
decrease the physical size of longer data sequences, which 
consists of repeating characters. In practice, this 
compression algorithm can be used to monitor every 
repetitive and redundant data, such as pressure, humidity, 
temperature, etc. 
The main idea behind RLE is described in [18] as follows: 
"If a data item d occurs n consecutive times in the input 
stream, we replace the n occurrences with the single pair 
nd". A specific character is added before every single pair 
nd in the data compression to discover the new data pack 
compressed during the process of decompression. 
Moreover, the RLE is a lossless data compression, where 
the original data are restored without loss of information. 
However, the simplicity of RLE is an asset compared to 
limitations related to the resources of the sensor nodes, 
such as the storage capacity and the lack of computing 
power. The effectiveness of RLE is narrowly related to the 
repetition number of the same data in the input data. Capo-
Chichi et al. [9] overcome this limitation and proposed a 
new algorithm named K-RLE inspired from RLE to 
improve the effectiveness of RLE technique compression. 

3.2 Principle of K-RLE algorithm 

The main idea behind K-RLE algorithm is to improve the 
performance of RLE in terms of compression ratio. Based 
on a new parameter called K, the principle of the K-RLE 
algorithm is summarized as follows [9]: "If a data item d, 
d+K or d-K occurs n consecutive times in the input stream, 
we replace the n occurrences with the single pair nd". 
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Fig. 1  Flowchart of K-RLE compression algorithm. 

Fig. 1, shows the flowchart of K-RLE algorithm. 
Compared with that of RLE, the orange columns indicate 
the instructions added with the presence of new precision 
parameter K. This new precision parameter K is the 
allowed margin between two successive values, which 
allows to consider the elements d, d + K or d-K as identical. 
This technique can be useful when small variations in the 
input data is not significant. Finally, it is important to note 
that K has the same unit as the supervised data. 
The performance of this algorithm is compared to two data 
compression algorithms (RLE and S-LZW) in terms of 
compression ratio and energy consumption. This study [9] 
is made on a low power microcontroller which is MSP430 
using a real temperature dataset. The obtained 
experimental results prove that for K equal to 2, 2-RLE 
offers a better compression ratio that can achieve 40% 
greater than the RLE. On the other hand, its energy 
consumption is higher than RLE and S-LZW, hence the 
trade-off between compression efficiency and energy 
consumption [9]. 
In the next section, we propose a new method called C-
RLE to implement the K-RLE algorithm where we show 
that the problem related to energy over- consumption lies 
in the definition of the precision parameter K. 

3.3 Proposed C-RLE approach 

In this section, we present the C-RLE approach, which is 
our main contribution to preserve the compression ratio as 
in K-RLE but with reduced the energy consumption.  
As shown in Fig. 2, the K-RLE execution stages constitute 
a sequence of four main steps: ADC conversion for reading 
a new value, Data processing, Comparison phase and Data 
compression. The first step consists of reading the data 
derived from sensors after the analog-to-digital conversion 
process. Secondly, because the parameter K has the same 
unit as the oversaw data, it is necessary to retrieve each 
analog value for the comparison stage. This implies going 
through the phase of data processing to recover the 
converted values into analog one again. Once the analog 
value is processed, it will be used in the comparison phase 
with the precision parameter K. At the end, data 
compression is carried out. 
Comparing the execution of RLE to that of K-RLE, it is 
not mandatory to go through the processing phase to 
recalculate the analog value. In fact the RLE does not 
introduce the term of precision parameter to execute 
additional instructions or to spend additional time to 
recover each supervised analog value as in the case of K-
RLE. This explains the over-consumption of energy for K-
RLE despite its best result concerning compression ratio. 
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Fig. 2  The main execution stages of the compression algorithm K-RLE. 

Proposed solution is founded on a new precision parameter 
C, which is proportional to the K-parameter. This new C-
parameter will be used directly with digital values derived 
from the conversion phase without going through the data 
processing phase. Consequently, it will not be necessary to 
recalculate the analog values and execute additional 

instructions. This new precision parameter C, hence the 
label C-RLE, will not take any unit because it will be 
considered as the allowed margin between two successive 
digital values. 
 

 

 

Fig. 3  The main execution stages of the proposed compression algorithm C-RLE. 

According to Fig. 2 and Fig. 3, the conversion period 
TADC and compression period TCOMP are the same 
during C-RLE or K-RLE execution. The data comparison 
times TC and TK are approximately the same. However, 
an extra processing period (TPROC) is performed for 
reconverting digital data to real analog data in the case of 
K-RLE, which is not necessary in our new C-RLE method. 
Theoretically, our method will decrease the number of 
instructions and the execution time needed for this 
compression task. 
The power consumption of the nodes is estimated 
according to P = IDD * VCC, where IDD is the average of 
the current MCU in a given period T and VCC is the 
polarization voltage. The energy consumption is calculated 
as follows E = P*T = IDD * VCC * T. As the MCU 
performs the same processing during the coordinated 
periods, the MCU will consume the same current (IDD). 
Consequently, an extra energy consumption is estimated in 
the case of the K-RLE implementation as presented in 
equations (1) and (2): 

 
)***(*V  CC COMPCOMPCCADCADCRLEC TITITIE ++=−

 (1) 
 

PROCPROCCC

CC

T*I*V
)***(*V  

+
++=− COMPCOMPKKADCADCRLEK TITITIE

 

(2) 
 
In order to achieve the main objective of this study, two 
separate physical implementations are performed. The first 
one, a software implementation of the RLE, K-RLE and C-
RLE algorithms on an ultra-low power microcontroller, the 
STM32L1. We demonstrate the effectiveness and benefits 
of our C-RLE approach compared to previous proposals 
K-RLE and RLE. On the other hand, a hardware 
implementations of C-RLE and RLE algorithms on a 
Programmable Device (FPGA Spartan 3A). We present the 
hardware design of C-RLE and its performances compared 
with respect to the RLE in terms of execution time and 
energy consumption. 
The performances of previous compression algorithms for 
both implementations are evaluated using a real-world 
benchmark of temperature datasets of 2196 bytes. This 
temperature data sets are collected from the Weather 
Underground website [24] during the period from the 1st 
of January 2016 up to the 31st of August 2016 in Tunis 
(Tunisia), Paris (France) and Toronto (Canada). 
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Fig. 4  The representation of the temperature archives of Tunis. 

We choose different locations with different variances 
between the successive input data to study the behavior of 
the previous algorithms in different real conditions. During 
the compression task, these digital data will be used from 
the memory RAM of the STM32L1 or the FPGA. 

4. Software implementation 

The software implementation is intended to validate the 
performance and the efficiency of our proposed C-RLE. In 
this section we present the developmental tools and the 
experimental steps used in this implementation to measure 
the execution time, the number of cycles and the energy 
consumption for each algorithm RLE, K-RLE and C-RLE. 
Finally, we present the experimental results of the software 
implementation. 

4.1 Implementation of C-RLE and measurement 
Framework 

The standard STM32L1 discovery board was used in this 
practice. It is based on an Ultra-low power microcontroller 
STM32L152R including a high-performance 
Microprocessor ARM cortex-M3. The choice of this card 
is made for two reasons. First, this board includes an ultra-
low power microcontroller which shows its effectiveness in 
several studies and very usefulness as a solution in wireless 
sensor nodes [19] [20] [21] [22]. Secondly, an integrated 
circuit in this card allows to measure the real current 
consumption of the microcontroller in various modes like 
run mode, sleep mode, etc… It is useful in our studies to 
find the power consumption during the execution of the 
algorithms and also in separate processing periods. 
The software tool used in this section is the Integrated 
Development Environment (IDE) Keil vision ®, which can 
be interfaced with the ST-link debugger. In the debugging 
and simulation phases, this software has the advantage of 
supervising the real execution of the algorithms, instruction 
by instruction into the microcontroller, as well as 

estimating the execution time and the number of cycles for 
each program in real time. 
 

 

Fig. 5. GUI logic analyzer of keil development tools. 

After measuring the execution time and the number of 
cycles required to execute each compression algorithm, we 
proceed to calculate its consumed energy through its 
consumed current, which is measured by the integrated 
circuit (IDD) in the STM32L1 board. 
It should be noted that all the measurements of the current 
are read via a dedicate jumper called JP1 in the STM32L1 
board by connecting it to a high-resolution ammeter. 
The performance evaluation of our C-RLE method in this 
software implementation is described in the following 
section. 

4.2 Software implementation results 

Firstly, we check the compression ratio obtained with our 
compression approach. As mentioned above, to study the 
behavior of the previous algorithms in different real 
conditions, we use three different locations with variable 
deviations between the successive input data. Table.1 
presents the data size of different datasets used for our 
evaluation as well as the size of the compressed data and 
the compression ratio obtained. 
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Table 1: Compression results by applying various compression implementations 
                                            Algorithm                   
              Data RLE K-RLE C-RLE 

1K-RLE 2K-RLE 1C-RLE 2C-RLE 

Tunis 
Original Size (Byte) 732 732 732 732 732 
Compressed Size (Byte) 717 558 348 558 348 
Compressed Ratio 2.05% 23.77% 52.46% 23.77% 52.46% 

Paris 
Original Size (Byte) 732 732 732 732 732 
Compressed Size (Byte) 726 633 498 633 498 
Compressed Ratio 0.82% 13.52% 31.97% 13.52% 31.97% 

Toronto 
Original Size (Byte) 732 732 732 732 732 
Compressed Size (Byte) 732 678 639 678 639 
Compressed Ratio 0% 7.38% 12.7% 7.38% 12.7% 

 
As shown in Table.1, the RLE compression algorithm 
supplies an overly low compression ratio in the three 
different data sets. For example, processing the data 
collected from Toronto, RLE provides a compression ratio 
of 0%. We can clearly see that RLE algorithm is highly 
dependent on the repetitive nature of data stream, which 
underlines the importance of using the precision parameter 
in K-RLE and C-RLE. 
On the other hand, K-RLE and C-RLE achieve an 
improved compression ratio using different values of the 
precision parameter compared to the RLE. With a 
precision parameter equal to 2, the compression ratio in 
both K-RLE and C-RLE cases are respectively 52.46% and 
31.97%. But, it can be noted that the high variance 
between the successive values influences the compression 
ratio. For example, for the data collected from Toronto, the 
compression ratio is equal to 12.7% even with a precision 
parameter equal to 2. 
Finally, it can be seen that K-RLE and C-RLE provide the 
same compression ratio since theoretically they have the 
same principle, but with a difference in the definition of 
the precision parameter. 
In a second step, we analyze the number of cycles and the 
execution time required for each algorithm during the 
compression task with an MCU frequency equal to 1 MHz. 
Also, we present the effect of the new precision parameter. 
We recall that with the new approach introduced to 
implement the k-RLE algorithm, there is no need to 
recalculate the analog value for each value deal. 
Fig. 6 shows that 1K-RLE and 2K-RLE use more cycles 
compared to the other algorithms. There is a difference in 
the average of about 20.59% between 2K-RLE and RLE, 
which affirms the results obtained in [9]. However, we can 
see that the best results are obtained by our approach. 
From Fig. 6, it is clear that the C-RLE, with two precision 
parameters 1 and 2, is better than K-RLE and RLE 
algorithms. 

 

Fig. 6  Number of cycles required in various compression 
implementations. 

Finally, the number of cycles required by K-RLE to 
perform the compression task of the data used for this 
study is reduced in the average of 28.06% when the new C-
RLE approach is used. Also, the average gain for C-RLE 
can reach 15.17% compared to RLE. 
These previous results have a direct effect on the execution 
time which is proportional to the frequency of the CPU 
system as well as the number of cycles needed for each 
task. 



IJCSNS International Journal of Computer Science and Network Security, VOL.18 No.6, June 2018 55 

 

Fig. 7  Execution time required in various compression implementations. 

Fig. 7 illustrates the execution time of the previous 
algorithms with different precision parameters, which 
enhances the previous evaluation of the number of cycles. 
Finally, we present the most important evaluation criteria, 
the energy consumption, which is dependent on the 
execution time and the power consumed by the MCU. 

 

 

Fig. 8  Energy consumed for different compression implementations. 

Fig. 8 shows the energy consumption for each algorithm 
according to different precision parameters. We can see 
that the energy needed to compress the data collected from 
Paris by RLE is 0.024 mj and most of the energy 
consumed by 2K-RLE is about 0.0294 mj. But, 2C-REL 
uses about 0.0209 mj, which is lower than the others. 
It is clear, that the K-RLE algorithm is the most energy-
intensive for all different cases. On the other hand, RLE 
and C-RLE approximately provide the same results for 
C=1, but for C= 2, C-RLE consumes less energy than RLE. 
In summary, Fig. 8 shows that our approach can save more 
than 27.03% of the required energy compared to the K-
RLE algorithm. Also, compared to the original algorithm 
RLE, energy consumption is reduced to about 9.82% when 
C=2 and to 2.52% for C=1. 

5. Hardware implementation 

The goal of the hardware implementation is to present the 
hardware design of the C-RLE and evaluate its efficiency 
compared to the basic RLE algorithm in a reconfigurable 
device, which can be used in the future in sensor nodes 
either based on reconfigurable resources or as a co-
processor. Yet, if we want to implement the K-RLE 
algorithm in sensor nodes, its hardware structure required 
to implement the transfer equations of each sensor used, 
which is a very complex and costly task. 
This section presents the implementation details of the 
hardware design of the C-RLE compression technique, the 
developmental tools and the experiment steps used to 
measure the execution time and the energy consumption. 
Finally, we present the experimental results of this 
hardware implementation. 

5.1 Architecture of C-RLE compression system 

The details of our proposed Hardware architecture of C-
RLE are presented in Fig. 9 which includes three basic 
modules. 
The first module (read and compare a new value) is in 
charge of the comparison between the new value that is 
measured by the sensor and the previous one which was 
stored on a parallel 12-bit register. The result of this 
comparison “Eg” is sent to the second module, FSM 
controller, which has the role of generating the necessary 
signals either to increment the repeating counter "rep" as 
well as reading the next new value or allowing the 
processing of the compression phase. For the third module 
(compression formatting), by using the repeat value "rep", 
the decoder selects the compression form either the 
specific character "&" followed by the repeat value and the 
data repeated or the data repeated directly if this repeat 
value "rep" does not exceed 4. 
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In this proposed design, we take into consideration that the 
FPGA supports fully-parallel execution. We have 
implemented the two modes of comparison and 
compression to run at the same time just after the first data 
compression operation, which obviously results in a gain in 

the execution time. Regarding the implementation 
architecture of RLE, it is totally identical to that of C-RLE 
except the small comparator block, where the RLE does 
not use any precision parameter. 
 

 

Fig. 9  The detailed architecture of the C-RLE compression. 

These proposed hardware designs are synthesized and 
simulated on the Spartan 3A FPGA using the Xilinx 14.2 
tools. While its embedded simulator ISim is used to verify 
the correct operation of our implementation and the 
process of “behavioral simulation” is used to determine the 
execution time for each algorithm. 
On the other hand, measuring the power consumption for 
the internal core of FPGA can be a challenging procedure, 
especially if the board in which the experiments are carried 
out is not specifically designed for such experiments. 
Furthermore, most of the boards of FPGA do not provide 
the possibility of measuring the power consumption of 
FPGA itself. 
In this framework, the reference of FPGA Spartan 3A 
starter kit has been created to conduct experiments and 
measurements in order to determine the actual power 
consumption. As described by Chapman in [23], the power 
dissipation of any hardware design for the FPGA Spartan 
3A is presented in equation (3) [23] as follows: 
 

 )I*(3.3v  )I*(1.2v   (mw)P

)I*(V)I*(V (mw)P

ccauxccintdissip

ccauxccauxccintccintdissip

+=

+=
 (3) 

 

Where the Iccint is the current provided for the internal 
FPGA core with a voltage Vccint equal to 1.2V and the 
Iccaux is the current provided for the I/O pins with a 
voltage Vccaux equal to 3.3V. All the measurements of 
currents Iccint and Iccaux are read by two available pins 
available on the board using an ammeter. 

5.2 Hardware implementation results 

The two hardware proposed design of the C-RLE and RLE 
algorithms are implemented in the FPGA Spartan 3A. The 
results of the resource occupation are presented in Table 2. 

Table 2: Resources occupation for the Hardware implementations of C-
RLE and RLE 

Resources C-RLE RLE 
Number of Slices (5888) 140 (2%) 118 (2%) 

Number of input LUTs (11776) 257 (2%) 214 (2%) 
Number of IOBs (372) 26 (6%) 26 (6%) 

 
Table.2 shows that a large amount of FPGA resources are 
still available for the implementation of other tasks in 
parallel. 
In order to prove the efficiency of our C-RLE proposed 
approach with the hardware implementation, we measure 
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the processing time and the energy consumption reached 
during the execution of C-RLE and RLE on the 
reconfigurable device FPGA Spartan 3A. 
These measurements are performed just during the 
compression of the data collected from Tunis with 
different frequencies between 1 MHz and 50 MHz. 
 

 

Fig. 10  Execution time required by the hardware design proposed. 

With regard to the Fig. 10, we can see that the C-RLE with 
different precision parameters needed fewer execution time 
than RLE for all different frequencies. There is a 
difference of about 11.38 % in the average time between 
C-RLE and RLE. Although the two architectures of C-RLE 
and RLE are completely identical except the compression 
block, these results are mainly related to the use of 
precision parameter by the C-RLE algorithm, which also 
affirms the software results. 
In this final part, we measure the energy consumption of 
our C-RLE approach and RLE algorithm for its hardware 
implementations. To do so, we measure the power 
consumption of the FPGA during the processing of 
compression tasks, which is in the order of 37.66 mW. 
Fig. 11 illustrates the comparison of energy consumption 
between the hardware implementations of the C-RLE and 
RLE algorithms. 
 

 

Fig. 11  Energy consumption of the hardware design proposed. 

It is remarkable that RLE consumes more energy than C-
RLE, for example RLE uses 0.036 mj to compress data 
with a frequency equal to 1 MHz while 2C-RLE uses about 
0.03 mj. Due to this hardware design, the C-RLE can 
reduce the energy consumption more than 16.67% 
compared to the basic RLE algorithm. 
In summary, results of software and hardware 
implementations obviously show that with our approach 
we can keep the performance of the K-RLE in terms of the 
compression ratio, which is higher than RLE, without 
having any overconsumption of energy. 

6. Conclusion 

A simple new approach named C-RLE is proposed based 
on the principle of the K-RLE algorithm, which shows a 
trade-off between energy consumption and compression 
efficiency. This solution focuses on the definition of the 
precision parameter K and exploits its principle to get an 
efficient data compression in WSN. Firstly, the 
performance of our proposed approach is compared to 
RLE and K-RLE algorithms on an ultra-low power 
microcontroller which is STM32L1using real temperature 
data sets from three different places. This software 
implementation shows that our proposed C-RLE 
implementation keeps the performance of the K-RKE in 
terms of the compression ratio and decreases the consumed 
energy to 27.03% and 9.82% compared to the K-RLE and 
RLE algorithms, respectively. 
Next, a hardware design of our approach is presented and 
the performance of this hardware implementation is 
evaluated on FPGA Spartan 3A with real-world 
experiments and compared to the basic RLE algorithm. 
Based on the hardware implementation results, we have 
demonstrated also that C-RLE needs less execution time 
and energy consumption than the RLE algorithm. 
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