
IJCSNS International Journal of Computer Science and Network Security, VOL.18 No.6, June 2018

91

Manuscript received June 5, 2018
Manuscript revised June 20, 2018

GPU Acceleration of Image Processing Algorithm Based on
Matlab CUDA

Layla Horrigue 1, Refka Ghodhbane 2, Taoufik Saidani 3 and Mohamed Atri 4

1,2,3,4Electronics and Micro-Electronics Laboratory, Faculty of Sciences, Monastir, Tunisia
2,3Faculty of computing and Information Technology, Northern Border University, Rafha, Saudi Arabia

Summary
MATLAB is one of most commonly used platforms in multiple
scientific applications like digital image processing, digital signal
processing etc…
The high level programming syntax and friendly user of
MATLAB makes it best suited to write technical code. Among,
the significance of MATLAB’s programming is its rich library of
built-in function that makes programming more easily. Nerveless,
the standard MATLAB uses an interpreter which decelerates the
processing, particularly while executing loops. This becomes a
bottleneck performance in programs that make excessive use of
loops. Therefore, MATLAB is frequently exposed to the memory
latency and the issues of slow execution. In order to accelerate
MATLAB’s processing, we use NIVIDIA’S CUDA parallel
processing architecture. We note that processing can be speed up
significantly by interfacing MATLAB with CUDA and
parallelizing the most time consuming portion of MATLAB’s
code white balance. The obtained results indicate, that the speedup
is proportional to the image size until it attains a maximum at
2056*3088 pixels, beyond these values the speedup decreases.
The performance with GPU enhances above a factor of 14~15
compared with CPU.
Key words:
CUDA, MATLAB, GPU, CPU, White Balance.

1. Introduction

MATLAB is a most commonly high-level programming
language used in different scientific numerical computation.
Among the features supported by MATLAB: including
flexibility development environment for managing
programming code, using friendly interface for technical
computing, interactive tools for iterative exploration,
solving problem design and functions for integration
MATLAB with other languages and external applications
like C, C++, Mex, and CUDA.
However MATLAB exploits high- level programming
features because it has a rich library and simple
programming paradigm which makes easy to write a
technical code for users who do not have much
programming expertise. However, MATLAB uses an
interpreter that provokes to demean its performance
particularly in executing iterative logic. Indeed the huge

data (eg image/ matrix operations) causes the memory
latency. For those reasons, MATLAB is not much efficient
for real time image processing operations. In fact with high
volumes of graphics cards deployed work stations or in
personal computers, graphics processors units (GPUs)
become a parallel computing platform accessible to a wide
range of users. In the light of teraflops computing capability
and high memory bandwidth, there is an intense incentive
to use GPUs for general purpose computation and there
have been successful reports in the literature on such effort
[9, 2]. NVIDA’s compute unified Device Architecture
(CUDA) is a revolutionary standard which allows
programmers to use the power of computing engine used in
NVIDIA’s CUDA- enabled GPUs.
However, CUDA uses the parallel computing engine in
NVIDIA’s GPUs and all the pipeline stages can be
combined to execute a number of operations simultaneously.
Therefore CUDA can solve the complex computational,
taking better than the CPU [5, 6].
This paper presents a demonstration of mixed programming
concept by integrating MATLAB with CUDA. This is done
by replacing the time consuming parts of the algorithms
running in MATLAB CPU and porting to the Graphical
Processing Unit (GPU). By applying this methodology, we
not only use the rich programming features of MATLAB,
but also minimize its performance bottleneck.
This paper is organized as follows: Section 2 and section 3
provide an overview of the architecture of CUDA and its
benefits and the related work for accelerating MALAB.
Section 4 briefly describes how MATLAB can be integrated
with CUDA. In section 5 we present the proposed
application. The systematic approach of analyzing
MATLAB’s slow processing of over proposed application
and their CUDA implementation are presented in section 6.
The results of the comparative analysis of CPU vs GPU
processing are presented in section 7. Finally conclusion is
drawn in section 8.

IJCSNS International Journal of Computer Science and Network Security, VOL.18 No.6, June 2018

92

2. General purpose programming with GPU

Graphics Processing Units (GPUs) have emerged as
powerful accelerators for many regular algorithms that
operate on dense vectors and matrices, and it designed to
process blocks of pixels at high speed and massive parallel
operations on application data like data visualization,
graphic rendering etc. However usually these applications
include a single program executing in parallel on several
elements of data.
On the other hand, GPUs are designed for parallel
computing with an emphasis on arithmetic operations,
which originate from their main purpose to compute graphic
scene which is finally displayed. Current graphic
accelerators consist of several multiprocessors (up to 30).
Each multiprocessor3 contains several (e.g., 8, 12 or 16)
Arithmetic Logic Units (ALUs). Up to 480 processors are
in total on the current high-end GPUs. Figure 1 shows the
general overview of the CPU and GPU.

Fig. 1 Comparison CPU and GPU architectures.

2.1 Programming Model:

In 2006, NVIDIA introduced which is hardware and
software platform designed for general purpose computing
on GPUs, having a novel programming model with new
instruction set architecture. CUDA comes with a special
software paradigm that allows users to use C as a high level
programming language. Other language and applications
programming interface are also supported in the futures
such as Open ACC, Direct Compute, and FORTRAN.
A CUDA-capable GPU is referred to as a device and the
CPU as a host. As shown in fig.1 CUDA computing model
provides thread which is the finest grain unit of parallelism.
Block is a unit of the resource assignment. The standard size
of a thread block is 64-512 threads. It banks on the
particular application which is the optimum size of a thread
block to certify the best utilization of the device. Thread
blocks form a grid can be viewed as a 1-dimensional, 2-

dimensional or 3-dimensional array. It means that it guide
the developer to partition the problem into sub-problems
such a way that can be solved independently in parallel by
blocks of threads and every sub-problem into finer part that
can be resolved in parallel by all threads within block as
shown in figure 2.

 Fig. 2 NVIDIA CUDA programming architecture

CUDA provides different memory spaces which are during
execution accessible for threads. As shown in figure 2, the
threads grouped into thread blocks can cooperate among
themselves by sharing data through a shared memory. Each
thread that excites kernel has its own private local memory.
The global memory is accessible to all threads, whereas
shared memory is visible only to threads of the block. Also
threads have access to other memories called texture
memory and constant memory as mentioned in figure 2. All
these memories have very small access time and their
optimized use notably speed up the overall execution
program.

Fig. 3 CUDA memory architecture

Block Bock Block
(2,0)

Block
Block
(0,0)

Block
(1,0)

Block
(2,0)

Block
(0,1)

Block
(1,1)

Block
(2,1)

Grid 2

Grid 1

Host

Kernel 1

Kernel 2

Device

Thread
(0,0,0)

Thread
(1,0,0)

Thread
(2,0,0)

Thread
(3,0,0)

Thread
(0,1,0)

Thread
(1,1,0)

Thread
(2,1,0)

Thread
(3,1,0)

(0,0,1) (1,0,1) (2,0,1) (3,0,1)

Block (1,1)

IJCSNS International Journal of Computer Science and Network Security, VOL.18 No.6, June 2018

93

• Global memory: The largest volume of memory available
to all multiprocessors in a GPU, from 256 MB to 1.5 GB in
modern platform. It offers high bandwidth, over 100 GB/s
for top solutions from NVIDIA, but it suffers from very
high latencies (several hundred cycles).
• Constant storage: memory area of 64 KB (the same
concerns modern GPUs), read only for all multiprocessors.
It's cached by 8 KB for each multiprocessor. This memory
is rather slow latencies of several hundred cycles, if there
are no required data in cache.
• Texture memory: is available for reading to all
multiprocessors. Data are fetched by texture units in a GPU,
so the data can be interpolated linearly without extra
overheads. Slow as global memory -- latencies of several
hundred cycles, if there are no required data in cache.

2.2 Features and Limitations of CUDA:

It is easy to learn the CUDA API, but hard to program
efficient applications which utilize the GPU’s performance.
CUDA API is a set of extensions based on the standard C
language. Counterweight to many features of this massively
parallel architecture is that there are limitations mostly
caused by HW architecture. CUDA belongs to the class of
Single Instruction, Multiple Thread (SIMT) according the
Flynn’s taxonomy. SIMT originates in Single Instruction
Stream, Multiple Data Stream (SIMD) class known for
example from the supercomputers based on vector
processors (e.g., Cray-1). SIMT also implies the divergence
in the program that usually leads to the serialization of the
run. Recursive functions are not supported either [14].
As introduced before, graphic accelerators were developed
with the focus on computing vast amounts of arithmetic
operations. Many of them are implemented directly in the
hardware with a cost of units of warp-cycles5. Besides
arithmetic functions there is a set of bitwise operations also
implemented “in hardware”.
Of course, a set of constructs used in parallel programming
is present in CUDA. For example several methods of barrier
synchronization primitives, native broadcast of a single
variable, scatter and gather functions or atomic operations
which prevents from race conditions.
The use of shared memory has also significant impact on
the overall performance but the limiting factor is its size of
16 KB. Talking about memory, CUDA brought more
efficient data transfer operation between the host and the
device. Unlike OpenCL6, CUDA is closed source
belonging to NVIDIA corp. which can be considered as a
limitation as well.

3. Related work

The relevant literature prove that parallel architecture of
current GPUs has become progressively powerful and more
programmable, which allows GPUs to be the main

computation device and invade various domains such as
physics and mathematical simulations and even image
compression analysis. In deed it explained many solutions
of MATLAB’s performance bottleneck.
The work presented in [2] discusses the mixed
programming principles and methods where MATLAB is
integrated with other language like FORTRAN and Visual
C++ (VC).
The results of this work show that a mixed programming
with different tasks can be achieved by compiling different
MATLAB program, doing the necessary settings and
replacing the corresponding C++ code. Also the problem of
MATLAB’s memory latency is discussed on many works.
The work presented in [9] explains who different types of
CUDA memories like (global, texture and constant can be
used to avoid performance bottleneck and to attain the
maximum performance from MATLAB.
Work [10] describes the benefits of integration MATLAB
with CUDA and explains who implement an application
like 2D.DWT on CUDA, C and Warps. The algorithm is
parallelized using CUDA and called through the use of mex
function in MATLAB environment. Then the nvmex
function compile the CUDA (.cu) file and produces a binary
mexw32 file, which can be called like any other MATLAB
function in MATLAB.
The work presented in [10] described the potential
advantages of using CUDA to accelerate its performance.
By employing NVIDIA Tesla C870 the authors achieved
speedups varying from 20 to 40.6 in the execution time over
a C version on an Intel Core 2 Quad Q6700 (2.66 GHz).
The Results presented in [6] display that the implementation
of the application ADL-based wavelet transforms using
GPU attains a speedup 10 times greater than that procured
by the optimized CPU implementation with an AMD
ATHLON II X2 240 CPU and a NVIDIA GeForce 8800
GTX 768MB.
 In [18] the authors have implemented the DWT "Le Gall
5/3" and "Cohen-Daubechies-Feauveau 9/7" filters on a low
cost NVIDIA’s GPU (NVIDIA GeForce GT 640M LE) and
realized on MATLAB (version R2013b) using the in-house
parallel computation toolbox (PCT). The obtained results
show, that the speedup is proportional to the image size and
the performance with GPU enhances above a factor of 2~3
compared with CPU.

4. MATLAB and CUDA

MATLAB is very efficient and easy to program
development environment, the use of memory latency
problem and interpreter has a large negative impact on its
performance. The standard MATLAB uses an interpreter
which is slower in executing loops compared to the
compilers of other languages (C, C++)[12,14].

IJCSNS International Journal of Computer Science and Network Security, VOL.18 No.6, June 2018

94

Image processing tasks require excessive use of loops
because it operates on each pixel of an image, for this
reasons, in order to get the maximum throughput, we
accelerate MATLAB processing by using NVIDIA’s
CUDA parallel processing architecture. In fact MATLAB
could be easily extended via MEX files to take advantage
of the computational power offered by the latest NVIDIA
graphics processor unit (GPU). MATLAB executable
(“MEX”) is an essential utility that allow to call and
compile the codes written in other languages like (C,
FORTRAN), into a dynamically linked.
Mex-files are dynamically linked subroutines written in
other languages, which that can be called from within
MATLAB as regular MATLAB function.

Fig.4 Compiling CUDA code

The external interface function can provide means to call a
MATLAB functions written in (C or FORTRAN) and also
to transfer data between MATLAB and Mex-files. To
integrate MATLAB with CUDA, NVIDIA provides a
MATLAB plug-in which allows programmer to write
CUDA enabled Mex-files and parallelize different time
consuming portions of MATLAB’s algorithm with CUDA
and call them in MATLAB.

4.1 GPU computing using MATLAB:

Furthermore to perform parallel computing with MATLAB
in order to use computer’s graphics processing unit, various

options are available for using GPU in MATLAB [15,
17and 18]. For example the function “gpuArray ()” is used
to transfer data like vector, array etc., from the MATLAB
workspace to the GPU, where the computation is
effectuated. When the execution is achieved, the results are
displaced from the GPU to the MATLAB workspace by the
function “gather ()”. This allows the GPU data to be
available as regular variable in the MATLAB workspace.

4.2 System configuration:

Our proposed implementation is performed on
representative commercial products from the GPU markets
as mentioned in table 1

Table 1: System configuration
HOST GPU

Name
Intel(R)

Core(TM) i7-
3770 CPU @

3.40GHz
Name GeForce GT

620

Clock 3401 MHz Clock 1620 MHz
Cache 1024 KB Num.

Processors 1
Num.

Processo
rs

4 Compute
Capability 2.1

OS.Type Windows TotalMemory 2.00 GB
OS.Versi

on
Microsoft

Windowsÿ7
dition Int‚grale

CUDAVersio
n 6

Name
Intel(R)

Core(TM) i7-
3770 CPU @

3.40GHz

DriverVersio
n

8.17.13.328
8 (332.88)

The GPU is an NVIDIA GeForce GT 620 (384 CUDA cores
clocked at 1620 MHz) with 2.0 GB of GPU device memory
and a 2.1 kb per-block shared memory per SM) with
NVIDIA driver version (332.88)and CUDA 6.0. We also
used a multicore CPU based system with an Intel® core™
(i7-3770 CPU @3.40GHz). We have elaborated our GPU
code using MATLAB version R2014a, "Transferring data
between the MATLAB workspace and the GPU" to
accelerate our algorithm using nvcc () function and .ptx file.
Table 1 resumes our system configuration while table2
show the peak performance of various GPUs using the same
MATLAB version which is R2014a.
The peak performance indicated in table 2 is usually
attained when dealing with extremely large arrays. The
results are obtained using the CPUs on the host PC and
included then for comparison. Since MATLAB works
mainly in double precision the devices are classfy according
to how well they effect double-precision calculations.
Single precision results are included for completeness.

C/C++
CUDA

application

NVCC
CPU Code
MATLAB

PTX Code

PTX to Traget
Compiler

GPU....G80

Physical

Virtual

Traget code

IJCSNS International Journal of Computer Science and Network Security, VOL.18 No.6, June 2018

95

Table 2: GPU comparison report: Host PC

 Results for data-type
'double'

(In GFLOPS)

Results for data-type
'single'

(In GFLOPS)
 MTimes Backslash FFT MTimes Backslash FFT

Quadro
K6000

1092.86 421.36 160.04 3017.89 831.15 334.22

Host PC 83.89 56.66 10.68 156.74 118.54 18.51

Quadro
2000

38.34 33.77 14.10 223.55 133.56 49.63

GeForce
GT 620

12.22 9.63 4.16 55.97 24.29 11.09

5. The Application White Balance

NVIDIA GPUs are recently been a popular device for
several scale computations like image processing, signal
processing, and other many applications, on account to their
high computational throughput and also their parallel
architecture. In fact CUDA allows programmers exploit all
the power of this architecture by providing specific control
over how computations are divided between parallel threads
and executed on the device. The resulting algorithms
written for the GPU are often much faster than the
traditional codes written for the CPU and the process of
building a framework for developing can take a long time.
In the literature, several programmers write CUDA kernels
with the hope that they will be integrated into C or Fortran
programs for production. For this reason, they frequently
use these languages to test their kernels, which require
writing important amounts of “glue code” for tasks like
managing GPU memory by transferring data to the GPU,
initializing and launching CUDA kernels then visualizing
kernel outputs. The writing of “glue code” consumes a lot
of time and it is difficult to be modified. In this context,
using an image of test “Lena” our article presents how
MATLAB supports CUDA kernel development by
providing a language and development environment in
order to evaluate kernels, analyze and visualize kernel
results, and write test harnesses to validate kernel results.
The basic principle of our application is to adjust the colors
of an image so that the image does not have a reddish or
bluish tint. This technique is called White balancing. In fact
this technique involves calculating the average amount of
each color present in the image, then applying scale factors
to assure that the processed image has an equal amount of
each color.
As shown in figure 5, the algorithm eliminates the reddish
tint from the original image.

Fig. 5 Image “Lena 512 *512” before and after using white Balance
adjustment.

ndeed the development of the algorithm with MATLAB
only consumes five lines of code which is much less than
that in C. One of the causes is that MATLAB is a high level
interpreted language and that it is therefore not necessary to
perform administrative tasks such as variable declaration
and memory allocation. In addition, MATLAB includes
thousands of integrated mathematical, engineering, and
tracing functions, and can be extended with domain-specific
algorithms in signal and image processing and other fields.
The main purpose of our paper is to implement the white
balance algorithm in C, with each computational step
written as a CUDA kernel. Before starting with CUDA, we
utilize the MATLAB white balance code in order to explore
the algorithm and decide how to decompose it into kernels.
In that event we start by using the MATLAB Profiler to
know how long each section of code takes to execute.
Consequently the bottleneck areas which means where we
will need to spend extra effort to develop efficient CUDA
kernels will be indicate by the profiler. Accordingly the
most time-consuming section of our algorithm is the code
which multiplies every element in the image data with a
suitable scale factor. It is obviously an operation that can be
parallelized and it could be accelerated notably on the GPU.
Therefore we implement our proposed code in CUDA
C/C++ and we write kernels for the computational
proceeding in the white balance algorithm, then we will
evaluate and test this kernel to ensure that it runs correctly
and gives right results.

6. Evaluation of the proposed code

In order to load the proposed kernel into MATLAB, we
should use paths to the compiled PTX file and source code.
Then we must setting the sizes of the thread blocks and grid
before we can initiate it, thereafter the kernel can then be

IJCSNS International Journal of Computer Science and Network Security, VOL.18 No.6, June 2018

96

used just like any other MATLAB function, save that we
launch the kernel utilizing the feval command.

Fig. 6 Comparison between the output images of CUDA and MATLAB
(CPU)

To evaluate our approach we test if the results are correct
by comparing our new version with the original MATLAB
implementation of the white balance algorithm. As
indicated in figure 6, the comparison shows that the output
images seem identical.
The visual validation proves that the kernel is working
properly and the calculated norm of the difference of the
output images is zero, which validates our approach
numerically.

7. Comparative analysis of GPU vs CPU
processing

Furthermore the use of CUDA in order to process an image
of size 512 * 512, allows reducing the total time for the
image scaling operation from 36.2 ms on the CPU to 7.5 ms
on the GPU. The GPU run time distribution is presented as
follows: 1.9 ms is execution time and 5.59 ms is for loading
and transferring the data to the GPU. That amounts to a
19.05 times speedup on the GPU.

Fig.7 Comparison between the speedup of CUDA (GPU) and MATLB
(CPU)

Table 3 summarizes the execution time of four test
images (Lena, Barbara, Peppers and Baboon) whit different
sizes for the proposed application, White_balance. As
indicated in this table, it is clear to note that for images of
small size, less than 512 pixels, the computing with the CPU
and GPU is almost equal, for all test images.

IJCSNS International Journal of Computer Science and Network Security, VOL.18 No.6, June 2018

97

Table 3: Time cost comparison for the white balance between CPU and GPU for four test images with different sizes.
CARTE GRAPHIQUE: Ge Force GT 620

Image
test

Size of
image

(unit 8)

CPU
time
(ms)

GPU time GPU
time
(ms)

Speed up of
GPU

Speed up of GPU without
time of distribution

Run time
Execution

(ms)

Run time
distribution

(ms)

Lena

256*256 9.6 1.75 5.14 6.9 1.39 5.48
512*512 36.2 1.9 5.59 7.5 4.82 19.05

1024*1024 83 1.98 5.82 7.8 10.64 41.92
1536*1536 124.5 2.77 8.14 10.92 11.4 44.94
2048*2048 149.4 3.04 8.94 11.99 12.46 49.14
2056*3088 189 3.24 9.55 12.8 14.76 58.33
3072*3072 224.22 4.08 12.01 16.1 13.92 54.95

Barbara

256*256 12.1 2.511 7.38 9.9 1.22 4.818
512*512 36.7 2.13 6.26 8.4 4.36 17.23

1024*1024 86 2.18 6.41 8.6 10 39.44
1536*1536 130 3.12 9.19 12.32 10.55 41.66
2048*2048 155.4 2.96 8.72 11.69 13.29 52.5
2056*3088 196.2 3.3 9.85 12.8 15.32 59.45
3072*3072 238.01 4.38 12.91 17.3 13.75 54.33

Peppers 256*256 11.7 2.25 6.64 8.9 1.31 5.2
512*512 37.5 2.15 6.34 8.5 4.41 17.44

Peppers

1024*1024 88 3.01 8.8 11.9 7.39 29.23
1536*1536 133.5 2.68 7.9 10.6 12.59 49.81
2048*2048 161.4 3.31 9.76 13.08 12.33 48.76
2056*3088 197,1 3.55 10.45 14.1 13.97 55.52
3072*3072 239.2 5.17 14.38 19.56 12.21 46.26

Baboon

256*256 10.3 1.8 5.29 7.1 1.45 5.72
512*512 36.4 2.25 6.64 8.9 4.08 16.17

1024*1024 87.8 2.23 6.56 8.8 9.97 39.37
1536*1536 130.8 2.43 7.16 9.6 13.62 53.82
2048*2048 162.4 3.34 9.85 13.19 12.31 48.62
2056*3088 198.2 3.7 10.89 14.6 13.57 53.56
3072*3072 242.7 5.29 14.56 19.81 12.25 45.87

As shown in table3, we found that for a Lena image of size
256*256 pixels, the GPU time, which is equal to 6.9 ms, is
lower than CPU, which is equal to 9.6. The result in this
case is converged, this is due to the time spent to transfer
data from the host’s memory to GPU’s global memory,
which requires a large fraction of total execution time for a
small picture sizes. If we eliminate the data transfer time in
this case the computing with the GPU will be faster than
CPU as indicated in the table by the factor of 5,48. By
increasing the size of images, it is obvious that the
computation with GPU becomes faster than the CPU for all
test images. For example, for test image (Baboon) of size
3072*3072 pixels the GPU execution time is faster than
CPU by the order of 12.25 and 45.87 when we don’t count
the transfer data time. In fact the data transfer time often
negligible in larger algorithms, because data transfer needs
to be completed only once, and we can then compare
execution times only.
In addition, the speedup versus different image sizes for
four testing images, of white balance application is given in
Figures 8 and 9. All test images have similar behavior
conditioned by the image size. We note that, for an image
size equal to 256*256 pixels, the acceleration factor
CPU/GPU is almost equal to 1.5, but for the rest test image
sizes, the acceleration factor develops until reached 15,32.
The speedup is proportional to the image size until it
reaches a maximum at the size 2056*3088 pixels beyond
these values the curve decreases to 13.75. Therefore the

figure 8 shows that when we increase the image size of all
using image test, the speedup increases and attains a
maximum at 2056*3088 pixels equal to 59.45 for image
Barbara, after that the speedup decreases to 54.33.

Fig. 8 Speedup factor of GPU for With Balance without of distribution
data

For the figure 9, the speedup of the smallest image we tested
(Baboon 256*256) was 1.45. By increasing the size of this

IJCSNS International Journal of Computer Science and Network Security, VOL.18 No.6, June 2018

98

image, the speedup augments and reaches a maximum at
2056*3088 pixels equal to 13.57. The observed decrease in
the acceleration on the other used image test after
2056*3088 was likely due to memory limitations [15,
17and 18].

Fig. 8 Speedup factor of GPU for Withebalance

8. Conclusion

This paper presents a demonstration of mixed programming
concept by integration MATLAB with CUDA. This is done
by replacing the time consuming parts of the algorithms
running in MATLAB CPU and porting to the Graphical
Processing Unit (GPU). By applying this methodology, we
not only use the rich programming features of MATLAB,
but also minimize its performance bottleneck. Furthermore
we presented in this paper a novel fast method of white
balance implementation using MATLAB and CUDA, for
achieving load balance between CPUs and GPUs in a
dynamic context. It is based on an accurate prediction of the
CPU and GPU execution times of codes, using the results
of a profiling of those codes. In fact the efficiency of our
GPU based implementation is measured and compared to
CPU based algorithms using Ge Force GT 120.
 Our future plans consist extending this work to handle
other types of hardware and larger systems of kernels.
Finally, the current system is focused towards performance,
but with slight modifications it could be adapted to improve
energy and time consumption.

References
[1] M. E. Belviranli, L. N. Bhuyan, and R. Gupta. “A dynamic

self-scheduling scheme for heterogeneous multiprocessor
architectures”. ACM Trans. Archit.Code Optim., 9(4),57:1-
57:20, Jan. 2013.

[2] J.-F. Dollinger and V. Loechner. “Adaptive runtime selection
for GPU”. In 42nd International Conference on Parallel
Processing - ICPP, Lyon, France, 2013. IEEE.

[3] T. Komoda, S. Miwa, H. Nakamura, and N. Maruyama.
“Integrating multi-GPU execution in an OpenACC compiler”.
In 42nd International Conference on Parallel Processing -
ICPP, Lyon, France, 2013. IEEE.

[4] J. Lee, M. Samadi, Y. Park, and S. Mahlke. “Transparent
CPU-GPU collaboration for data-parallel kernels on
heterogeneous systems”. In Proceedings of the 22nd
International Conference on Parallel Architectures and
Compilation Techniques, PACT '13, pages 245{256,
Piscataway, NJ, USA, 2013. IEEE Press.

[5] NVIDIA Corporation. Cu BLAS-XT.
https://developer.nvidia.com/cublasxt, 2014.

[6] J. Chen, Z. Ju, C. Hua, B. Ma, C. Chen, L. Qin, R. Li,
“Accelerated implementation of adaptive directional lifting-
based discrete wavelet transform on GPU”, Signal
Processing: Image Communication, 28, 1202–1211, 2013.

[7] NVIDIA: NVIDIA's Next Generation CUDA Compute
Architecture: Fermi. NVIDIA (2009)

[8] Volkov, V.: “Better Performance at Lower Occupancy. In:
GPU Technology Conference 2010. (2010)

[9] T. Kim, H. M. Kim, P. sing Tsai, and T. Acharya, “Rate-
distortion optimization algorithm for JPEG 2000”,
Mathematics of Data/Image Coding, Compression, and
Encryption V, with Applications, 4793 (2003), pp. 36-41.

[10] J. Franco, G. Bernab, J. Fernndez, M. E. Acacio, “A parallel
implementation of the 2D wavelet transform using cuda”,
16th Euromicro Conference on Parallel, Distributed and
Network-Based Processing, Weimar, Germany, 111-118,
2009.

[11] NVIDIA Corporation, NVIDIA CUDA Programming Guide
3.0, 2010.

[12] J. Matela, “Implementation of JPEG2000 compression on
GPU”, Master's thesis, Faculty of Informatics, Masaryk
University, 2009.

[13] A. Weiss, M. Heide, S. Papandreou, and N. F�urst, CUJ2K:
a “JPEG2000 encoder in CUDA”, (2009).

[14] Masarykova univerzita, Fakulta informatiky, “Design and
Implementation of Arithmetic Coder for CUDA Platform”,
Thesis, Brno, 2010

[15] D. S. Smith, J. C. Gore, T. E. Yankeelov, E. Brian Welch,
“Real-Time Compressive Sensing MRI Reconstruction
Using GPU Computing and Split Bregman Methods”, Int.
Journal of Biomedical Imaging, Article ID 864827, 1-6, 2012.

[16] J. Aceituno, P. Albert, J. Jegard, J. Virey, « Programmation
sur périphérique GPGPU », Université de Bourgogne. 2010.
http://barbuk.org/rapports/rapport_m1_sys3.pdf, Accessed 5
Septembre 2015.

[17] Mathworks Parallel Computing Toolbox, User’s Guide,
R2014a, 2016.

[18] R. Khemiri et al: “Implementation and Comparison of the
Lifting 5/3 and 9/7 Algorithms in MATLAB on GPU”,
Journal of Electrical Systems 12-3 (2016):490-499

IJCSNS International Journal of Computer Science and Network Security, VOL.18 No.6, June 2018

99

Layla Horrigue received her M.S. degree in
Micro-electronics from Faculty of Science
of Monastir, Tunisia in 2013. Her major
research interests include VLSI and
embedded system in video compression.

Refka Ghodhbani received her M.S. degree
in Micro-electronics from Faculty of
Science of Monastir, Tunisia in 2013. Her
major research interests include Circuit and
System Design, Image compression
embedded block coding.

Taoufik Saidani received his M.S. degree
in Micro-electronics from Faculty of
Science of Monastir, Tunisia in 2007. His
major research interests include VLSI and
embedded system in video and image
compression. His current research interests
include digital signal processing and
hardware–software co-design for rapid
prototyping in telecommunications.

Mohamed Atri born in 1971, received his
Ph.D. degree in Microelectronics from the
Science Faculty of Monastir in 2001. He is
currently a member of the Laboratory of
Electronics and Microelectronics. His
research includes Circuit and System Design,
Image processing, Network Communication,
IPs and SoCs.

