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Summary 
The Diffie-Hellman protocol is commonly considered as an 
asymmetric cryptosystem. However, this paper shows that the 
current versions of the Diffie-Hellman protocol can, in both 
directions of communications, be interpreted as a series of two 
consecutive encryptions using a symmetric cipher. The cipher 
used is distinguished by a specific feature: the result of a series of 
several encryptions is independent of the keys' order. Each of the 
communicating parties encrypts the default message with its own 
secret key. Then, both parties send their cryptograms to each 
other, and each of them encrypts the received cryptogram with its 
own key. This way, both parties obtain the same resulting 
cryptogram, which is then used as a seed. The interpretation 
introduced above leads to a “heretical” question of whether the 
Diffie-Hellman protocol falls into the asymmetric or symmetric 
cryptosystem category. 
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1. Introduction 

The Diffie-Hellman protocol (abbreviated as the "DH 
protocol" below) has, for many decades, been used by 
communicating parties to generate a secret value to be 
shared via a public channel. The generated secret value, 
called the seed, is then used to derive cryptographic keys 
for ensuring the subsequent data transmissions. 
The DH protocol was proposed by W. Diffie and M. 
Hellman in their breakthrough paper [1] in 1976. They 
characterized their protocol as a public key distribution 
system and classified it into a category of public key 
cryptography, which they also created. This type of 
cryptography deals with cryptosystems whose secret 
parameters are not shared between the communicating 
parties (e.g. p. 7 in [2]). Its opposite is secret key 
cryptography, in which the secret parameters of the 
cryptosystem must be shared between the parties. 
The public key cryptosystems are closely related to a 
concept of asymmetric cryptosystems - some authors even 
consider these both categories to be identical. Asymmetric 
cryptosystems make use of a pair of keys, and the value of 
one of them (the so-called private key) is only known to 
one party, while the value of the other one (the so-called 
public key) is publicly known. It must be impossible to 
derive the value of the private key from that of the public 
one if such systems are to be secure (e.g. p. 544 in [3]). 

The opposite of asymmetric cryptosystems are symmetric 
cryptosystems. In this instance, a pair of keys may again be 
concerned, but to determine the value of one on the basis 
of the knowledge of the other is possible, and values of 
both keys must therefore be kept secret. Both of these keys 
usually have the same value. 
We will see below that, in the case of the DH protocol, the 
communicating parties do not share any secret parameters 
and, consequently, this protocol is included in the category 
of public key cryptosystems. Cryptographic parameters of 
the DH protocol are quite often called public and private 
keys (e.g. p. 48 in [4], p. 354 in [5], and p. 154 in [6]). 
Although, in the case of the DH protocol, some authors 
avoid using terms public and private keys, these authors 
always explicitly place the DH protocol into the category 
of asymmetric cryptosystems (e.g. p. 412 in [2], and p. 516 
in [3]). However, as we will see in this paper, the DH 
protocol can also be interpreted as a symmetric 
cryptosystem. This ambiguous status indicates that the 
definitions of symmetric and asymmetric cryptosystems 
should be clarified. 

2. DH Protocol 

The DH protocol belongs to the class of cryptography 
based on the discrete logarithm problem (the so-called 
Discrete Logarithm Cryptography – DLC [4]). The 
mathematical basis for the contemporary versions of the 
DH protocol (e.g. [4], [7], [8], and [9]) is a suitable cyclic 
subgroup (Gq, •) where Gq is a set consisting of q elements 
and the symbol "•" stands for the group operation. The 
order q of the group is a prime number, and the group 
operation is, typically, multiplication of integers (Finite 
Field Cryptography – FFC) or addition of points on an 
elliptic curve (Elliptic Curve Cryptography – ECC) [4]. 
The operation M•M•…•M, i.e., the group operation with e 
copies of the element M will be called the e-th repetition of 
the element M, in short written as M e. The variable e will 
be called the repetition length. It holds that M 1 = M, M 2 = 
M•M, M 3 = M•M•M, and so on. For the sake of 
completeness, we define M 0 = N where N is the neutral (or 
identity) element of the group. Let us recall that, for the 
neutral element, equalities M•N = N•M = M hold for each 
element M of the group. For the repetition of repetitions, it 
is evident that if C = M e then C d = (M e)d  = M e·d.  
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Let us list a few facts concerning cyclic groups (e.g. p. 9 in 
[10]) before describing the DH protocol itself. Every 
cyclic group Gq is given by its generator G ∈ Gq, whose 
repetitions will generate all elements of the given group. 
We can thus write Gq = {G 1, G 2, G 3, …, G q}. Another 
fact is that, for a cyclic group of order q, the equality M q = 
N holds for each M ∈ Gq. For prime q, it is moreover true 
that any element except for the neutral one may be taken as 
a generator of Gq. 
The DH protocol can be described as follows with the aid 
of the subgroup (Gq, •) with the generator G: 
1.  Party A chooses at random an integer a such that 1 ≤ a 

≤ q−1. This number is often called Party A's private 
key. 

2. Now Party A calculates A = G a, which is often called 
Party A's public key. This key is transferred by Party 
A to Party B via a public channel. 

3. Party B choose at random an integer b such that 1 ≤ b 
≤ q−1. This number is often called Party B's private 
key. 

4. Now Party B calculates B = G b, which is often called 
Party B's public key. This key is transferred by Party B 
to Party A via a public channel. 

5. Both parties are now able to calculate the shared secret 
element S: Party A calculates S = B h·a, and Party B 
calculates S = A h·b, where h = 1 (in the case of the 
FFC variant), or h is equal to the so-called cofactor 
(for the EEC variant). The element S is now used as 
the seed for deriving the keys for the subsequent data 
transmissions. 

The following equality implies that both parties end up 
with the same element S: 
 

A h·b = (G a) h·b = G a·h·b = (G b) h·a = B h·a.  (1) 

3. Repetition Cipher 

It is clear from the description of the DH protocol that, in 
both directions of communication, a repetition of the C = 
M e type is carried out twice. For the first repetition, the 
input is M = G, parameter e = a or b, and output C = A or 
B. For the second repetition, the input is M = A or B, 
parameter e = h·b or h·a, and output C = S. In the case of 
the second repetition, the equality e = h·b mod q or h·a 
mod q holds due to the fact that the group is cyclic. 
Because q is a prime number and 1 ≤ h ≪ q (p. 27 in [11]), 
the parameter e is, in both the first and second repetitions, 
a random number in the range of 1 ≤ e ≤ q−1. 
Let us now view a repetition as a cipher. From the protocol 
definition, we know that the set of the possible values for 
the parameter e is the set K = {1, 2, 3, …, q−1}. The value 
e = q is not possible because it leads to C = G q = N, which 

is a security risk. That is why we now define H = Gq ∖{N} 
as the set of all possible output values C for the function C 
= M e. This set is also the set of all possible input values 
M; namely, if the output in the second repetition is to be C 
≠ N, the inequality M ≠ N must hold for the input M as well. 
The set H will be called the set of all possible values and K 
the set of all possible keys. Each of the sets H and K 
consists of a total of (q–1) elements. 
Repetition C = M e, where M, C ∈ H and e ∈ K, can be 
interpreted as a cipher C = E(M, e), where E stands for 
encryption, element M is the message, element C is the 
cryptogram, and repetition length e is the encryption key. 
To decrypt D, i.e., to determine M = D(C, d), we will again 
use repetition, this time M = C d where d ∈  K is the 
decryption key. It is true that d = e–1 mod q, for the 
decryption key, that is, e·d = (k·q + 1), where k is a positive 
integer. The correctness of such decryption follows from 
the following chain of equalities: 
 

C d = (M e)d  = M e·d  = M k·q+1 = M k·q•M 1  = (M q)k•M 1  = 
= N k•M = N•M = M    (2) 

 
The described cipher will be called a repetition cipher.  

4. Repetition Cipher Properties 

We have seen that the encryption key e of a repetition 
cipher is, in general, different from the decryption key d. 
However, this cipher is not asymmetric because it is simple 
to calculate the decryption key with the aid of the equality 
d = e–1 mod q. The extended Euclidean algorithm, which is 
used to solve this equation, has the complexity of mere 
O((log2 q)2) – e.g. p. 67 in [3]. 
An example to illustrate a repetition cipher is shown in Fig. 
1. Its basis is a multiplicative group (Gq, ∗) of a finite field 
GF(p), where p = 11, q = 5, and G = 3. 
 

 

Fig. 1  Example of a repetition cipher. 

The encryption or decryption function is, in this instance, 
C = M e  mod p or M = C d mod p. On the left-hand side, or 
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in the center, the individual encryption or decryption 
functions are depicted for different values of the key. On 
the right-hand side, we can see assignments of line types to 
the values of the encryption key e and the corresponding 
values of the decryption key d. The figure clearly shows 
that H = {3, 4, 5, 9}, and K = {1, 2, 3, 4}. 
Let us now study the repetition cipher in more detail. It 
holds that NM = NC = NK = (q−1), where NM is the number 
of all possible messages, NC the number of all possible 
cryptograms, and NK is the number of all possible keys. 
We also know that any element of the subgroup Gq 
different from the neutral element can be chosen for this 
subgroup's generator. In other words, each M ∈ H is able 
to generate all q elements of the set Gq. All (q−1) different 
values of the key e ∈  K thus can, for each M ∈  H, 
generate all (q−1) different elements C of the set H. This 
property implies that, for each pair (M, C), there always 
exists a unique key e such that C = M e. If the key for each 
message is selected at random with a probability value of 
1/NK then, according to p. 49 in [12], the cipher described 
in this paragraph provides the perfect secrecy (i.e., the 
secrecy of the highest degree). Even an attacker with 
unlimited capacity is unable to obtain the encrypted 
message M from an intercepted cryptogram C without 
knowing the key e. 
In our case, the perfect secrecy provided by the repetition 
cipher does not matter, because the attacker knows the 
encrypted message M = G. The goal of an attack on the 
DH protocol is finding the value of the encryption key a or 
b. If the attackers get either of these two values, they can, 
using the known values of B or A, calculate the secret seed 
S. For example, to determine the value of the key a, the 
attackers might utilize their knowledge of the element A = 
G a. The element G is publicly known, and, theoretically, 
the value a might be obtained from A. The most efficient 
known algorithm to solve this problem (the so-called 
discrete logarithm problem, or elliptic curve discrete 
logarithm problem) has, however, the complexity O(√q) 
(e.g. p. 107 in [3], or p. 154 in [13]). This order of 
complexity is considered sufficient in cryptography. 

5. DH Protocol as a Symmetric Cryptosystem 

The DH protocol can, according to Fig. 2, be expressed as 
a symmetric cryptosystem; here E is the repetition cipher. 
Party A selects a random key a to encrypt the generator G 
and sends to Party B the cryptogram A = E(G, a) = G a. 
Similarly, Party B selects a random key b and encrypts the 
generator G using the key b. The cryptogram B = E(G, b) = 
Gb is sent to Party A. Each Party now encrypts the 
cryptogram obtained from the other Party using its own 
secret key: Party A calculates S = E(B, a) = B a = (G b)a = 
Gb·a  = E(G, b·a), and Party B calculates S = E(A, b) = Ab = 

(G a)b = G a·b  = E(G, a·b). Both Parties thus get an 
identical element S, which is the generator G, encrypted by 
a product of both keys' values. This result follows from a 
specific feature of the repetition cipher; namely, the result 
of two consecutive encryptions is independent of the order 
of the keys a and b, depending only on their product a·b. 
The said feature is valid for not only a series of n = 2 
encryptions. It is obviously also true for any n > 1. 

 

Fig. 2  The DH protocol as a symmetric cryptosystem. 

The considerations presented above clearly show that the 
contemporary versions of the DH protocol can be 
described as a cryptosystem whose basic building block is 
a symmetric cipher. In this interpretation, parameters a and 
b are not private keys, but they are secret keys. Similarly, 
elements A and B are not public keys, but they are 
cryptograms where publicly known message M = G is 
encrypted. The described interpretation classifies the DH 
protocol into the category of symmetric cryptosystems. 
The above-mentioned conclusion is further supported by 
the problem of interpreting the so-called public key of the 
DH protocol as a cryptographic parameter. In 
cryptography, a key is a parameter for determination of a 
function (such as encrypting, decrypting, signing or 
verifying). Let us have a look at Fig. 2, illustrating the DH 
protocol: the upper branch shows two functions E; both of 
them represent a repetition of the input value, and the 
parameter (i.e., key) is a or b. On the left-hand side, the 
input is generator G, and the output is element A, called 
Party A's public key. On the right-hand side, the function E 
is the same, but the element A is not the parameter of this 
function - it is its input value. Hence it is disputable, for 
the DH protocol, whether the elements A and B should be 
called keys (i.e., parameters defining a certain function). 
Another problematic point for the DH protocol is the fact 
that the private and public keys are not mutually 
interconnected. For example, in the case of an asymmetric 
cipher, the receiving party's private key is used to decrypt 
data (namely, the cryptogram) that was previously 
encrypted with the receiving party's public key. For a 
digital signature, the sender's public key is used to verify 
data (namely, the signature) that was previously created 
with the aid of the sender's private key. Regarding both 
these asymmetric cryptosystems, one of the keys is a 
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parameter of a function whose input is the data on the 
output from a function controlled by the other member of 
the key pair. On the contrary, there exists no data in the 
DH protocol that would be affected by one of the keys and 
would be an input to a function defined by the other 
member of the key pair. 

6. Comments 

The DH protocol was originally defined by its authors (see 
[1]) on a multiplicative group of a finite field GF(p), that is, 
on a group with the set Gp–1 = {1, 2, 3, …, p–1}. Here the 
parameter p was a prime number, the generator was a 
suitable number G, the repetition meant exponentiation of 
the generator, and the values of the private keys were 
subject to conditions 1 ≤ a ≤ p–1 and 1 ≤ b ≤ p–1. The 
exponential cipher on the group Gp–1 is known as the 
Pohlig-Hellman cipher (e.g. p. 103 in [14]), defined by C = 
M e mod p and M = C d mod p, while the encryption key e 
must be coprime with respect to (p–1) and the decryption 
key is d = e–1 mod (p–1). The selection of the set Gp–1 in 
the original version of the DH protocol led to the following 
situation: if a and b are not coprime to (p–1), the 
exponentiation of the generator is not a symmetric cipher. 
Hence the classification of the DH protocol among 
asymmetric cryptosystems was quite understandable at the 
time of its original definition. 
Further study and practical experience have shown that the 
original formulation of the DH protocol is vulnerable to 
various attacks. The most serious among those is the so-
called Pohlig-Hellman decomposition [15], due to which 
the original group on the set Gp–1 has been replaced with a 
subgroup on the set Gq. The goal of this modification has 
been a natural effort to increase the security of the protocol, 
but in fact, it led to the hidden possibility of interpreting 
the DH protocol as a symmetric cryptosystem. 

7. Conclusions 

The contemporary versions of the DH protocol are based 
on a suitable subgroup of order q, where q is a prime 
number. This paper shows that in such groups the group 
operation involving e copies of element M, i.e., repetition 
C = M•M•…•M = M e, can be interpreted as a symmetric 
cipher in which the resulting element C is the cryptogram, 
the element M is the message, and the repetition length e 
with 1 ≤ e ≤ q−1 is the encryption key. The group 
operation used in the DH protocol must, of course, ensure 
that the key should be protected, so that it must be 
impossible to determine the key e based on the knowledge 
of C and M. 

Since (M a)b = M a·b  = (M b)a, the result of a series of two 
encryptions with keys a and b is independent of the order 
of the keys. This fact is the basis of the DH protocol. Each 
of the communicating parties encrypts the default message 
M with its own key to the cryptogram M a or M b, send 
them to each other, and each of them will encrypt the 
received cryptogram with its own key. Both parties as such 
obtain the same resulting cryptogram M a·b, which is then 
used as the seed. 
Our finding that the DH protocol can also be interpreted as 
a symmetric cryptosystem implies that the definitions of 
symmetric and asymmetric cryptosystems should be 
clarified. 
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