
IJCSNS International Journal of Computer Science and Network Security, VOL.18 No.6, June 2018

161

Manuscript received June 5, 2018
Manuscript revised June 20, 2018

An Enhanced Apriori Algorithm Using Hybrid Data Layout
Based on Hadoop for Big Data Processing

Yassir ROCHD† and Imad HAFIDI†,

IPOSI Laboratory, National School of Applied Science, Hassan I University, Khouribga, Morocco

Summary
Frequent itemset mining is one of the data mining methodes
implemeted to find frequent patterns, utilized in prediction,
association rule mining, classification, etc. Apriori algorithm is
an iterative method , that is used to discover frequent itemsets
from transactional dataset. It scans entire dataset in every
iteration to come up with the large frequent itemsets of various
cardinality, which sounds efficient for small data but not useful
for big data. To resolve the problem of treatment dataset in every
iteration, we present an algorithm called Hybrid Frequent Itemset
Mining on Hadoop (HFIMH) which uses the vertical layout of
dataset to solve the problem of treatment the dataset in every
iteration. Vertical dataset conveys information to discover
support of every itemsets, and the idea of set intersection is
utilized to compute it. We compare the execution of HFIMH with
another Hadoop based implementation of Apriori algorithm for
different datasets. Experimental results demonstrate that our
approach is better.
Key words:
Data mining, Frequent itemset mining, Apriori, Big data,
Hadoop.

1. Introduction

Recently the enormous advances in science and
technology have affected the data size. Morever to its
extensive , these enormous data are also unstructured anf
semi unstructered in nature, involving the difficulties in
capture, storage,sharing, search and analysis.that's why it's
named “Big Data” [1, 2].
Data mining is the way of analyzing data from huge
amount of stored information in organisation for decision
making.it stands as a search ground to discover concealed
information from the database.There different roles
requiered in data mining such as Classification, association
mining rule, clustering, sequential pattern discovery, etc
[3]. By association mining rule we mean a rule-based
learning technique, finding significant relationships
between data object in dataset. So, just frequent itemsets
are taken to build the association rules to decrease the
number of potential itemsets.In order to extract frequent
itemsets from data, different algorithms

along with differentameliorations were suggested, for
example Apriori [4], FP-Growth [5] and Eclat [6].

Apriori algorithm is one of the mostly used methods to
discover item set from transactional database. The use of
the original Apriori algorithm became ineffective to treat,
when the sharp expanded in data size. Big data need a high
set of resources for storage and treatment Traditional
single-machine computation is not sufficient to process
with big data. Thus , multi-machine handling is reasonable
to store and deal huge data in distributed mode. There are
numorous distributed computing frameworks available,
e.g., MPI, Hadoop, etc. Hadoop [7] is an open-source
framework for big data processing in distributed
environment. Hadoop uses the MapReduce programming
model to write applications and execute them across
cluster of machines in distributed manner.
 Many limitations of Apriori algorithm in distributed
environment are as follows:

1. The Apriori algorithm scans the entire dataset in
every iteration to calculate the support of each
itemset.

2. For big transactional data, a huge number of
candidate sets are generated in every iteration.

3. All candidate itemsets needs the storage in main
memory for further handling to produce frequent
itemsets.

To resolve the mentioned limitations, we suggest an
effective frequent pattern mining algorithm named Hybrid
Frequent Itemset Mining on hadoop (HFIMH), which
exploits the concept of vertical dataset. We compare our
algorithm with other Hadoop-based Apriori
implementation and noticed that our algorithm
outperforms in respect of execution time.
The organization of the paper is as follows. Section 2
describes the preliminaries of HFIMH, i.e., Apriori
algorithm and Hadoop framework. Section 3 discusses
about the related work in the area of frequent pattern
mining. In Sect. 4, we propose the HFIMH algorithm
followed by experiments and result analysis in Sect. 5.
Finally, we conclude the paper in Sect. 6.

IJCSNS International Journal of Computer Science and Network Security, VOL.18 No.6, June 2018 162

2. Preliminaries

2.1 Apriori and association rules

Association rule mining [8] is a process which is meant to
discover frequent patterns, correlations, associations, or
causal structures from data set, transactional databases,
and other forms of data repositories. Given a set of
transactions, association rule mining aims to discover the
rules which enable us to predict the occurrence of a
specific item based on the occurrences of the other items
in the transaction.
Association rules indicates itemsets that occur frequently
in transactions [9]. The mining or formation of association
rules consists of two steps:

• Frequent Itemset Mining: finding the itemsets
that occurs frequently in the database from on
support.

• Association Rule Generation: generating large
rules from the frequent itemsets based on
confidence.

habitually, an Association Rule Mining Algorithm results
in the production of a large number of association rules
and it is difficult for users to validate all the rules manually.
Thus, only interesting rules or non-repeating rules are to
be generated.
The Apriori Algorithm, which utilizes a bottom up
approach for the generation of candidate itemsets, is the
more widely accepted algorithm for Association Rule
Mining. This algorithm works based on the property called
as Apriori Property which means that “all the subsets of a
frequent itemset must also be frequent” [9]. If we know
that a particular itemset I is infrequent, then it is not
required to count its supersets [4].

2.2 Hadoop and Mapreduce

Encouraged by benefits of parallel execution in the
distributed environment, the Apache Foundation came up
with open source platform, Hadoop, for faster and easier
analysis and storage of different varieties of data [7].
HDFS and MapReduce programming model are two
integral parts of it. Google File System gave birth to
HDFS (Hadoop Distributed File system) [10], which
mainly deal with storage issues. Contrary to the RDBMs,
it follows WORM (write-once read-many) model in order
to split large chunk of data to smaller data blocks then join
them to the free node available [11]. Stored Input data
blocks are kept in more than one node in order to achieve
high performance and fault tolerance.
 MapReduce which is inspired by Google's MapReduce
[12] is known to be a linearly adaptable programming
model. It contains two main functions a map () function
and a reduce () one, both of which work in a synchronous

manner in order to operate on one set of key value pairs,
and that, to produce the other set of key value pairs
[11].These functions are equally valid for any size of data
irrespective of the degree of the cluster. MapReduce uses
the feature known as data locality to collocate the data
with the compute node, so that data access is fast. It
follows shared nothing architecture which eliminates the
burden from the programmer of thinking about failure. The
architecture itself detects failed map or reduce task and
assigns it to a healthy node [13, 14].

2.3 Related Work and Problem Statement

Many research works have been carried out in the field of
frequent pattern mining and association rule mining. A
wide range of knowledge extraction techniques has been
discussed that are currently being explored for big data.
Many improved versions of Apriori algorithms have been
proposed for past decades. Most of the variants of Apriori
algorithm were developed to work for small size of data in
a singlemachine system. With the introduction of big data
for last few years, single-machine system seems to be
incapable to handle big data. A lot of research has been
made for frequent pattern mining in multi-machine
environment, i.e., distributed computing environment.
Hadoop is one of the prominent distributed computing
frameworks,which is adopted by many researchers for
frequent pattern mining in big data.
A parallel version of Apriori algorithm is provided by Li et
al. [15], which iteratively produce the frequent itemsets by
applying the basic MapReduce functions. Yu et al. [16]
have suggested another MapReduce-based Apriori
algorithm, which applies possible candidate set generation
on each transaction and extract all frequent itemsets in a
individual iteration. Thus, it is costly to provide all
possible candidate set in memory. The famous ECLAT
algorithm is applied in distributed environment [17] to
cope with big data. Two new methods named Dist-Eclat
and BigFIM are proposed. Dist-Eclat is distributed version
of ECLAT which is fairly divide search space on
computing nodes and BigFIM is optimization of Dist-Eclat
to manage the mining algorithm on large data. There are
other distributive implementations of Apriori algorithm
which are presented in [18, 19, 20].All the above
algorithms are developed in MapReduce over Hadoop
framework either in single stage or multi-stage.
In such improving system, the transactional data set is
either represented in a horizontal format [18, 19, 23] or
vertical format [20, 21, 22, 24]. Most of the previous
MapReduce Apriori implementation use horizontal
disposition of the dataset. In all such algorithms, to
compute the support of any item set, all transactions are
scanned one after other in every iteration which is a time-
consuming task. The paper [21, 22] implemented the
MapReduce-based Apriori algorithm in the vertical format.

IJCSNS International Journal of Computer Science and Network Security, VOL.18 No.6, June 2018 163

Here, generation of candidate item set require extra
iteration. The algorithm also produces some unimportant
and useless candidate item sets. Counts of these item sets
are gathered at the reducer which improves the whole
communication cost concerned.
To solve the above limits, we suggest effective frequent
pattern mining algorithm, which operates the notion of
vertical and horizontal dataset. The support for various
cardinality of itemsets is computed by utilizing the
vertical dataset shared with all the executors of cluster.
Support count is computed by using Intersection algorithm
[25]. Our contributions in this paper are listed as follows:

1.A distributed algorithm is proposed for frequent
pattern mining, which is implemented in Hadoop
framework.

2.Vertical layout of the dataset is used in every
iteration to resolve the problem of scanning the
complete dataset.

3.The horizontal dataset is distributed and processed
on each machine to reduce the number of
candidate sets.

4.Generation of the minimum number of subsets of
the candidates in order to accelerate the
calculation of their supports from the vertical
base by the concept of intersections.

3. The proposed algorithm

3.1 Description

The suggested algorithm concentrates on the problem of
scanning the whole dataset in each iteration, which results
the high I/O cost and disk space. In addition, each node
gets to the whole dataset during mining process, which
requires a huge capacity for storage of memory. According
to our knowledge, none of the distributed implementations
of Apriori on hadoop have examined the strategy for
sharing for all the nodes, the database of the vertical data
revised in each k phases. In order to quicken the
calculation of the supports, we used the concept of
intersections.
The vertical dataset is made by the list of items/itemset
followed by its transaction IDs. The vertical dataset
furnishes the benefit that there is no need to scan the entire
dataset in every iteration, and it contains enough
information to calculate support of the possible candidate
sets. In each record of vertical data, TIDs are sorted in
ascending order, which makes support computation easier.
Support of k-candidate itemset can be calculated by
intersection of the TIDs of itemsets, such as we stop the
intersection when the minimum support condition is
satisfied. If the minimum support is 10, why continue to
15 when we can validate it at 10. Yet, original horizontal

data are distributed and processed on cluster nodes to
generate the candidates according to each transaction. The
complete algorithm is divided into two phases, which are
represented in next subsections.
The phase 1 :The first phase of the algorithm generates
frequent items of 1-cardinality in a vertical layout. Since
we are dealing with big data, dataset may have a great
number of transactions. We save huge transactional data in
Hadoop distributed file system (HDFS) of Hadoop
framework, and multiple partitions of data are distributed
across cluster nodes. The vertical dataset includes only the
frequent items and consists a list of items along with
corresponding transactions which contains those items, i.e.,
{x (Ti)|x ∈ Ti }, where x is an itemset and Ti is the set of
Transaction IDs. The transactional data are charged into
HDFS, which permits better use of cluster memory and
ameliorates fault tolerance. Then, map function is applied
on every item to produce a (key, value) pair, where key is
the item and value is the list of transaction IDs. The phase
1 produces only vertical singleton items. The diagram
illustrating the transformation from horizontal to vertical
Layout is shown in Figure 1.
After the vertical data generation, pruning step is applied
on itemsets to filter out the non-frequent items. Therefrom,
at the end of phase 1 only the frequent items are part of
vertical dataset and all the non-frequent items are
eliminated from the original horizontal input data, which
reduces the data size. This revised dataset is further
processed in next phase. The proposed algorithm is shown
in Figure 2.

Fig. 2 The proposed algorithm for phase 1

The phase 2: The frequent itemset of k cardinality, where k
≥ 2 are generated by the second phase of the HFIMH. This
phase is an iterative procedure, which generates k-frequent
item sets in the k-th pass of iteration. The vertical dataset,
which is generated in the last pass, resolves the problem of
scanning the entire dataset to compute the support of
itemsets.

IJCSNS International Journal of Computer Science and Network Security, VOL.18 No.6, June 2018 164

Fig. 1 Diagram illustrating Horizontal to Vertical Data Layout
Conversion in MapReduce.

The vertical data are in charge of keeping enough
information to compute the support for each itemset and
generate all potential candidates. All the executors of
cluster used shares the vertical data, after the first phase
the vertical base contains the frequent 1-itemset. This data
have smaller sizes than the actual horizontal data.
Thus, to reduce the cost of I/O and required disk space, the
vertical dataset should necessarily be scanned. The revised
horizontal data from phase 1 are distributed among all the
executors in order to make the algorithm workable in
parallel fashion. However, the fact that HFIMH generates
the candidate set from each transaction instead of
generating all possible candidate itemsets causes the
reduction of the number of candidate sets in each
iteration. The revised horizontal data are distributed over
cluster nodes, items are separated from each transaction
and an item list is prepared in each transaction. We store
the vertical data in distributed cache in hadoop to be
shared by all the executors. This shared vertical data is
scanned and used to count the support for each candidate
itemsets. After each iteration k, this dataset is updated by
adding the new k -frequent itemsets in the k-th pass with
their lists of TIDs to get ready for next pass.
All potential candidates of k-cardinality are produced in k-
th pass from item list from every transaction. For each
candidate itemset Ck= I1I2…Ik instead of generating all
these subsets in order to obtain its support , we reduce the
search by joining: Only the TDIs of two subsets Sk-1and
Sk such as Sk-1 = I1I2…Ik-1 and Sk =Ik knowing that
Ck=Sk-1Sk, the TIDs of the both subsets Sk-1 and Sk are
retrieved from the shared vertical data, and all the common
transactions IDs of the subsets are stored in a list common.

A set of elements is frequent, if the length of the common
list is not less than min-sup. All frequent Item sets are
accumulated in the form (key, value) where the key is a set
elements and the value is the list of transaction IDs to add
them to the shared vertical database to prepare for
following passage (k + 1). The proposed algorithm is
shown in Figure 3.

Fig. 3 The proposed algorithm for phase 2

4. Complexity analysis

Let, D be the dataset containing total k items in n
transactions and m is the number of items in largest
transaction. All the transactions are scanned once in first
phase and each element is represented in a vertical layout,
which takes O (n × m) time in worst case. All the items go
through the pruning stage that will scan all k items, which
will need maximum O(k) time. Thus, the time complexity
of phase 1 is measured by O(n × m + k).

IJCSNS International Journal of Computer Science and Network Security, VOL.18 No.6, June 2018 165

Phase 2 of HFIMH is an iterative procedure; hence, we
find the time complexity for i th iteration/pass. After Phase
1, the original dataset is revised so that only the frequent
elements that remains. Suppose that revised horizontal
data from phase 2 consists total K items, N transactions
and M be the length of largest transaction, such that K ≤ k,
N ≤ n and M ≤ m.
All the transactions from revised horizontal data are
scanned, and an item list is created, which requires O(N)
time. then, all potential candidates are generated from the
items of every item list, which requires O(MCi) time
equal to O(M min{i,M−i }) since after each pass, the value
of i approaches of M. We access each candidate and
create a list of only two subsets. The time complexity to
create subsets is equal to O(2).We suppose that vertical
data contains v itemset and c maximum count of
transaction IDs for an itemset, where c ≤ M. All subsets
needs to scan all the itemsets from vertical data and find
the common transaction IDs, which requires maximum
O(v × c) time. All the candidates are pruned by comparing
the length of common to minsup, which will take O(1)
time. Therefore, the upper bound for time required for
phase 2 will be O(N × M min{i,M−i } × 2 × v × c). Total
complexity of HFIMH is the sum of complexity of phase 1
and phase 2.

5. Experimental and Result Analysis

To execute the HFIMH in distributed environment, a
Hadoop cluster of variable length is utilized, where every
node has Intel® Core ™ i5- 3230M CPU@2.60GHz
processing units and 6.00GB RAM with Ubuntu 12.04 and
Hadoop 2.2.0, HDFS was utilized for storage of input
dataset and output frequent itemsets. T10I4D100K and
Pumsb act as experimental data. They can be downloaded
at http://fimi.ua.ac.be/dataJ, the first is small and the
second is large.
In the experiment, comparing the run time of our
algorithm with the MR-Apriori algorithm [18]. Here,
running time signifies the total execution time between
input and output, and both the algorithms are implemented
on Hadoop platform.In the above Figure 4, the vertical
axis indicates run time in seconds and the horizontal axis
indicates the different size of datasets. It can be seen that
when the dataset is small (T10I4D100K), runtime of both
the algorithm is near about the same. But, when dealing
with large dataset (Pumbs), runtime of HFIMH algorithm
will become shorter as compared to MR-Apriori.
In our method, we have utilized vertical database layout
and set theory of Intersection, which simplified the steps,
as frequent 2-itemsets to k-itemsets are produced in a
single step from 1-itemsets. The principal advantage of the
above system is that it dercreases the overall time spent in
finding support of the candidate item set. The intersection

algorithm permits us to calculate the support by simply
counting the common transactions in every element of
candidate sets. The time elapsed in the scanning of the
database is reduced significantly. Also, number of
candidates are reduced in HFIMH, which ameliorates the
running time. This demonstrates that HFIMH gives better
performance and can be utilized efficiently for the
treatment of large datasets.

Fig. 4 Comparison of the runtime

The following experiment evaluates the scalability of
HFIMH, which is also measured by the running time .The
dataset T10I4D100K is utilized here. The experiment is
realized on condition that the number of cluster computer
nodes ranges from 2 to 8 while the support degree remains
to be 0.5%.
In Figure 5, x-axis shows the number of computer nodes of
Haddop cluster and y-axis indicates the running time of
HFIMH algorithm. Figure 5 shows the running time with
various numbers of computer nodes.With more computer
nodes, HFIMH needs less execution time, and the curve
of HFIMH has a nearly linear decline. HFIMH
demonstrates a characteristic of near-linear scalability.

Fig. 5 The running time with different computer nodes

IJCSNS International Journal of Computer Science and Network Security, VOL.18 No.6, June 2018 166

6.Conclusion

As one of the traditional mining algorithms, Apriori helps
us to find frequent patterns from transactional dataset. As
proposed in this paper, the hybrid frequent itemset mining
algorithm (HFIMH) use both vertical and horizontal layout
of data to solve the mentioned defiances in the Apriori
Algorithm. In fact, HFIMH is a double-phase procedure
that functions effectively in distributed environment.
However, for more balanced workload, further research is
needed to identify a way of loading the input data to the
nodes. More than that, to permit even better execution
times, a hybrid implementation can be achieved between
in-memory and Hadoop implementations.

References
[1] I.A.T. Hashem, I. Yaqoob, NB. Anuar, S. Mokhtar, A. Gani,

and S.U. Khan, “The rise of big data on cloud computing,”
Information Systems, Vol.47, pp.98–115, 2015.

[2] C.L. Philip, and C.Y. Zhang, “Data-intensive applications,
challenges, techniques and technologies: a survey on big
data,” Information Sciences, Vol.275. pp.314–347, 2014.

[3] J. Han, M. Kamber, and J. Pei, “Data mining: concepts and
techniques (3th ed),” A volume in The Morgan Kaufmann
Series in Data Management Systems. New York, Elsevier,
2011.

[4] R. Agrawal, and R. Srikant, “Fast algorithms for mining
association rules,” In Proceedings of the 20th Very Large
Data Bases Conference .Santiago, Chile, pp.487–499, 1994.

[5] J. Han, J. Pei, and Y. Yin, “Mining frequent patterns
without candidate generation, ” In Proceedings of the
international conference on Management of data. Dallas,
Texas, USA, Vol.29, No.2, pp.1-12, 2000.

[6] M.J. Zaki, S. Parthasarathy, and M. Ogihara, “Parallel
algorithms for discovery of association rules,” Data Mining
and Knowledge Discovery, Vol.1, No.4, pp.343-373, 1997.

[7] Apache Hadoop. http://hadoop.apache.org.
[8] V. Umarani, and M. Punithavalli, “A Study on Effective

Mining of Association Rules From Huge Databases,”
International Journal of Computer Science and Research,
Vol.1, No.1, pp. 30-34, 2010.

[9] R. Agrawal, and J.C. Shafer, “Parallel mining of association
rules,” in IEEE Transactions on Knowledge and Data
Engineering, Vol.8, No.6, pp.962-969, 1996.

[10] S. Ghemawat, H. Gobioff, H, and S.T. Leung, ,“The Google
file system,” In Proceedings of the nineteenth Symposium
on Operating Systems Principles, Vol.37, No.5, pp. 29–43,
2003.

[11] Yahoo developer network. Hadoop tutorial.
https://developer.yahoo.com/hadoop/tutorial/

[12] J. Dean, and S. Ghemawat, “MapReduce: simplified data
processing on large clusters,” Communications of the 50th
anniversary issue , Vol.51, No.1, pp.107–113, 2008.

[13] R. Saritha, and M.U. Rani, “Mining frequent item sets using
MapReduce paradigm,” International Journal of
Engineering Sciences Research , Vol.4, No.1, pp.1293-1297,
2013.

[14] M.J. Zaki, “Parallel and distributed association mining: A
survey,” In IEEE concurrency , Vol.7, No.4, pp.14– 25,
1999.

[15] N. Li, L. Zeng, Q. He, and Z. Shi, “Parallel Implementation
of Apriori Algorithm Based on MapReduce,” In
Proceedings of the 2012 13th ACIS International
Conference Software Engineering, Artificial Intelligence
Networking and Parallel/Distributed Computing. Kyoto,
JAPAN, pp. 236–241, 2012.

[16] Yu. Kun-Ming, L. Ming-Gong, H. Yuan-Shao, and C. Shi-
Xuan, “An efficient Frequent Patterns Mining Algorithm
based on MapReduce Framework,” In International
Conference Software Intelligence Technologies and
Applications. Hsinchu, TAIWAN, pp.1-5, 2014.

[17] S. Moens, E. Aksehirli, and B. Goethals, “ Frequent Itemset
Mining for Big Data,” In IEEE International Conference Big
Data. Silicon Valley, CA, USA, pp.111–118, 2013.

[18] X. Lin, “MR-Apriori: Association Rules Algorithm Based
on MapReduce”, In: 5th IEEE International Conference on
Software Engineering and Service Science, Beijing, China,
pp.141-144, 2014.

[19] X.Y. Yang, Z. Liu, and Y. Fu, “MapReduce as a
programming model for association rules algorithm on
Hadoop,” In IEEE 3rd International Conference on
Information Sciences and Interaction Sciences. Chengdu,
China, pp.99-102, 2010.

[20] R. Dharavath, V. Kuman, C. Kuman, and A. Kuman, “An
Apriori-Based Vertical Fragmentation Technique for
Heterogeneous Distributed Database Transactions,” In
Proceeedings of the international conference on Advanced
Computing, Networking, and Informatics, Kolkata, India,
pp.687–695, 2014.

[21] S. Dhanya, M. Vysaakan, and A. Mahesh, “An enhancement
of the MapReduce Apriori algorithm using vertical data
layout and set theory concept of intersection,” Intelligent
Systems Technologies and Application, Vol.385, pp.225–
233, 2016.

[22] A, Imran, and P. Ranjan, “Improved Apriori Algorithm
Using Power Set on Hadoop”, In Proceedings of the First
International Conference on Computational Intelligence and
Informatics. Hyderabad, India, pp.245-254, 2017.

[23] W. Mao, and W. Guo, “An improved association rules
mining algorithm based on power set and Hadoop,”
International Conference on Information Science and Cloud
Computing Companion. Guangzhou, China, pp.236–241,
2013.

[24] M.Ibrahim, M.H.Maghny , and M.A.Abdelaziz, “ Fast
Vertical Mining Using Boolean Algebra,” International
Journal of Advanced Computer Science and Applications,
Vol.6, No.1, pp.89-96, 2015.

[25] K. Geetha, and S.K. Mohiddin, “An Efficient Data Mining
Technique for Generating Frequent Itemsets,” International
Journal of Advanced Research in Computer Science and
Software engineering, Vol.3, No.4, pp.571-575, 2013.

http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=%22Authors%22:.QT.Ming-Gong%20Lee.QT.&newsearch=true
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=%22Authors%22:.QT.Yuan-Shao%20Huang.QT.&newsearch=true
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=%22Authors%22:.QT.Shi-Xuan%20Chen.QT.&newsearch=true
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=%22Authors%22:.QT.Shi-Xuan%20Chen.QT.&newsearch=true

IJCSNS International Journal of Computer Science and Network Security, VOL.18 No.6, June 2018 167

Yassir Rochd Mathematics and Computer
Science teacher in High School .PhD
student at the Laboratory of Process
Engineering and Optimization of Industrial
Systems (IPOSI) of the doctoral studies
center of Hassan I University Settat,
Morocco. His research interests are big
data , data mining and text mining.

Imad Hafidi PhD is a professor (since
2009) at the national school of applied
sciences Khouribga. He gets accreditation
to supervise research in 2013. Before
coming to Khouribga, he completed many
programs: PhD degree (2005) in Applied
Mathematics at the National institute of
applied sciences Lyon (INSA), and the MS
degree (2008) in Software Engineering at

the School of Mines Saint-Etienne. His research focuses Text
Mining, Data Integration and Big Data.

	2.3 Related Work and Problem Statement

