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Summary 
MATLAB is one of most commonly used platforms in multiple 
scientific applications like digital image processing, digital signal 
processing etc… 
The high level programming syntax and friendly user of 
MATLAB makes it best suited to write technical code. Among, 
the significance of MATLAB’s programming is its rich library of 
built-in function that makes programming more easily. Nerveless, 
the standard MATLAB uses an interpreter which decelerates the 
processing, particularly while executing loops. This becomes a 
bottleneck performance in programs that make excessive use of 
loops. Therefore, MATLAB is frequently exposed to the memory 
latency and the issues of slow execution. In order to accelerate 
MATLAB’s processing, we use NIVIDIA’S CUDA parallel 
processing architecture. We note that processing can be speed up 
significantly by interfacing MATLAB with CUDA and 
parallelizing the most time consuming portion of MATLAB’s 
code white balance. The obtained results indicate, that the speedup 
is proportional to the image size until it attains a maximum at 
2056*3088 pixels, beyond these values the speedup decreases. 
The performance with GPU enhances above a factor of 14~15 
compared with CPU. 
Key words: 
CUDA, MATLAB, GPU, CPU, White Balance. 

1. Introduction 

MATLAB is a most commonly high-level programming 
language used in different scientific numerical computation. 
Among the features supported by MATLAB: including 
flexibility development environment for managing 
programming code, using friendly interface for technical 
computing, interactive tools for iterative exploration, 
solving problem design and functions for integration 
MATLAB with other languages and external applications 
like C, C++, Mex, and CUDA.  
However MATLAB exploits high- level programming 
features because it has a rich library and simple 
programming paradigm which makes easy to write a 
technical code for users who do not have much 
programming expertise. However, MATLAB uses an 
interpreter that provokes to demean its performance 
particularly in executing iterative logic. Indeed the huge 

data (eg image/ matrix operations) causes the memory 
latency. For those reasons, MATLAB is not much efficient 
for real time image processing operations. In fact with high  
volumes of graphics cards deployed work stations or in 
personal computers, graphics processors units (GPUs) 
become a parallel computing platform accessible to a wide 
range of users. In the light of teraflops computing capability 
and high memory bandwidth, there is an intense incentive 
to use GPUs for general purpose computation and there 
have been successful reports in the literature on such effort 
[9, 2]. NVIDA’s compute unified Device Architecture 
(CUDA) is a revolutionary standard which allows 
programmers to use the power of computing engine used in 
NVIDIA’s CUDA- enabled GPUs. 
However, CUDA uses the parallel computing engine in 
NVIDIA’s GPUs and all the pipeline stages can be 
combined to execute a number of operations simultaneously. 
Therefore CUDA can solve the complex computational, 
taking better than the CPU [5, 6]. 
This paper presents a demonstration of mixed programming 
concept by integrating MATLAB with CUDA. This is done 
by replacing the time consuming parts of the algorithms 
running in MATLAB CPU and porting to the Graphical 
Processing Unit (GPU). By applying this methodology, we 
not only use the rich programming features of MATLAB, 
but also minimize its performance bottleneck.  
This paper is organized as follows: Section 2 and section 3 
provide an overview of the architecture of CUDA and its 
benefits and the related work for accelerating MALAB. 
Section 4 briefly describes how MATLAB can be integrated 
with CUDA. In section 5 we present the proposed 
application. The systematic approach of analyzing 
MATLAB’s slow processing of over proposed application 
and their CUDA implementation are presented in section 6. 
The results of the comparative analysis of CPU vs GPU 
processing are presented in section 7. Finally conclusion is 
drawn in section 8. 
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2. General purpose programming with GPU 

Graphics Processing Units (GPUs) have emerged as 
powerful accelerators for many regular algorithms that 
operate on dense vectors and matrices, and it designed to 
process blocks of pixels at high speed and massive parallel 
operations on application data like data visualization, 
graphic rendering etc. However usually these applications 
include a single program executing in parallel on several 
elements of data.  
On the other hand, GPUs are designed for parallel 
computing with an emphasis on arithmetic operations, 
which originate from their main purpose to compute graphic 
scene which is finally displayed. Current graphic 
accelerators consist of several multiprocessors (up to 30). 
Each multiprocessor3 contains several (e.g., 8, 12 or 16) 
Arithmetic Logic Units (ALUs). Up to 480 processors are 
in total on the current high-end GPUs. Figure 1 shows the 
general overview of the CPU and GPU. 
 

 

Fig. 1  Comparison CPU and GPU architectures. 

2.1 Programming Model: 

In 2006, NVIDIA introduced which is hardware and 
software platform designed for general purpose computing 
on GPUs, having a novel programming model with new 
instruction set architecture. CUDA comes with a special 
software paradigm that allows users to use C as a high level 
programming language. Other language and applications 
programming interface are also supported in the futures 
such as Open ACC, Direct Compute, and FORTRAN. 
A CUDA-capable GPU is referred to as a device and the 
CPU as a host.  As shown in fig.1 CUDA computing model 
provides thread which is the finest grain unit of parallelism. 
Block is a unit of the resource assignment. The standard size 
of a thread block is 64-512 threads. It banks on the 
particular application which is the optimum size of a thread 
block to certify the best utilization of the device. Thread 
blocks form a grid can be viewed as a 1-dimensional, 2-

dimensional or 3-dimensional array. It means that it guide 
the developer to partition the problem into sub-problems 
such a way that can be solved independently in parallel by 
blocks of threads and every sub-problem into finer part that 
can be resolved in parallel by all threads within block as 
shown in figure 2. 
 

 

 Fig. 2  NVIDIA CUDA programming architecture 

CUDA provides different memory spaces which are during 
execution accessible for threads.  As shown in figure 2, the 
threads grouped into thread blocks can cooperate among 
themselves by sharing data through a shared memory. Each 
thread that excites kernel has its own private local memory. 
The global memory is accessible to all threads, whereas 
shared memory is visible only to threads of the block. Also 
threads have access to other memories called texture 
memory and constant memory as mentioned in figure 2. All 
these memories have very small access time and their 
optimized use notably speed up the overall execution 
program. 
 

 

Fig. 3  CUDA memory architecture 
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• Global memory: The largest volume of memory available 
to all multiprocessors in a GPU, from 256 MB to 1.5 GB in 
modern platform.  It offers high bandwidth, over 100 GB/s 
for top solutions from NVIDIA, but it suffers from very 
high latencies (several hundred cycles).  
• Constant storage:  memory area of 64 KB (the same 
concerns modern GPUs), read only for all multiprocessors. 
It's cached by 8 KB for each multiprocessor. This memory 
is rather slow latencies of several hundred cycles, if there 
are no required data in cache. 
• Texture memory: is available for reading to all 
multiprocessors. Data are fetched by texture units in a GPU, 
so the data can be interpolated linearly without extra 
overheads. Slow as global memory -- latencies of several 
hundred cycles, if there are no required data in cache. 

2.2 Features and Limitations of CUDA:  

It is easy to learn the CUDA API, but hard to program 
efficient applications which utilize the GPU’s performance. 
CUDA API is a set of extensions based on the standard C 
language. Counterweight to many features of this massively 
parallel architecture is that there are limitations mostly 
caused by HW architecture. CUDA belongs to the class of 
Single Instruction, Multiple Thread (SIMT) according the 
Flynn’s taxonomy. SIMT originates in Single Instruction 
Stream, Multiple Data Stream (SIMD) class known for 
example from the supercomputers based on vector 
processors (e.g., Cray-1). SIMT also implies the divergence 
in the program that usually leads to the serialization of the 
run. Recursive functions are not supported either [14]. 
As introduced before, graphic accelerators were developed 
with the focus on computing vast amounts of arithmetic 
operations. Many of them are implemented directly in the 
hardware with a cost of units of warp-cycles5. Besides 
arithmetic functions there is a set of bitwise operations also 
implemented “in hardware”. 
Of course, a set of constructs used in parallel programming 
is present in CUDA. For example several methods of barrier 
synchronization primitives, native broadcast of a single 
variable, scatter and gather functions or atomic operations 
which prevents from race conditions. 
The use of shared memory has also significant impact on 
the overall performance but the limiting factor is its size of 
16 KB. Talking about memory, CUDA brought more 
efficient data transfer operation between the host and the 
device. Unlike OpenCL6, CUDA is closed source 
belonging to NVIDIA corp. which can be considered as a 
limitation as well. 

3. Related work 

The relevant literature prove that parallel architecture of 
current GPUs has become progressively powerful and more 
programmable, which allows GPUs to be the main 

computation device and invade various domains such as 
physics and mathematical simulations and even image 
compression analysis. In deed it explained many solutions 
of MATLAB’s performance bottleneck.  
The work presented in [2] discusses the mixed 
programming principles and methods where MATLAB is 
integrated with other language like FORTRAN and Visual 
C++ (VC). 
The results of this work show that a mixed programming 
with different tasks can be achieved by compiling different 
MATLAB program, doing the necessary settings and 
replacing the corresponding C++ code. Also the problem of 
MATLAB’s memory latency is discussed on many works. 
The work presented in [9] explains who different types of 
CUDA memories like (global, texture and constant can be 
used to avoid performance bottleneck and to attain the 
maximum performance from MATLAB. 
Work [10] describes the benefits of integration MATLAB 
with CUDA and explains who implement an application 
like 2D.DWT on CUDA, C and Warps. The algorithm is 
parallelized using CUDA and called through the use of mex 
function in MATLAB environment. Then the nvmex 
function compile the CUDA (.cu) file and produces a binary 
mexw32 file, which can be called like any other MATLAB 
function in MATLAB. 
The work presented in [10] described the potential 
advantages of using CUDA to accelerate its performance. 
By employing NVIDIA Tesla C870 the authors achieved 
speedups varying from 20 to 40.6 in the execution time over 
a C version on an Intel Core 2 Quad Q6700 (2.66 GHz). 
The Results presented in [6] display that the implementation 
of the application ADL-based wavelet transforms using 
GPU attains a speedup 10 times greater than that procured 
by the optimized CPU implementation with an AMD 
ATHLON II X2 240 CPU and a NVIDIA GeForce 8800 
GTX 768MB. 
 In [18] the authors have implemented the DWT "Le Gall 
5/3" and "Cohen-Daubechies-Feauveau 9/7" filters on a low 
cost NVIDIA’s GPU (NVIDIA GeForce GT 640M LE) and 
realized on MATLAB (version R2013b) using the in-house 
parallel computation toolbox (PCT). The obtained results 
show, that the speedup is proportional to the image size and 
the performance with GPU enhances above a factor of 2~3 
compared with CPU. 

4. MATLAB and CUDA 

MATLAB is very efficient and easy to program 
development environment, the use of memory latency 
problem and interpreter has a large negative impact on its 
performance. The standard MATLAB uses an interpreter 
which is slower in executing loops compared to the 
compilers of other languages (C, C++)[12,14].  
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Image processing tasks require excessive use of loops 
because it operates on each pixel of an image, for this 
reasons, in order to get the maximum throughput, we 
accelerate MATLAB processing by using NVIDIA’s 
CUDA parallel processing architecture. In fact MATLAB 
could be easily extended via MEX files to take advantage 
of the computational power offered by the latest NVIDIA 
graphics processor unit (GPU). MATLAB executable 
(“MEX”) is an essential utility that allow to call and 
compile the codes written in other languages like (C, 
FORTRAN), into a dynamically linked. 
Mex-files are dynamically linked subroutines written in 
other languages, which that can be called from within 
MATLAB as regular MATLAB function. 
 

 

Fig.4  Compiling CUDA code 

The external interface function can provide means to call a 
MATLAB functions written in (C or FORTRAN) and also 
to transfer data between MATLAB and Mex-files. To 
integrate MATLAB with CUDA, NVIDIA provides a 
MATLAB plug-in which allows programmer to write 
CUDA enabled Mex-files and parallelize different time 
consuming portions of MATLAB’s algorithm with CUDA 
and call them in MATLAB. 

4.1 GPU computing using MATLAB:  

Furthermore to perform parallel computing with MATLAB 
in order to use computer’s graphics processing unit, various 

options are available for using GPU in MATLAB [15, 
17and 18]. For example the function “gpuArray ()” is used 
to transfer data like vector, array etc., from the MATLAB 
workspace to the GPU, where the computation is 
effectuated. When the execution is achieved, the results are 
displaced from the GPU to the MATLAB workspace by the 
function “gather ()”. This allows the GPU data to be 
available as regular variable in the MATLAB workspace. 

4.2 System configuration: 

Our proposed implementation is performed on 
representative commercial products from the GPU markets 
as mentioned in table 1  

Table 1: System configuration 
HOST GPU 

Name 
Intel(R) 

Core(TM) i7-
3770 CPU @ 

3.40GHz 
Name GeForce GT 

620 

Clock 3401 MHz Clock 1620 MHz 
Cache 1024 KB Num. 

Processors 1 
Num. 

Processo
rs 

4 Compute 
Capability 2.1 

OS.Type Windows TotalMemory 2.00 GB 
OS.Versi

on 
Microsoft 

Windowsÿ7 
dition Int‚grale 

CUDAVersio
n 6 

Name 
Intel(R) 

Core(TM) i7-
3770 CPU @ 

3.40GHz 

DriverVersio
n 

8.17.13.328
8 (332.88) 

 
The GPU is an NVIDIA GeForce GT 620 (384 CUDA cores 
clocked at 1620 MHz) with 2.0 GB of GPU device memory 
and a 2.1 kb per-block shared memory per SM) with 
NVIDIA driver version (332.88 )and CUDA 6.0. We also 
used a multicore CPU based system with an Intel® core™ 
(i7-3770 CPU @3.40GHz). We have elaborated our GPU 
code using MATLAB version R2014a, "Transferring data 
between the MATLAB workspace and the GPU" to 
accelerate our algorithm using nvcc () function and .ptx file. 
Table 1 resumes our system configuration while table2 
show the peak performance of various GPUs using the same 
MATLAB version which is R2014a. 
The peak performance indicated in table 2 is usually 
attained when dealing with extremely large arrays. The 
results are obtained using the CPUs on the host PC and 
included then for comparison. Since MATLAB works 
mainly in double precision the devices are classfy according 
to how well they effect double-precision calculations. 
Single precision results are included for completeness. 
 
 
 
 
 

C/C++
CUDA

application

NVCC
CPU Code
MATLAB

PTX Code

PTX to Traget
Compiler

GPU....G80

Physical

Virtual

Traget code
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Table 2: GPU comparison report: Host PC 

 Results for data-type 
'double' 

(In GFLOPS) 

Results for data-type 
'single' 

(In GFLOPS) 
 MTimes Backslash FFT MTimes Backslash FFT 

Quadro 
K6000 

1092.86 421.36 160.04 3017.89 831.15 334.22 

Host PC 83.89 56.66 10.68 156.74 118.54 18.51 

Quadro 
2000 

38.34 33.77 14.10 223.55 133.56 49.63 

GeForce 
GT 620 

12.22 9.63 4.16 55.97 24.29 11.09 

5. The Application White Balance 

NVIDIA GPUs are recently been a popular device for 
several scale computations like image processing,  signal 
processing, and other many applications, on account to their 
high computational throughput and also their parallel 
architecture. In fact CUDA allows programmers exploit all 
the power of this architecture by providing specific control 
over how computations are divided between parallel threads 
and executed on the device. The resulting algorithms 
written for the GPU are often much faster than the 
traditional codes written for the CPU and the process of 
building a framework for developing can take a long time. 
In the literature, several programmers write CUDA kernels 
with the hope that they will be integrated into C or Fortran 
programs for production. For this reason, they frequently 
use these languages to test their kernels, which require 
writing important amounts of “glue code” for tasks like 
managing GPU memory by transferring data to the GPU, 
initializing and launching CUDA kernels then visualizing 
kernel outputs. The writing of “glue code” consumes a lot 
of time and it is difficult to be modified. In this context, 
using an image of test “Lena” our article presents how 
MATLAB supports CUDA kernel development by 
providing a language and development environment in 
order to evaluate kernels, analyze and visualize kernel 
results, and write test harnesses to validate kernel results. 
The basic principle of our application is to adjust the colors 
of an image so that the image does not have a reddish or 
bluish tint. This technique is called White balancing. In fact 
this technique involves calculating the average amount of 
each color present in the image, then applying scale factors 
to assure that the processed image has an equal amount of 
each color. 
As shown in figure 5, the algorithm eliminates the reddish 
tint from the original image. 

 

Fig. 5  Image “Lena 512 *512” before and after using white Balance 
adjustment. 

ndeed the development of the algorithm with MATLAB 
only consumes five lines of code which is much less than 
that in C. One of the causes is that MATLAB is a high level 
interpreted language and that it is therefore not necessary to 
perform administrative tasks such as variable declaration 
and memory allocation. In addition, MATLAB includes 
thousands of integrated mathematical, engineering, and 
tracing functions, and can be extended with domain-specific 
algorithms in signal and image processing and other fields. 
The main purpose of our paper is to implement the white 
balance algorithm in C, with each computational step 
written as a CUDA kernel. Before starting with CUDA, we 
utilize the MATLAB white balance code in order to explore 
the algorithm and decide how to decompose it into kernels. 
In that event we start by using the MATLAB Profiler to 
know how long each section of code takes to execute. 
Consequently the bottleneck areas which means where we 
will need to spend extra effort to develop efficient CUDA 
kernels will be indicate by the profiler. Accordingly the 
most time-consuming section of our algorithm is the code 
which multiplies every element in the image data with a 
suitable scale factor. It is obviously an operation that can be 
parallelized and it could be accelerated notably on the GPU. 
Therefore we implement our proposed code in CUDA 
C/C++ and we write kernels for the computational 
proceeding in the white balance algorithm, then we will 
evaluate and test this kernel to ensure that it runs correctly 
and gives right results. 

6. Evaluation of the proposed code 

In order to load the proposed kernel into MATLAB, we 
should use paths to the compiled PTX file and source code. 
Then we must setting the sizes of the thread blocks and grid 
before we can initiate it, thereafter the kernel can then be 
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used just like any other MATLAB function, save that we 
launch the kernel utilizing the feval command. 
 

 

Fig. 6  Comparison between the output images of CUDA and MATLAB 
(CPU) 

To evaluate our approach we test if the results are correct 
by comparing our new version with the original MATLAB 
implementation of the white balance algorithm. As 
indicated in figure 6, the comparison shows that the output 
images seem identical.  
The visual validation proves that the kernel is working 
properly and the calculated norm of the difference of the 
output images is zero, which validates our approach 
numerically. 

7. Comparative analysis of GPU vs CPU 
processing  

Furthermore the use of CUDA in order to process an image 
of size 512 * 512, allows reducing the total time for the 
image scaling operation from 36.2 ms on the CPU to 7.5 ms 
on the GPU. The GPU run time distribution is presented as 
follows: 1.9 ms is execution time and 5.59 ms is for loading 
and transferring the data to the GPU. That amounts to a 
19.05 times speedup on the GPU. 

 

Fig.7 Comparison between the speedup of CUDA (GPU) and MATLB 
(CPU) 

Table 3 summarizes the execution time of four test 
images (Lena, Barbara, Peppers and Baboon) whit different 
sizes for the proposed application, White_balance. As 
indicated in this table, it is clear to note that for images of 
small size, less than 512 pixels, the computing with the CPU 
and GPU is almost equal, for all test images.  
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Table 3: Time cost comparison for the white balance between CPU and GPU for four test images with different sizes. 
CARTE GRAPHIQUE: Ge Force GT 620 

Image 
test 

Size of 
image 

(unit 8) 

CPU 
time 
(ms) 

GPU time GPU 
time 
(ms) 

Speed up of 
GPU 

Speed up of GPU without 
time of distribution 

Run time 
Execution 

(ms) 

Run time 
distribution 

(ms) 

Lena 

256*256 9.6  1.75  5.14  6.9  1.39 5.48 
512*512 36.2  1.9  5.59  7.5 4.82 19.05 

1024*1024 83  1.98  5.82  7.8  10.64 41.92 
1536*1536 124.5  2.77  8.14  10.92 11.4 44.94 
2048*2048 149.4  3.04  8.94  11.99  12.46 49.14 
2056*3088 189  3.24  9.55  12.8  14.76 58.33 
3072*3072 224.22 4.08 12.01 16.1 13.92 54.95 

Barbara 

256*256 12.1 2.511 7.38 9.9 1.22 4.818 
512*512 36.7 2.13 6.26 8.4 4.36 17.23 

1024*1024 86 2.18 6.41 8.6 10 39.44 
1536*1536 130 3.12 9.19 12.32 10.55 41.66 
2048*2048 155.4 2.96 8.72 11.69 13.29 52.5 
2056*3088 196.2 3.3 9.85 12.8 15.32 59.45 
3072*3072 238.01 4.38 12.91 17.3 13.75 54.33 

Peppers 256*256 11.7 2.25 6.64 8.9 1.31 5.2 
512*512 37.5 2.15 6.34 8.5 4.41 17.44 

Peppers 

1024*1024 88 3.01 8.8 11.9 7.39 29.23 
1536*1536 133.5 2.68 7.9 10.6 12.59 49.81 
2048*2048 161.4 3.31 9.76 13.08 12.33 48.76 
2056*3088 197,1 3.55 10.45 14.1 13.97 55.52 
3072*3072 239.2 5.17 14.38 19.56 12.21 46.26 

Baboon 

256*256 10.3 1.8 5.29 7.1 1.45 5.72 
512*512 36.4 2.25 6.64 8.9 4.08 16.17 

1024*1024 87.8 2.23 6.56 8.8 9.97 39.37 
1536*1536 130.8 2.43 7.16 9.6 13.62 53.82 
2048*2048 162.4 3.34 9.85 13.19 12.31 48.62 
2056*3088 198.2 3.7 10.89 14.6 13.57 53.56 
3072*3072 242.7 5.29 14.56 19.81 12.25 45.87 

As shown in table3, we found that for a Lena image of size 
256*256 pixels, the GPU time, which is equal to 6.9 ms, is 
lower than CPU, which is equal to 9.6. The result in this 
case is converged, this is due to the time spent to transfer  
data from the host’s memory to GPU’s global memory, 
which requires a large fraction of total execution time for a 
small picture sizes. If we eliminate the data transfer time in 
this case the computing with the GPU will be faster than 
CPU as indicated in the table by the factor of 5,48. By 
increasing the size of images, it is obvious that the 
computation with GPU becomes faster than the CPU for all 
test images. For example, for test image (Baboon) of size 
3072*3072 pixels the GPU execution time is faster than 
CPU by the order of 12.25 and 45.87 when we don’t count 
the transfer data time. In fact the data transfer time often 
negligible in larger algorithms, because data transfer needs 
to be completed only once, and we can then compare 
execution times only. 
In addition, the speedup versus different image sizes for 
four testing images, of white balance application is given in 
Figures 8 and 9. All test images have similar behavior 
conditioned by the image size. We note that, for an image 
size equal to 256*256 pixels, the acceleration factor 
CPU/GPU is almost equal to 1.5, but for the rest test image 
sizes, the acceleration factor develops until reached 15,32. 
The speedup is proportional to the image size until it 
reaches a maximum at the size 2056*3088 pixels beyond 
these values the curve decreases to 13.75. Therefore the 

figure 8 shows that when we increase the image size of all 
using image test, the speedup increases and attains a 
maximum at 2056*3088 pixels equal to 59.45 for image 
Barbara, after that the speedup decreases to 54.33.  
 

 

Fig. 8  Speedup factor of GPU for With Balance without of distribution 
data 

For the figure 9, the speedup of the smallest image we tested 
(Baboon 256*256) was 1.45. By increasing the size of this 
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image, the speedup augments and reaches a maximum at 
2056*3088 pixels equal to 13.57. The observed decrease in 
the acceleration on the other used image test after 
2056*3088 was likely due to memory limitations [15, 
17and 18]. 
 

 

Fig. 8  Speedup factor of GPU for Withebalance 

8. Conclusion 

This paper presents a demonstration of mixed programming 
concept by integration MATLAB with CUDA. This is done 
by replacing the time consuming parts of the algorithms 
running in MATLAB CPU and porting to the Graphical 
Processing Unit (GPU). By applying this methodology, we 
not only use the rich programming features of MATLAB, 
but also minimize its performance bottleneck. Furthermore 
we presented in this paper a novel fast method of white 
balance implementation using MATLAB and CUDA, for 
achieving load balance between CPUs and GPUs in a 
dynamic context. It is based on an accurate prediction of the 
CPU and GPU execution times of codes, using the results 
of a profiling of those codes. In fact the efficiency of our 
GPU based implementation is measured and compared to 
CPU based algorithms using Ge Force GT 120.  
 Our future plans consist extending this work to handle 
other types of hardware and larger systems of kernels. 
Finally, the current system is focused towards performance, 
but with slight modifications it could be adapted to improve 
energy and time consumption. 
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