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Summary 
Frequent itemset mining is one of the data mining methodes 
implemeted to find frequent patterns, utilized  in prediction, 
association rule mining, classification, etc. Apriori algorithm is 
an iterative method , that is used to discover frequent itemsets 
from transactional dataset. It scans entire dataset in every 
iteration to come up with the  large frequent itemsets of various 
cardinality, which sounds efficient for small data but not useful 
for big data. To resolve the problem of treatment dataset in every 
iteration, we present an algorithm called Hybrid Frequent Itemset 
Mining on Hadoop ( HFIMH ) which uses the vertical layout of 
dataset to solve the problem of treatment the dataset in every 
iteration. Vertical dataset conveys information to discover 
support of every itemsets, and the idea of set intersection is 
utilized to compute it. We compare the execution of HFIMH with 
another Hadoop based implementation of Apriori algorithm for 
different datasets. Experimental results demonstrate that our 
approach is better. 
Key words:  
Data mining, Frequent itemset mining, Apriori, Big data, 
Hadoop. 

1. Introduction 

Recently the enormous advances in science and 
technology have affected the data size. Morever to its 
extensive , these enormous data are also unstructured anf 
semi unstructered in nature, involving the difficulties in 
capture, storage,sharing, search and analysis.that's why it's 
named  “Big Data” [1, 2].  
Data mining is the way of analyzing data from huge 
amount of stored information in organisation for decision 
making.it stands as a search ground to discover concealed 
information from the database.There different roles 
requiered in data mining such as Classification, association 
mining rule, clustering, sequential pattern discovery, etc 
[3]. By association mining rule we mean a rule-based 
learning technique, finding significant relationships 
between data object in dataset. So, just frequent itemsets 
are taken to build the association rules to decrease  the 
number of potential itemsets.In order to extract frequent 
itemsets from data, different algorithms  
 
along with differentameliorations were suggested, for 
example Apriori [4], FP-Growth [5] and Eclat [6]. 

Apriori algorithm is one of the mostly used methods to 
discover item set from transactional database. The use of 
the original Apriori algorithm became ineffective  to treat, 
when the sharp expanded in data size. Big data need a high 
set of resources for storage and treatment  Traditional 
single-machine computation is not sufficient  to process 
with big data. Thus , multi-machine handling is reasonable 
to store and deal huge data in distributed mode. There are 
numorous  distributed computing frameworks available, 
e.g., MPI,  Hadoop, etc. Hadoop [7] is an open-source 
framework for big data processing in distributed 
environment. Hadoop uses the MapReduce programming 
model to write applications and execute them across 
cluster of machines in distributed manner. 
 Many limitations of Apriori algorithm in distributed 
environment are as follows: 

1. The Apriori algorithm scans the entire dataset in 
every iteration to calculate the support of each 
itemset. 

2. For big transactional data, a huge number of 
candidate sets are generated in every iteration. 

3. All candidate itemsets needs the storage in main 
memory for further handling to produce frequent 
itemsets. 

To resolve the mentioned limitations, we suggest  an 
effective frequent pattern mining algorithm named Hybrid 
Frequent Itemset Mining on hadoop (HFIMH), which 
exploits the concept of vertical dataset. We compare our 
algorithm with other Hadoop-based Apriori 
implementation and noticed that our algorithm 
outperforms in respect of execution time. 
The organization of the paper is as follows. Section 2 
describes the preliminaries of HFIMH, i.e.,  Apriori 
algorithm and Hadoop framework. Section 3 discusses 
about the related work in the area of frequent pattern 
mining. In Sect. 4, we propose the HFIMH algorithm 
followed by experiments and result analysis in Sect. 5. 
Finally, we conclude the paper in Sect. 6. 
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2. Preliminaries 

2.1 Apriori and association rules 

Association rule mining [8] is a process which is meant to 
discover frequent patterns, correlations, associations, or 
causal structures from data set, transactional databases, 
and other forms of data repositories. Given a set of 
transactions, association rule mining aims to discover the 
rules which enable us to predict the occurrence of a 
specific item based on the occurrences of the other items 
in the transaction. 
Association rules indicates itemsets that occur frequently 
in transactions [9]. The mining or formation of association 
rules consists of two steps: 

• Frequent Itemset Mining: finding the itemsets 
that occurs frequently in the database from on 
support. 

• Association Rule Generation: generating large 
rules from the frequent itemsets based on 
confidence. 

habitually, an Association Rule Mining Algorithm results 
in the production of a large number of association rules 
and it is difficult for users to validate all the rules manually. 
Thus, only interesting rules or non-repeating rules are to 
be generated. 
The Apriori Algorithm, which utilizes a bottom up 
approach for the generation of candidate itemsets, is the 
more widely accepted algorithm for Association Rule 
Mining. This algorithm works based on the property called 
as Apriori Property which means that “all the subsets of a 
frequent itemset must also be frequent” [9]. If we know 
that a particular itemset I is infrequent, then it is not 
required to count its supersets [4]. 

2.2 Hadoop and Mapreduce 

Encouraged by benefits of parallel execution in the 
distributed environment, the Apache Foundation came up 
with open source platform, Hadoop, for faster and easier 
analysis and storage of different varieties of data [7]. 
HDFS and MapReduce programming model are two 
integral parts of it. Google File System gave birth to 
HDFS (Hadoop Distributed File system) [10], which 
mainly deal with storage issues. Contrary to the RDBMs, 
it follows WORM (write-once read-many) model in order 
to split large chunk of data to smaller data blocks then join 
them to the free node available [11]. Stored Input data 
blocks are kept in more than one node in order to achieve 
high performance and fault tolerance. 
 MapReduce which is inspired by Google's MapReduce 
[12] is known to be a linearly adaptable programming 
model. It contains two main functions a map ( ) function 
and a reduce ( ) one, both of which work in a synchronous 

manner in order to operate on one set of key value pairs, 
and that, to produce the other set of key value pairs 
[11].These functions are equally valid for any size of data 
irrespective of the degree of the cluster. MapReduce uses 
the feature known as data locality to collocate the data 
with the compute node, so that data access is fast. It 
follows shared nothing architecture which eliminates the 
burden from the programmer of thinking about failure. The 
architecture itself detects failed map or reduce task and 
assigns it to a healthy node [13, 14]. 

2.3 Related Work and Problem Statement 

Many research works have been carried out in the field of 
frequent pattern mining and association rule mining. A 
wide range of knowledge extraction techniques has been 
discussed that are currently being explored for big data. 
Many improved versions of Apriori algorithms have been 
proposed for past decades. Most of the variants of Apriori 
algorithm were developed to work for small size of data in 
a singlemachine system. With the introduction of big data 
for last few years, single-machine system seems to be 
incapable to handle big data. A lot of research has been 
made for frequent pattern mining in multi-machine 
environment, i.e., distributed computing environment. 
Hadoop is one of the prominent distributed computing 
frameworks,which is adopted by many researchers for 
frequent pattern mining in big data. 
A parallel version of Apriori algorithm is provided by Li et 
al. [15], which iteratively produce the frequent itemsets by 
applying the basic MapReduce functions. Yu et al. [16] 
have suggested another MapReduce-based Apriori 
algorithm, which applies possible candidate set generation 
on each transaction and extract all frequent itemsets in a 
individual iteration. Thus, it is costly to provide all 
possible candidate set in memory. The famous ECLAT 
algorithm is applied in distributed environment [17] to 
cope with big data. Two new methods named Dist-Eclat 
and BigFIM are proposed. Dist-Eclat is distributed version 
of ECLAT which is fairly divide search space on 
computing nodes and BigFIM is optimization of Dist-Eclat 
to manage the mining algorithm on large data. There are 
other distributive implementations of Apriori algorithm 
which are presented in [18, 19, 20].All the above 
algorithms are developed in MapReduce over Hadoop 
framework either in single stage or multi-stage. 
In such improving system, the transactional data set is 
either represented in a horizontal format [18, 19, 23] or 
vertical format [20, 21, 22, 24]. Most of the previous 
MapReduce Apriori implementation use horizontal 
disposition of the dataset. In all such algorithms, to 
compute the support of any item set, all transactions are 
scanned one after other in every iteration which is a time-
consuming task. The paper [21, 22] implemented the 
MapReduce-based Apriori algorithm in the vertical format. 
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Here, generation of candidate item set require extra 
iteration. The algorithm also produces some unimportant 
and useless candidate item sets. Counts of these item sets 
are gathered at the reducer which improves the whole 
communication cost concerned. 
To solve the above limits, we suggest effective frequent 
pattern mining algorithm, which operates the notion of 
vertical and horizontal dataset. The support for various 
cardinality of  itemsets is computed by utilizing the 
vertical dataset shared with all the executors of cluster. 
Support count is computed by using Intersection algorithm 
[25].  Our contributions in this paper are listed as follows: 

1.A distributed algorithm is proposed for frequent 
pattern mining, which is implemented in Hadoop 
framework. 

2.Vertical layout of the dataset is used in every  
iteration to resolve the problem of scanning the 
complete dataset. 

3.The horizontal dataset is distributed and processed 
on each machine to reduce the number of 
candidate sets. 

4.Generation of the minimum number of subsets of 
the candidates in order to accelerate the 
calculation of their supports from the vertical 
base by the concept of intersections. 

3. The proposed algorithm 

3.1 Description 

The suggested algorithm concentrates on the problem of 
scanning the whole dataset in each iteration, which results 
the high I/O cost and disk space. In addition, each node 
gets to the whole dataset during mining process, which 
requires a huge capacity for storage of memory. According 
to our knowledge, none of the distributed implementations 
of Apriori on hadoop have examined the strategy  for 
sharing for all the nodes, the database of the vertical data 
revised in each k phases. In order to quicken the 
calculation of the supports, we used the concept of 
intersections. 
The vertical dataset is made by the list of items/itemset 
followed by its transaction IDs. The vertical dataset 
furnishes the benefit that there is no need to scan the entire 
dataset in every iteration, and it contains enough 
information to calculate support of the possible candidate 
sets. In each record of vertical data, TIDs are sorted in 
ascending order, which makes support computation easier. 
Support of k-candidate itemset can be calculated by 
intersection of the TIDs of itemsets, such as we stop the 
intersection when the minimum support condition is 
satisfied. If the minimum support is 10, why continue to 
15 when we can validate it at 10. Yet, original horizontal 

data are distributed and processed on cluster nodes to 
generate the candidates according to each transaction. The 
complete algorithm is divided into two phases, which are 
represented in next subsections. 
The phase 1 :The first phase of the algorithm generates 
frequent items of 1-cardinality in a vertical layout. Since 
we are dealing with big data, dataset may have a great 
number of transactions. We save huge transactional data in 
Hadoop distributed file system (HDFS) of Hadoop 
framework, and multiple partitions of data are distributed 
across cluster nodes. The vertical dataset includes only the 
frequent items and consists a list of items along with 
corresponding transactions which contains those items, i.e., 
{x (Ti )|x ∈ Ti }, where x is an itemset and Ti is the set of 
Transaction IDs. The transactional data are charged into 
HDFS, which permits better use of cluster memory and 
ameliorates fault tolerance. Then, map function is applied 
on every item to produce a (key, value) pair, where key is 
the item and value is the list of transaction IDs. The phase 
1 produces only vertical singleton items. The diagram 
illustrating the transformation from horizontal to vertical 
Layout is shown in Figure 1. 
After the vertical data generation, pruning step is applied 
on itemsets to filter out the non-frequent items. Therefrom, 
at the end of phase 1 only the frequent items are part of 
vertical dataset and all the non-frequent items are 
eliminated from the original horizontal input data, which 
reduces the data size. This revised dataset is further 
processed in next phase. The proposed algorithm is shown 
in Figure 2. 
 

 

Fig. 2  The proposed algorithm for phase 1 

The phase 2: The frequent itemset of k cardinality, where k 
≥ 2 are generated by the second phase of the HFIMH. This 
phase is an iterative procedure, which generates k-frequent 
item sets in the k-th pass of iteration. The vertical dataset, 
which is generated in the last pass, resolves the problem of 
scanning the entire dataset to compute the support of 
itemsets. 
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Fig. 1  Diagram illustrating Horizontal to Vertical Data Layout 
Conversion in MapReduce. 

The vertical data are in charge of keeping enough 
information to compute the support for each itemset and 
generate all potential candidates. All the executors of 
cluster used shares the vertical data, after the first phase 
the vertical base contains the frequent 1-itemset. This data 
have smaller sizes than the actual horizontal data. 
Thus, to reduce the cost of I/O and required disk space, the 
vertical dataset should necessarily be scanned. The revised 
horizontal data from phase 1 are distributed among all the 
executors in order to make the algorithm workable in 
parallel fashion. However, the fact that HFIMH generates 
the candidate set from each transaction instead of 
generating all possible candidate itemsets causes the 
reduction of   the number of candidate sets in each 
iteration. The revised horizontal data are distributed over 
cluster nodes, items are separated from each transaction 
and an item list is prepared in each transaction. We store 
the vertical data in distributed cache in hadoop to be 
shared by all the executors. This shared vertical data is 
scanned and used to count the support for each candidate 
itemsets. After each iteration k, this dataset is updated by 
adding the new k -frequent itemsets in the k-th pass with 
their lists of TIDs to get ready for next pass. 
All potential candidates of k-cardinality are produced in k-
th pass from item list from every transaction. For each 
candidate itemset Ck= I1I2…Ik   instead of generating all 
these subsets in order to obtain its support , we reduce the 
search by joining: Only  the TDIs of two  subsets Sk-1and 
Sk  such as  Sk-1 = I1I2…Ik-1 and Sk =Ik   knowing that  
Ck=Sk-1Sk,  the TIDs of the both subsets Sk-1 and Sk  are 
retrieved from the shared vertical data, and all the common 
transactions IDs of  the subsets are stored in a list common. 

A set of elements is frequent, if the length of the common 
list is not less than min-sup. All frequent Item sets are 
accumulated in the form (key, value) where the key is a set 
elements and the value is the list of transaction IDs to add 
them to the shared vertical database to prepare for 
following  passage (k + 1). The proposed algorithm is 
shown in Figure 3. 
 

 

Fig. 3  The proposed algorithm for phase 2 

4. Complexity analysis 

Let, D be the dataset containing total k items in n 
transactions and m is the number of items in largest 
transaction. All the transactions are scanned once in first 
phase and each element is represented in a vertical layout, 
which takes O (n × m) time in worst case. All the items go 
through the pruning stage that will scan all k items, which 
will need maximum O(k) time. Thus, the time complexity 
of phase 1 is measured by O(n × m + k). 
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Phase 2 of HFIMH is an iterative procedure; hence, we 
find the time complexity for i th iteration/pass. After Phase 
1, the original dataset is revised so that only the frequent 
elements that remains. Suppose that revised horizontal 
data  from phase 2 consists total K items, N transactions 
and M  be the length of largest transaction, such that K ≤ k, 
N ≤ n and M ≤ m. 
All the transactions from revised horizontal data are 
scanned, and an item list is created, which requires O(N) 
time. then, all potential candidates are generated from the 
items of every item list, which requires O(MCi ) time 
equal to O(M min{i,M−i }) since after each pass, the value 
of  i approaches of  M. We access each candidate and 
create a list of only two subsets. The time complexity to 
create subsets  is equal to O(2 ).We suppose that vertical 
data contains v itemset and c maximum count of 
transaction IDs for an itemset, where c ≤ M. All subsets 
needs  to scan all the itemsets from vertical data and find 
the common transaction IDs, which requires maximum 
O(v × c) time. All the candidates are pruned by comparing 
the length of common to minsup, which will take O(1) 
time. Therefore, the upper bound for time required for 
phase 2 will be O(N × M min{i,M−i } × 2 × v × c). Total 
complexity of HFIMH is the sum of complexity of phase 1 
and phase 2. 

5. Experimental and Result Analysis 

To execute the HFIMH  in distributed environment, a 
Hadoop cluster of variable length is utilized, where every 
node has Intel® Core ™ i5- 3230M CPU@2.60GHz  
processing units and 6.00GB RAM with Ubuntu 12.04 and 
Hadoop 2.2.0, HDFS was utilized for storage of input 
dataset and output frequent itemsets. T10I4D100K and 
Pumsb act as experimental data. They can be downloaded 
at http://fimi.ua.ac.be/dataJ, the first is small and the 
second is large.  
In the experiment, comparing the run time of our 
algorithm with the MR-Apriori algorithm [18]. Here, 
running time signifies the total execution time between 
input and output, and both the algorithms are implemented  
on Hadoop platform.In the above Figure 4, the vertical 
axis indicates run time in seconds and the horizontal axis 
indicates the different size of datasets. It can be seen that 
when the dataset is small (T10I4D100K), runtime of both 
the algorithm is near about the same. But, when dealing 
with large dataset (Pumbs), runtime of HFIMH algorithm 
will become shorter as compared to MR-Apriori. 
In our method, we have utilized vertical database layout 
and set theory of Intersection, which simplified the steps, 
as frequent 2-itemsets  to k-itemsets are produced in a 
single step from 1-itemsets. The principal advantage of the 
above system is that it dercreases the overall time spent in 
finding support of the candidate item set. The intersection 

algorithm permits us to calculate the support by simply 
counting the common transactions in every element of 
candidate sets. The time elapsed in the scanning of the 
database is reduced significantly. Also, number of 
candidates are reduced in HFIMH, which ameliorates the 
running time. This demonstrates that HFIMH gives better 
performance and can be utilized efficiently for the 
treatment of large datasets. 
 

 

Fig. 4  Comparison of the runtime 

The following experiment evaluates the scalability of 
HFIMH, which is also measured by the running time .The 
dataset T10I4D100K  is utilized here. The experiment is 
realized on condition that the number of cluster computer 
nodes ranges from 2 to 8 while the support degree remains 
to be 0.5%.  
In Figure 5, x-axis shows the number of computer nodes of 
Haddop  cluster and y-axis indicates the running time of  
HFIMH  algorithm. Figure 5 shows the running time with 
various numbers of computer nodes.With more computer 
nodes, HFIMH  needs less execution time, and the curve 
of HFIMH  has a nearly linear decline. HFIMH  
demonstrates a characteristic of near-linear scalability. 
 

 

Fig. 5  The running time with different computer nodes 
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6.Conclusion 

As one of the traditional mining algorithms, Apriori helps 
us to find frequent patterns from transactional dataset. As 
proposed in this paper, the hybrid frequent itemset mining 
algorithm (HFIMH) use both vertical and horizontal layout 
of data to solve the mentioned defiances in the Apriori 
Algorithm. In fact, HFIMH is a double-phase procedure 
that functions effectively in distributed environment. 
However, for more balanced workload, further research is 
needed to identify a way of loading the input data to the 
nodes. More than that, to permit even better execution 
times, a hybrid implementation can be achieved between 
in-memory and Hadoop implementations. 
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