
IJCSNS International Journal of Computer Science and Network Security, VOL.18 No.7, July 2018

38

Manuscript received July 5, 2018

Manuscript revised July 20, 2018

A Comparison of Svm With Deep Learning Models for Large-

Scale Intents Analysis

Toqeer Ali1, Salman Jan2, Safiullah Faizullah3, Shahrulniza Musa4

1 Islamic University of Madinah Madinah, Saudi Arabia

2University of Kuala Lumpur
3Islamic University of Madinah

4University Kuala Lumpur

Abstract
Android has been effectively adopted as an open source

operating system over the smart devices since it offers customers

a wide range of applications. The statistics regarding number of

active applications in Google Play Store show overwhelming

increase. Until December 2017, the number of available

applications in the Google Play Store was 3.5 million while 50.6

million number of active applications are predicted by 2020.

However, there are reports of intruded applications which

violates user’s privacy. It is essential to devise effective

techniques to analyze and detect threats. to ensure integrity of

data and applications, security experts presented various

approaches including use sequences of permissions required by

applications similarly system calls generated by applications are

measured. This study proposes to consider intents initiated by

applications as a parameter to verify malignant behavior of

applications. To meet the purpose, a dataset containing 60,000

applications is generated which includes 20,000 malicious while

40,000 benign applications. The dataset is utilized to train

proposed deep machine learning models including SVM and

Generative Adversarial Networks (GANs). The results show

reasonable malicious detection rate using intents on GANs. We

believe that the proposed model is appropriate solution for

ensuring security of Android applications.

Key words:
Smartphone Security, Android intents based analysis, intrusion

detection, dynamic behavior analysis

1. Introduction

Android operating system is developed by google based

on linux kernel for mostly smart phones. The smartphone

market has raised considerably and android operating

system has become de-facto OS for managing resources

over these devices. Currently, android has become a

market leader in smartphone operating systems [1]. The

ultimate vast adoption of android has attracted the

attention of malware developers. Experts estimated $600

billion as a global cybercrime cost in 2018. There are

mobile malicious campaigns which generate millions of

dollars revenues. Mobile malware has evolved at a high

pace. There is ad click frauds, banking trojans, and many

other malware continuously targeting mobile users.

Thousands of malignant applications have been found on

the Google Play Store, as legitimate apps. The malignant

applications carry a recent detected malware called

Dresscode while infiltrates networks and to hide security

sensitive information. Moreover, it adds Botnet to infected

devices to carry out denial of service (DDoS) attacks and

to take part in spam email campaigns.

If a device infected with Dresscode meets a network

where the router has a weak password, it can crack the

password and then infect other devices on the network,

including IoT connected home devices. [2]. Dresscode

portrait itself as layout themes, utility apps, games etc.

Malware researchers have witnessed a continuous

increasing growth in android malware from 2012 until

2018. They have found that in Google play store, the

perceived malignant applications are more than 130,000

among which no less than 40 are zero-day malware and

roughly 35, 000 go undetected by a large portion of the

malware detection run by VirusTotal [3]. In 2012, the

Eurograbber assault took an expected e36 million in

Europe [4]. Android owners have been warned that as

many as 21.1 million devices may have been infected by

malware from apps that were on the Google Play store.

There are almost 30000 new applications including third

party applications which are added to google play store.

The rapid development of applications has make it

difficult for the researchers to verify the health of all

applications added to google play store. Google

introduced Bouncer [5] to automate antivirus systems for

Google’s app store. But it has been observed that it can be

bypassed and has low detection rate. To ensure that

platforms are protected against the malware, researchers

proposed solutions which are classified into static malware

analysis [6], [7] dynamic analysis [8], [1]. Static analysis

does not essentially execute programs to know they are

malicious or not. Theses involves dissecting the

application and reverse engineering it to observe its

functions and to identify malicious code. On the other

hand, dynamic malware analysis involves running the

application in a closed environment like a sandbox

wherein system calls initiated by applications are recorded

and analyzed to determine the health of applications. The

provided solutions are however, not able to deal with zero-

day malware as the existing solutions are based on

signatures, while in the absence of these signatures, the

newly born malware go undetermined. Similarly, many

IJCSNS International Journal of Computer Science and Network Security, VOL.18 No.7, July 2018 39

machine learning techniques are used to classify benign

and malicious applications on Android plat- form. For

example, DREBIN [9] one of the successful work done in

the recent past to classify the behavior of application on

certain matrix, such as, permissions required by an

application, API calls between the applications and

middleware etc. They gathered a large dataset of 52 GB of

behavior of 16 million benign applications’ behavior and

around 4,000 malware samples. However, our work is

different from DREBIN in certain ways i.e., we are

considering the dynamic behavior of the applications to

classify intents while the DREBIN conducts static analysis

of applications. In addition, we considered large-scale

classification models that work on very large datasets. In

contrast DREBIN worked on traditional classification

models, such as, SVMs which cannot be scaled to very

large datasets. TaintDroid [10] is another quite famous

work done on behavior tracking at various levels of the

Android software stack. TaintDroid use machine learning

model to identify the bad and good behavior. TaintDroid

works on out-of-the-box analysis technique to measure the

run-time behavior of an app. However, one of our

concerns regarding this kind of approach is its feasibility

in the new Android version. Because of the many

architectural changes in Android, such as its permission

models, Delvik replacement with Android Run

Time(ARM) etc., this technique is no longer workable.

Similarly, this work is classifying the behavior on

traditional machine learning model. We propose to utilize

android intents as a parameter to determine the

trustworthiness of applications. Applications during

execution generate intents to perform various actions. The

intents generated by benign and malicious applications

constitutes classes and can be recorded in log files to train

machine learning deep models on both classes of intents.

The intents from applications can be collected through

running application in an isolated environment e.g. a

sandboxed environment which helps in following the

strides of vindictive applications. We utilized Intents as a

tool for our model. We extricated particular features amid

the execution of an application that can foresee the

reliability of application. Rest of paper is organized as

follows. Section II explains architectural details of

Android OS including system libraries, android runtime,

application framework, applications, and android intents

in general. provide background related to this paper. The

target architecture, its evaluation and implementation

details are elaborated in section 6.

2. Architectural Details of Android Operating

System

This section provides introduction to Android’s

framework and its components as presented in Figure 1.

2.1 System Libraries

To perform various tasks in Android, system libraries are

utilized that are indeed low-level codes written in either C

or C ++. These define functionalities for the tasks. The

same are presented to Android runtime (ART) and

application framework through the use library Application

Programing Interfaces. Direct access to native libraries is

provided through Java Native Interface (JNI) bridge.

2.2 Android Runtime

All applications and daemons are executed using Android

Runtime. The Dalwik VM and ART were specifically

developed for the Android wherein the ART runs Dalvik

executables and bytecode specification. In addition, it

isolates processes from each one.

2.3 Application Framework

It adds to runtime environment in which android

applications can be managed and executed. It can be

considered as middleware. The key capacity of application

system is to give a level one foundation to applications as

various Android classes. Parts of this layer are for the

most part executed as administrations or daemons that

keep running out of sight. Some of real parts are depicted

underneath. 1) Activity Manager: The activity manager

behaves as daemon to watch active applications. It

supervises services and manages them accordingly. In

case of out of memory or unresponsive applications, the

in-execution processes are killed by the activity manager.

2) Content Providers: Various applications require access

to shared data. The purpose of content providers is to

provide authorized access to contents required to

applications e.g. the contact list of individuals is stored in

content providers and are presented to applications upon

request. 3) Telephony Manager: Telephony Manager

manages over- all events related to telephone. Keeps

International Mobile Equipment Identity (IMEI) number,

a unique 15-digit code number possessed by all smart

phones. similarly, it manages telephone calls made or

received out of device. 4) Location Manager: Location

manager gets device location through global positioning

systems sensors. Consequently, applications get updates

based on geographical location.

2.4 Android Applications

The device features are utilized through applications

which adds features users are interested in. There are built

in applications in the device which includes a browser,

calculator, dialer Gmail and many others. while users may

install third party applications in the device to increase the

functionality of the device and to carry out functions

which are or not offered by built in applications. Examples

IJCSNS International Journal of Computer Science and Network Security, VOL.18 No.7, July 2018 40

of such applications include MS office, apps for video

players, Sygic and many others.

2.5 Android’s Intents

To put basically, intents are demand from applications for

playing out a specific activity. Google characterizes it as;

an Intent is theoretical depiction of an activity to be

performed. It can be utilized to dispatch an action and to

send it to any intrigued receiver part, and to begin service

or tie any service for communication with services

running in the background. Intents facilitates in carrying

out late runtime binding among the parts of various

applications. It launches activities, carries out

communication among inter-activities and indeed serve as

glue between them [11]. An intent is generated by the

activity that intends to communicate with some other

activity.

Fig. 1 Android Architecture

In that case, the intent encapsulates information which the

other activity requires Intent Resolver or Intent Filter is

utilized for resolving intents. The resolver searches up for

the applications that have been enrolled before to deal

with the particular intent upon a request is made by

applications. Any application willing to serve an intent

describes its willingness using the <IntentFilter> tag in the

manifest le.

2.6 Intent Filter

An intent filter is an applications willingness to serve an

intent. Intent filters are associated with individual

components of applications. An intent-filter association

function Af: C 2F maps each component of an

application to a set of intent filters where F is the set of

intent filters and I ⊆ F. If a component c ∈ C has an

intent filter f, we write f ∈ Af(c).

The flickr service exposes the action string

edu.apex.android.intents.fks intent in its intent filter. In

MS word program, the documents do possess hyperlinks

to various other sources. Upon clicking on the hyperlink, a

request for that resources is generated in the form of

intents which is later on broad-casted. The Intent filter

captures the same and handles it through appropriate

application. The suitability of application for handling

intent is checked in registry files wherein all applications

for handling intents are listed. In the case, we browser gets

started.

3. Malware

Malware is a malicious application that performs actions

without the consent of users on the owner’s devices.

Malware writers uses this phenomenon to steal owners

important in- formation and utilize resources and to gain

monetary benefits. Due to these facts, the number of

malware writers are increasing day by day [12]. For

readers clarity, we describe various types of malware in

the following subsection.

3.1 Types of malware

There are two Android malware types that traps mobile

clients and intrude applications over android devices. Both

types are provided hereunder. 1) Fake Installers, SMS

Trojans, Spywares and Botnets: There is a major part of

applications over the web which are SMS trojans or fake

installers. These types of malware purport themselves are

benign and bamboozle applications and the devices and

thus behave abnormally [13]

Spywares and botnets hides data over the devices and

communicates the same to remote computers. The latest

types of these malware do set specific port for listening

commands from the remote attacker and provides access

to resources which are sensitive in nature. The attacker

thus misuses the resources through performing various

actions through these ports enabling the devices

compromised.

IJCSNS International Journal of Computer Science and Network Security, VOL.18 No.7, July 2018 41

3.2 Malware Distribution

Malware distributions take place in various ways. It can

occur through downloading pirating applications

specifically the third-party applications that contain trojans.

If the devices are not managed properly or if the required

updates are set to off, the devices become more prone to

be attacked [14].

4. Machine Learning Vs Deep Learning

A set of automated techniques and methods for obtaining

knowledge in the form of patterns and then using those

patterns for processing future data including prediction .

Machine learning is classified into to types i.e. supervised

and unsupervised [15]. Unsupervised Learning lacks

target field in its data i.e. no training data is provided [16].

The data is investigated for possible detection of structures

for better representation of the same data. [15]. The data is

investigated for possible detection of structures for better

representation of the same data. There are many

unsupervised models including GANs, Deep Generative

Adversarial Networks (GAN) are utilized for identifying

benign and intruded behaviors. GANs are proven effective

in the fields of computer vision and rapid use in many

domains. The strengths of GANs as reported in the

literature have made many deep learning scientists to

explore the utilization of GANs in their respective fields.

GANs are proved best in recognizing patterns of similar

appearances. The results of utilizing GANs in identifying

benign and malicious sequences is reported in the paper.

Beside utilization of unsupervised learning, we used

super- vised learning in this study which utilizes datasets

consisting both features and target objects [17]. This study

utilized logistic regression and support vector machines

[18], [19] for regression and classification. In [Ref to

conference], we were having limited dataset and the

machines used were not computationally efficient. Due to

the fact, machine learning traditional algorithms were

employed. Since the size of dataset has now been

increased, we made use of GANs as well. Generative

Adversarial Net- works require computational efficient

machines so for the purpose GPU machines were opted.

The results demonstrate the difference between traditional

machine learning and deep learning output in correctly

recognizing patterns in the domain of malware analysis.

5. Target Framework

Our proposed solution is based on intents that is a core of

Android application interaction. Formally, an intent is 4

tuple entity represented through (α, β, γ, σ) such that α

denote the action that is carried out, β represent data part,

γ presents the category while σ : name val represents

function mapping names to corresponding values. The set

of intents is denoted as I. We will be using intents and

action interchangeably throughout the paper. An action

can be called either with activity, service or broadcast.

However, we are not considering service based actions

because this research solely works on applications. A

service can generate intents in the background and that is

basically goes out of the scope of this research. There are

times when service can come with a client/server interface,

in that case, we will consider the actions related to

services as an Android application.

5.1 Behavior of Android Application

Application’s behavior is indeed the sequences of in-

tents/actions that is generated by a particular application.

Intents are of two types one is called implicit and the other

is explicit. Figure 2 explains an example of implicit intent.

Application 1 is generating an action that in turn creates

implicit intent. The action is captured by Android

framework that tries assign the action to appropriate app

that may further create another intent.

Fig. 2 Behavior capture in Android Application (Implicit Intent)

5.2 Scope of the Research

Many approaches are presented in literature for An- droid

malware analysis. Researchers have provided solutions

that can hardly be distinguished, following brief deviate

our studies from earlier studies carried out in this domain.

Researchers provide static analysis, in which the

applications are not executed to analyze behavior. Static

analysis includes the DREBIN, a famous work that

considers permissions required by applications and API

calls made between applications [20], [21], [7]

Dynamic Analysis approach, which requires the

application to run to analyze the behavior, includes

TaintDroid [10]. Taindroid identifies the bad and good

behavior similarly, SCANDROID [22] is an incremental

approach to analyze behaviors over devices. The problem

with these techniques is that they use traditional Machine

Learning model that cannot handle big data and have

scalability issues. They do face problem network activities

as well Similarly, some presented solutions that considers

IJCSNS International Journal of Computer Science and Network Security, VOL.18 No.7, July 2018 42

system’s information and flow monitoring. Few of them

monitors traces as left by applications that goes in many

levels of the Android stacks. That includes, method-level,

message-level, variable- level, and file-level trace tracking.

This research provides solution in classification of

behavior into good and bad behaviors based on Android

Intents. It is different from the previous studies in a sense

that earlier studies worked at either kernel level to capture

system calls or reverse engineering was used to obtain

application’s behavior. Moreover, models of Deep

Learning including Generative Adversarial Networks are

also trained on the benign and intruded behaviors of

applications as recorded in the CSV files. It is observed

during evaluation of the framework that these models

outperform rest of machine learning models in terms of

efficient classification of good and bad behavior of

applications.

Fig. 3 Intent Based Monitoring System Design

Our proposed framework is indeed an extension to the

work published presented in conference [45]. which make

use of machine learning techniques like SVM. It has been

observed through employing SVM in the previous

research work that it works well with dataset of intents

that was indeed short in size. Since the dataset was not

covering data about large number of applications, we

continuously worked on our dataset and enhanced its size

to incorporate large number of applications and their

associated behaviors. However, with the increase in size

of the dataset, the traditional machine learning models are

no longer applicable. The idea of Neural networks

presented back in 1990’s was not very successful at that

time due to limited resources and less computational

power [23]. However, the emergence of supercomputers

and huge processing power, the deep learning concepts

resurged. The GPUs can efficiently process big data that

was not possible earlier. Today, even the google and other

famous organizations are utilizing these models. The deep

learning latest models also termed as deep neural

architectures includes Fully-Connected Neural-Networks

(FCNN) [24], CNNs [25], DBNs [26], DAE [27], RNNs

[28], LSTM [29] are best to work with images. These

models are trained for analyzing applications behaviors

too. These models are efficient to detect malware with low

false positive, but they are best to work with static

analysis and are not best with dynamic analysis. For our

solution, we prefer to use Generative Adversarial Network

(GAN) [30], [31], [32], which are unsupervised machine

learning, and is best working for big data. It is reported

during review of literature that GANs work well when we

don’t have labeled data. Since the malware samples are

increasing drastically likewise, there are increasing

number of android user’s behaviors and applications that

constitute huge volumes of data to be analyzed and mostly

these are unlabeled. The traditional machine learning

algorithms are not capable to analyze these volumes of

data. Since, our large of dataset does not have labels, we

opted GANs and surprisingly, the results are quite

adequate and show the strengths of GANs over the

previous machine learning models. The results section

demonstrates both supervised and unsupervised machine

learning and their results on the dataset of applications. In

the past many parameters of applications are considered

for analysis of malware. Security measured were taken on

program levels, functions level, security sensitive

functions were analyzed, others opted data structures that

hold information regarding processes. Many researchers

utilized system calls sequences on desktop and smart

devices as well as behavioral analysis and permissions

used over desktop and smart devices [33], [34], [35], [36].

Programs and functions exhibit various behaviors during

execution which constitute behavioral profile on windows,

Unix and Linux Operating Systems. Many researches have

considered these parameters as notion of analysis [37],

[38], [39], [40]. Since Android has its own architecture as

depicted in figure 1 and the same architecture frequently

adopts changes consequently, the dex format, permission

model and the runtime environment are changed, however,

the intents, as generated by applications remains the same.

The system calls sequences that are dealt at comparatively

very lower level in the Android Architecture has not

remained good choice for analysis of malware over

android device. The notion of selection of Android intents

as behavioral analysis is opted as its dealt on top layer of

Android architecture i.e. the application layer and even if

the architecture is changed again, the intents as generated

by the applications shall remain intact. As an extension in

size of our database, we downloaded 60, 000 applications,

containing 40000 benign and 20000 malicious

applications, from Google Play Store and various other

sources used for malicious applications. To run these

programs and to record their possible intents, we

downloaded.

Android Source Code, the Oreo Version 8.01 and build

the same on a machine with reasonable memory and

processing speed. Hooks were placed in Android OS to

IJCSNS International Journal of Computer Science and Network Security, VOL.18 No.7, July 2018 43

capture sequences of intents as generated by various

applications. The generated sequences of intents from the

good and bad applications were recorded in log files. The

dataset constituted 6 Gb of data in size. These intents

dataset were preprocessed for training GANs and other

machine learning models. Moreover, the dataset was split

into a ratio of 60 percent for training set and 40 percent for

testing set. On a standard GPU, the different traditional

machine learning algorithms along with deep learning

models were employed. we observed that GANs

outperformed rest of other machine learning algorithms as

our earlier machine learning algorithms were not

generating up to that extension. The results section

elaborates how machine learning traditional models and

the deep generative adversarial networks efficiently

classifies the good and bad behavior of applications.

6. Evaluations

In this section, we report results of employing various

machine learning models on our dataset to affirm which

model is more accurate in terms of correctly classifying

behavior of applications. We consider a number of model

evaluation tools including confusion matrix, classification

accuracy, F1 score and ROC curve. The results of

employing traditional machine learning and deep

generative models are provided in this section. 1)

Confusion Matrix: The correct and incorrect classification

of applications is reflected through confusion matrix . Our

confusion matrix reports that GANs are better than others.

The details are listed in table I.

Table I: Confusion Matrix
Algo TP TN FP FN

SVM Poly 331 16 109 202
SVM Linear 326 21 40 271

Log Reg 325 22 38 273
SVM RBF 321 26 50 261

GAN 335 14 112 207

Where

True Positive (TP): Model predicts true while its True

False Positive (FP): Model Predicts true while its False

False Negative (FN): Model Predicts Negative and its

False

True Negative (TN): Model Predicts Negative and it is

True

2) Accuracy in classification: It presents how correct the

model classifies given input. It provides percentage of

correct classification [41]. It is calculated through the

following expression:

Model’s Accuracy =
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝑇𝑁+𝐹𝑁+𝐹𝑃

The classification accuracy is presented in the beneath

table II.

Table II: Classification Accuracy
Logis Reg: 0.908814589666
SVM RBF: 0.884498480243

SVM Linear: 0.907294832827
SVM Poly: 0.810030395137

GAN: 0.947864987621

6.1 F1 Score

The F1-score is listed in table III

Table III: F1 Score
Logis Reg: 0.91549296 0.9009901
SVM RBF: 0.914446 0.89883914

SVM Linear: 0.914446 0.89883914
SVM Poly: 0.841169 0.7637051

GAN: 0.837799 0.7587562

6.2 ROC Curve

Receiver Operating Characteristic (ROC) curve is the
graphical representation of the performance of any
binary machine learning classification algorithm on
multiple thresholds [44]. Below are the ROC curves of
our model.

Fig. 4 ROC Curve of SVM Poly

Fig. 5 ROC Curve of SVM Linear

IJCSNS International Journal of Computer Science and Network Security, VOL.18 No.7, July 2018 44

Fig. 6 ROC Curve of Logistic Regression

Fig. 7 ROC Curve of GAN

Fig. 8 ROC Curve of SVM RBF

6.3 AUC Score

After employing various models, the following AUC is

recorded:

Table IV: Auc Score
Logis Reg: 0.954497437846
SVM RBF: 0.945754607708

SVM Linear: 0.945416384814
SVM Poly: 0.914503738985

GAN: 0.92679213678

6.4 Histogram

The histograms after implementation of various models

are provided below:

Fig. 9 Histogram of SVM Poly

Fig. 10 Histogram of SVM Linear

Fig. 11 Histogram of Logistic Regression

Fig. 12 Histogram of SVM RBF

IJCSNS International Journal of Computer Science and Network Security, VOL.18 No.7, July 2018 45

7. Conclusion

The study provides a novel approach for detection of

malware for Android operating systems based on intent

based dynamic behavior capture. The presented approach

successfully distinguishes between benign and intruded

intent sequences. The fact is ascertained through

experimental results which confirms the effectiveness of

framework in detection of malware. Moreover, the

documented results suggest that selection of Generative

Adversarial Networks produces more better results. GANs

generated 0.94 accuracy which are better than those of

SVM and logistic regression for learning features and

patterns within android intents for classification of

behaviors into benign and malicious of various

applications.

References
[1] I. Burguera, U. Zurutuza, and S. Nadjm-Tehrani,

“Crowdroid: behavior- based malware detection system for

android,” in Proceedings of the 1st ACM workshop on

Security and privacy in smartphones and mobile devices.

ACM, 2011, pp. 15–26.

[2] S. provides security products, m. solutions to protect small,

and m. enterprise businesses from advanced threats,

“Symantec employee,” https://malaysia.norton.com/

internetsecurity-emerging-threats-hundreds-of-android-

apps-containing-dresscode-malware-hiding-in-google-play-

store. html.

[3] V. is a free service that analyzes suspicious files, URLs, and

facilitates the quick detection of viruses, “An online

antivirus,” https://https://www. virustotal.com.

[4] E. Kalige, D. Burkey, and I. Director, “A case study of

eurograbber: How 36 million euros was stolen via malware,”

Versafe (White paper), 2012.

[5] J. Oberheide and C. Miller, “Dissecting the android

bouncer,” Summer- Con2012, New York, 2012.

[6] Y. Feng, S. Anand, I. Dillig, and A. Aiken, “Apposcopy:

Semantics- based detection of android malware through

static analysis,” in Pro- ceedings of the 22nd ACM

SIGSOFT International Symposium on Foundations of

Software Engineering. ACM, 2014, pp. 576–587.

[7] D.-J. Wu, C.-H. Mao, T.-E. Wei, H.-M. Lee, and K.-P. Wu,

“Droidmat: Android malware detection through manifest

and api calls tracing,” in Information Security (Asia JCIS),

2012 Seventh Asia Joint Conference on. IEEE, 2012, pp.

62–69.

[8] L.-K. Yan and H. Yin, “Droidscope: Seamlessly

reconstructing the os and dalvik semantic views for

dynamic android malware analysis.” in USENIX security

symposium, 2012, pp. 569–584.

[9] D. Arp, M. Spreitzenbarth, M. H übner, H. Gascon, K.

Rieck, and C. Siemens, “Drebin: Effective and explainable

detection of android malware in your pocket,” in

Proceedings of the Annual Symposium on Network and

Distributed System Security (NDSS), 2014.

[10] W. Enck, P. Gilbert, S. Han, V. Tendulkar, B.-G. Chun, L.

P. Cox, J. Jung, P. McDaniel, and A. N. Sheth, “Taintdroid:

an information- flow tracking system for realtime privacy

monitoring on smartphones,” ACM Transactions on

Computer Systems (TOCS), vol. 32, no. 2, p. 5, 2014.

[11] G. Inc., “What is android,” 2017.

[12] i. a. i. G DATA Software AG, with its head office in

Bochum and quickly expanding software house focusing on

antivirus security solutions., “Gdata mobile malware report,”

https://public.gdatasoftware.com/Presse/Publikationen/Mal

ware Reports/G DATA MobileMWR Q1 2015 US.pdf.

[13] V. Vanitha, “Android malware analysis: A survey,” 2017.

[14] C. V. ANAND, S. NAWAZ, and R. RAMACHANDRA,

“The spread of malicious software in large scale networks.”

[15] C. Andrieu, N. De Freitas, A. Doucet, and M. I. Jordan, “An

introduction to mcmc for machine learning,” Machine

learning, vol. 50, no. 1-2, pp. 5–43, 2003.

[16] T. Hastie, R. Tibshirani, and J. Friedman, “Unsupervised

learning,” in The elements of statistical learning. Springer,

2009, pp. 485–585.

[17] C. E. Rasmussen, “Gaussian processes for machine

learning,” 2006.

[18] S. Menard, Applied logistic regression analysis. Sage, 2002,

no. 106.

[19] S. Tong and D. Koller, “Support vector machine active

learning with applications to text classification,” Journal of

machine learning research, vol. 2, no. Nov, pp. 45–66, 2001.

[20] A. P. Felt, E. Chin, S. Hanna, D. Song, and D. Wagner,

“Android permissions demystified,” in Proceedings of the

18th ACM conference on Computer and communications

security. ACM, 2011, pp. 627–638.

[21] M. Nauman, T. A. Tanveer, S. Khan, and T. A. Syed, “Deep

neural archi- tectures for large scale android malware

analysis,” Cluster Computing, pp. 1–20, 2017.

[22] A. P. Fuchs, A. Chaudhuri, and J. S. Foster, “Scandroid:

Automated security certification of android,” Tech. Rep.,

2009.

[23] M. T. Hagan, H. B. Demuth, M. H. Beale, and O. De Jes ús,

Neural network design. Pws Pub. Boston, 1996, vol. 20.

[24] K. Hornik, M. Stinchcombe, and H. White, “Multilayer

feedforward networks are universal approximators,” Neural

networks, vol. 2, no. 5, pp. 359–366, 1989.

[25] Y. LeCun, Y. Bengio et al., “Convolutional networks for

images, speech, and time series,” The handbook of brain

theory and neural networks, vol. 3361, no. 10, p. 1995, 1995.

[26] R. Salakhutdinov and I. Murray, “On the quantitative

analysis of deep belief networks,” in Proceedings of the

25th international conference on Machine learning. ACM,

2008, pp. 872–879.

[27] G. E. Hinton and R. R. Salakhutdinov, “Reducing the

dimensionality of data with neural networks,” science, vol.

313, no. 5786, pp. 504–507, 2006.

[28] Z. Yang, Z. Hu, Y. Deng, C. Dyer, and A. Smola, “Neural

ma- chine translation with recurrent attention modeling,”

arXiv preprint arXiv:1607.05108, 2016.

[29] S. Hochreiter and J. Schmidhuber, “Long short-term

memory,” Neural computation, vol. 9, no. 8, pp. 1735–1780,

1997.

[30] I. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D.

Warde-Farley, S. Ozair, A. Courville, and Y. Bengio,

“Generative adversarial nets,” in Advances in neural

information processing systems, 2014, pp. 2672– 2680.

[31] Z. C. Lipton, “Deep Convolutional Generative Adversarial

Networks,” available at:

IJCSNS International Journal of Computer Science and Network Security, VOL.18 No.7, July 2018 46

https://github.com/zackchase/mxnet-the-straight-dope/blob/

master/chapter14 generative-adversarial-

networks/dcgan.ipynb.

[32] J. Burns, “Exploratory Android Surgery,” in Black Hat

Technical Se- curity Conference USA, 2009, available at:

https://www.blackhat.com/ html/bh-usa-09/bh-usa-09-

archives.html.

[33] R. Tian, R. Islam, L. Batten, and S. Versteeg,

“Differentiating malware from cleanware using behavioural

analysis,” in Malicious and Unwanted Software

(MALWARE), 2010 5th International Conference on. IEEE,

2010, pp. 23–30.

[34] T. Ali, M. Nauman, and X. Zhang, On Leveraging

Stochastic Models for Remote Attestation. Berlin,

Heidelberg: Springer Berlin Heidelberg, 2011, pp. 290–301.

[Online]. Available: http://dx.doi.org/ 10.1007/978-3-642-

25283-9 19

[35] I. Santos, F. Brezo, X. Ugarte-Pedrero, and P. G. Bringas,

“Opcode se- quences as representation of executables for

data-mining-based unknown malware detection,”

Information Sciences, vol. 231, pp. 64–82, 2013.

[36] R. Islam, R. Tian, L. M. Batten, and S. Versteeg,

“Classification of malware based on integrated static and

dynamic features,” Journal of Network and Computer

Applications, vol. 36, no. 2, pp. 646–656, 2013.

[37] K. A. Asmitha and P. Vinod, “A machine learning approach

for linux malware detection,” in 2014 International

Conference on Issues and Challenges in Intelligent

Computing Techniques (ICICT), Feb 2014, pp. 825–830.

[38] M. Nauman, N. Azam, and J. Yao, “A three-way decision

making approach to malware analysis using probabilistic

rough sets,” Information Sciences, vol. 374, pp. 193 – 209,

2016. [Online]. Available:

http://www.sciencedirect.com/science/article/pii/S00200255

16308969

[39] Christopher Olah, “Understanding LSTM Networks,”

http://colah.github. io/posts/2015-08-Understanding-

LSTMs/, 2015.

[40] B. Kolosnjaji, A. Zarras, G. Webster, and C. Eckert, “Deep

learning for classification of malware system call

sequences,” in Australasian Joint Conference on Artificial

Intelligence. Springer, 2016, pp. 137–149.

[41] P. Poˇ r´ızka, J. Klus, A. Hrdliˇcka, J. Vr´abel, P.

ˇSkarkov´a, D. Prochazka, J. Novotn`y, K. Novotn`y, and J.

Kaiser, “Impact of laser-induced break- down spectroscopy

data normalization on multivariate classification accuracy,”

Journal of Analytical Atomic Spectrometry, 2017.

[42] M. Bilenko, R. Mooney, W. Cohen, P. Ravikumar, and S.

Fienberg, “Adaptive name matching in information

integration,” IEEE Intelligent Systems, vol. 18, no. 5, pp.

16–23, 2003.

[43] M. Buckland and F. Gey, “The relationship between recall

and preci- sion,” Journal of the American society for

information science, vol. 45, no. 1, p. 12, 1994.

[44] J. Davis and M. Goadrich, “The relationship between

precision-recall and roc curves,” in Proceedings of the 23rd

international conference on Machine learning. ACM, 2006,

pp. 233–240.

[45] M. W. Afridi, T. Ali, T. Alghamdi, T. Ali, and M. Yasar,

“Android application behavioral analysis through intent

monitoring,” in Digital Forensic and Security (ISDFS),

2018 6th International Symposium on. IEEE, 2018, pp. 1–8.

http://www.sciencedirect.com/science/article/pii/S0020025516308969
http://www.sciencedirect.com/science/article/pii/S0020025516308969

