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Abstract 
Android has been effectively adopted as an open source 

operating system over the smart devices since it offers customers 

a wide range of applications. The statistics regarding number of 

active applications in Google Play Store show overwhelming 

increase. Until December 2017, the number of available 

applications in the Google Play Store was 3.5 million while 50.6 

million number of active applications are predicted by 2020. 

However, there are reports of intruded applications which 

violates user’s privacy. It is essential to devise effective 

techniques to analyze and detect threats. to ensure integrity of 

data and applications, security experts presented various 

approaches including use sequences of permissions required by 

applications similarly system calls generated by applications are 

measured. This study proposes to consider intents initiated by 

applications as a parameter to verify malignant behavior of 

applications. To meet the purpose, a dataset containing 60,000 

applications is generated which includes 20,000 malicious while 

40,000 benign applications. The dataset is utilized to train 

proposed deep machine learning models including SVM and 

Generative Adversarial Networks (GANs). The results show 

reasonable malicious detection rate using intents on GANs. We 

believe that the proposed model is appropriate solution for 

ensuring security of Android applications. 
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1. Introduction 

Android operating system is developed by google based 

on linux kernel for mostly smart phones. The smartphone 

market has raised considerably and android operating 

system has become de-facto OS for managing resources 

over these devices. Currently, android has become a 

market leader in smartphone operating systems [1]. The 

ultimate vast adoption of android has attracted the 

attention of malware developers. Experts estimated $600 

billion as a global cybercrime cost in 2018. There are 

mobile malicious campaigns which generate millions of 

dollars revenues. Mobile malware has evolved at a high 

pace. There is ad click frauds, banking trojans, and many 

other malware continuously targeting mobile users. 

Thousands of malignant applications have been found on 

the Google Play Store, as legitimate apps. The malignant 

applications carry a recent detected malware called 

Dresscode while infiltrates networks and to hide security 

sensitive information. Moreover, it adds Botnet to infected 

devices to carry out denial of service (DDoS) attacks and 

to take part in spam email campaigns. 

If a device infected with Dresscode meets a network 

where the router has a weak password, it can crack the 

password and then infect other devices on the network, 

including IoT connected home devices. [2]. Dresscode 

portrait itself as layout themes, utility apps, games etc. 

Malware researchers have witnessed a continuous 

increasing growth in android malware from 2012 until 

2018. They have found that in Google play store, the 

perceived malignant applications are more than 130,000 

among which no less than 40 are zero-day malware and 

roughly 35, 000 go undetected by a large portion of the 

malware detection run by VirusTotal [3]. In 2012, the 

Eurograbber assault took an expected e36 million in 

Europe [4]. Android owners have been warned that as 

many as 21.1 million devices may have been infected by 

malware from apps that were on the Google Play store. 

There are almost 30000 new applications including third 

party applications which are added to google play store. 

The rapid development of applications has make it 

difficult for the researchers to verify the health of all 

applications added to google play store. Google 

introduced Bouncer [5] to automate antivirus systems for 

Google’s app store. But it has been observed that it can be 

bypassed and has low detection rate. To ensure that 

platforms are protected against the malware, researchers 

proposed solutions which are classified into static malware 

analysis [6], [7] dynamic analysis [8], [1]. Static analysis 

does not essentially execute programs to know they are 

malicious or not. Theses involves dissecting the 

application and reverse engineering it to observe its 

functions and to identify malicious code. On the other 

hand, dynamic malware analysis involves running the 

application in a closed environment like a sandbox 

wherein system calls initiated by applications are recorded 

and analyzed to determine the health of applications. The 

provided solutions are however, not able to deal with zero-

day malware as the existing solutions are based on 

signatures, while in the absence of these signatures, the 

newly born malware go undetermined. Similarly, many 
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machine learning techniques are used to classify benign 

and malicious applications on Android plat- form. For 

example, DREBIN [9] one of the successful work done in 

the recent past to classify the behavior of application on 

certain matrix, such as, permissions required by an 

application, API calls between the applications and 

middleware etc. They gathered a large dataset of 52 GB of 

behavior of 16 million benign applications’ behavior and 

around 4,000 malware samples. However, our work is 

different from DREBIN in certain ways i.e., we are 

considering the dynamic behavior of the applications to 

classify intents while the DREBIN conducts static analysis 

of applications. In addition, we considered large-scale 

classification models that work on very large datasets. In 

contrast DREBIN worked on traditional classification 

models, such as, SVMs which cannot be scaled to very 

large datasets. TaintDroid [10] is another quite famous 

work done on behavior tracking at various levels of the 

Android software stack. TaintDroid use machine learning 

model to identify the bad and good behavior. TaintDroid 

works on out-of-the-box analysis technique to measure the 

run-time behavior of an app. However, one of our 

concerns regarding this kind of approach is its feasibility 

in the new Android version. Because of the many 

architectural changes in Android, such as its permission 

models, Delvik replacement with Android Run 

Time(ARM) etc., this technique is no longer workable. 

Similarly, this work is classifying the behavior on 

traditional machine learning model. We propose to utilize 

android intents as a parameter to determine the 

trustworthiness of applications. Applications during 

execution generate intents to perform various actions. The 

intents generated by benign and malicious applications 

constitutes classes and can be recorded in log files to train 

machine learning deep models on both classes of intents. 

The intents from applications can be collected through 

running application in an isolated environment e.g. a 

sandboxed environment which helps in following the 

strides of vindictive applications. We utilized Intents as a 

tool for our model. We extricated particular features amid 

the execution of an application that can foresee the 

reliability of application. Rest of paper is organized as 

follows. Section II explains architectural details of 

Android OS including system libraries, android runtime, 

application framework, applications, and android intents 

in general. provide background related to this paper. The 

target architecture, its evaluation and implementation 

details are elaborated in section 6. 

2. Architectural Details of Android Operating 

System 

This section provides introduction to Android’s 

framework and its components as presented in Figure 1. 

2.1 System Libraries 

To perform various tasks in Android, system libraries are 

utilized that are indeed low-level codes written in either C 

or C ++. These define functionalities for the tasks. The 

same are presented to Android runtime (ART) and 

application framework through the use library Application 

Programing Interfaces. Direct access to native libraries is 

provided through Java Native Interface (JNI) bridge. 

2.2 Android Runtime 

All applications and daemons are executed using Android 

Runtime. The Dalwik VM and ART were specifically 

developed for the Android wherein the ART runs Dalvik 

executables and bytecode specification. In addition, it 

isolates processes from each one. 

2.3 Application Framework 

It adds to runtime environment in which android 

applications can be managed and executed. It can be 

considered as middleware. The key capacity of application 

system is to give a level one foundation to applications as 

various Android classes. Parts of this layer are for the 

most part executed as administrations or daemons that 

keep running out of sight. Some of real parts are depicted 

underneath. 1) Activity Manager: The activity manager 

behaves as daemon to watch active applications. It 

supervises services and manages them accordingly. In 

case of out of memory or unresponsive applications, the 

in-execution processes are killed by the activity manager. 

2) Content Providers: Various applications require access 

to shared data. The purpose of content providers is to 

provide authorized access to contents required to 

applications e.g. the contact list of individuals is stored in 

content providers and are presented to applications upon 

request. 3) Telephony Manager: Telephony Manager 

manages over- all events related to telephone. Keeps 

International Mobile Equipment Identity (IMEI) number, 

a unique 15-digit code number possessed by all smart 

phones. similarly, it manages telephone calls made or 

received out of device. 4) Location Manager: Location 

manager gets device location through global positioning 

systems sensors. Consequently, applications get updates 

based on geographical location. 

2.4 Android Applications 

The device features are utilized through applications 

which adds features users are interested in. There are built 

in applications in the device which includes a browser, 

calculator, dialer Gmail and many others. while users may 

install third party applications in the device to increase the 

functionality of the device and to carry out functions 

which are or not offered by built in applications. Examples 
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of such applications include MS office, apps for video 

players, Sygic and many others. 

2.5 Android’s Intents 

To put basically, intents are demand from applications for 

playing out a specific activity. Google characterizes it as; 

an Intent is theoretical depiction of an activity to be 

performed. It can be utilized to dispatch an action and to 

send it to any intrigued receiver part, and to begin service 

or tie any service for communication with services 

running in the background. Intents facilitates in carrying 

out late runtime binding among the parts of various 

applications. It launches activities, carries out 

communication among inter-activities and indeed serve as 

glue between them [11]. An intent is generated by the 

activity that intends to communicate with some other 

activity. 

 

 

Fig. 1  Android Architecture 

In that case, the intent encapsulates information which the 

other activity requires Intent Resolver or Intent Filter is 

utilized for resolving intents. The resolver searches up for 

the applications that have been enrolled before to deal 

with the particular intent upon a request is made by 

applications. Any application willing to serve an intent 

describes its willingness using the <IntentFilter> tag in the 

manifest le. 

2.6 Intent Filter 

An intent filter is an applications willingness to serve an 

intent. Intent filters are associated with individual 

components of applications. An intent-filter association 

function Af: C 2F maps each component of an 

application to a set of intent filters where F is the set of 

intent filters and I ⊆ F. If a component c ∈ C has an 

intent filter f, we write f ∈ Af(c).  

The flickr service exposes the action string 

edu.apex.android.intents.fks intent in its intent filter. In 

MS word program, the documents do possess hyperlinks 

to various other sources. Upon clicking on the hyperlink, a 

request for that resources is generated in the form of 

intents which is later on broad-casted. The Intent filter 

captures the same and handles it through appropriate 

application. The suitability of application for handling 

intent is checked in registry files wherein all applications 

for handling intents are listed. In the case, we browser gets 

started. 

3. Malware 

Malware is a malicious application that performs actions 

without the consent of users on the owner’s devices. 

Malware writers uses this phenomenon to steal owners 

important in- formation and utilize resources and to gain 

monetary benefits. Due to these facts, the number of 

malware writers are increasing day by day [12]. For 

readers clarity, we describe various types of malware in 

the following subsection. 

3.1 Types of malware 

There are two Android malware types that traps mobile 

clients and intrude applications over android devices. Both 

types are provided hereunder. 1) Fake Installers, SMS 

Trojans, Spywares and Botnets: There is a major part of 

applications over the web which are SMS trojans or fake 

installers. These types of malware purport themselves are 

benign and bamboozle applications and the devices and 

thus behave abnormally [13] 

Spywares and botnets hides data over the devices and 

communicates the same to remote computers. The latest 

types of these malware do set specific port for listening 

commands from the remote attacker and provides access 

to resources which are sensitive in nature. The attacker 

thus misuses the resources through performing various 

actions through these ports enabling the devices 

compromised. 
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3.2 Malware Distribution 

Malware distributions take place in various ways. It can 

occur through downloading pirating applications 

specifically the third-party applications that contain trojans. 

If the devices are not managed properly or if the required 

updates are set to off, the devices become more prone to 

be attacked [14]. 

4. Machine Learning Vs Deep Learning 

A set of automated techniques and methods for obtaining 

knowledge in the form of patterns and then using those 

patterns for processing future data including prediction . 

Machine learning is classified into to types i.e. supervised 

and unsupervised [15]. Unsupervised Learning lacks 

target field in its data i.e. no training data is provided [16]. 

The data is investigated for possible detection of structures 

for better representation of the same data. [15]. The data is 

investigated for possible detection of structures for better 

representation of the same data. There are many 

unsupervised models including GANs, Deep Generative 

Adversarial Networks (GAN) are utilized for identifying 

benign and intruded behaviors. GANs are proven effective 

in the fields of computer vision and rapid use in many 

domains. The strengths of GANs as reported in the 

literature have made many deep learning scientists to 

explore the utilization of GANs in their respective fields. 

GANs are proved best in recognizing patterns of similar 

appearances. The results of utilizing GANs in identifying 

benign and malicious sequences is reported in the paper. 

Beside utilization of unsupervised learning, we used 

super- vised learning in this study which utilizes datasets 

consisting both features and target objects [17]. This study 

utilized logistic regression and support vector machines 

[18], [19] for regression and classification. In [Ref to 

conference], we were having limited dataset and the 

machines used were not computationally efficient. Due to 

the fact, machine learning traditional algorithms were 

employed. Since the size of dataset has now been 

increased, we made use of GANs as well. Generative 

Adversarial Net- works require computational efficient 

machines so for the purpose GPU machines were opted. 

The results demonstrate the difference between traditional 

machine learning and deep learning output in correctly 

recognizing patterns in the domain of malware analysis. 

5. Target Framework 

Our proposed solution is based on intents that is a core of 

Android application interaction. Formally, an intent is 4 

tuple entity represented through (α, β, γ, σ) such that α 

denote the action that is carried out, β represent data part, 

γ presents the category while σ : name val represents 

function mapping names to corresponding values. The set 

of intents is denoted as I. We will be using intents and 

action interchangeably throughout the paper. An action 

can be called either with activity, service or broadcast. 

However, we are not considering service based actions 

because this research solely works on applications. A 

service can generate intents in the background and that is 

basically goes out of the scope of this research. There are 

times when service can come with a client/server interface, 

in that case, we will consider the actions related to 

services as an Android application. 

5.1 Behavior of Android Application 

Application’s behavior is indeed the sequences of in- 

tents/actions that is generated by a particular application. 

Intents are of two types one is called implicit and the other 

is explicit. Figure 2 explains an example of implicit intent. 

Application 1 is generating an action that in turn creates 

implicit intent. The action is captured by Android 

framework that tries assign the action to appropriate app 

that may further create another intent. 

 

 

Fig. 2  Behavior capture in Android Application (Implicit Intent) 

5.2 Scope of the Research 

Many approaches are presented in literature for An- droid 

malware analysis. Researchers have provided solutions 

that can hardly be distinguished, following brief deviate 

our studies from earlier studies carried out in this domain. 

Researchers provide static analysis, in which the 

applications are not executed to analyze behavior. Static 

analysis includes the DREBIN, a famous work that 

considers permissions required by applications and API 

calls made between applications [20], [21], [7] 

Dynamic Analysis approach, which requires the 

application to run to analyze the behavior, includes 

TaintDroid [10]. Taindroid identifies the bad and good 

behavior similarly, SCANDROID [22] is an incremental 

approach to analyze behaviors over devices. The problem 

with these techniques is that they use traditional Machine 

Learning model that cannot handle big data and have 

scalability issues. They do face problem network activities 

as well Similarly, some presented solutions that considers 
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system’s information and flow monitoring. Few of them 

monitors traces as left by applications that goes in many 

levels of the Android stacks. That includes, method-level, 

message-level, variable- level, and file-level trace tracking. 

This research provides solution in classification of 

behavior into good and bad behaviors based on Android 

Intents. It is different from the previous studies in a sense 

that earlier studies worked at either kernel level to capture 

system calls or reverse engineering was used to obtain 

application’s behavior. Moreover, models of Deep 

Learning including Generative Adversarial Networks are 

also trained on the benign and intruded behaviors of 

applications as recorded in the CSV files. It is observed 

during evaluation of the framework that these models 

outperform rest of machine learning models in terms of 

efficient classification of good and bad behavior of 

applications. 

 

 

Fig. 3  Intent Based Monitoring System Design 

Our proposed framework is indeed an extension to the 

work published presented in conference [45]. which make 

use of machine learning techniques like SVM. It has been 

observed through employing SVM in the previous 

research work that it works well with dataset of intents 

that was indeed short in size. Since the dataset was not 

covering data about large number of applications, we 

continuously worked on our dataset and enhanced its size 

to incorporate large number of applications and their 

associated behaviors. However, with the increase in size 

of the dataset, the traditional machine learning models are 

no longer applicable. The idea of Neural networks 

presented back in 1990’s was not very successful at that 

time due to limited resources and less computational 

power [23]. However, the emergence of supercomputers 

and huge processing power, the deep learning concepts 

resurged. The GPUs can efficiently process big data that 

was not possible earlier. Today, even the google and other 

famous organizations are utilizing these models. The deep 

learning latest models also termed as deep neural 

architectures includes Fully-Connected Neural-Networks 

(FCNN) [24], CNNs [25], DBNs [26], DAE [27], RNNs 

[28], LSTM [29] are best to work with images. These 

models are trained for analyzing applications behaviors 

too. These models are efficient to detect malware with low 

false positive, but they are best to work with static 

analysis and are not best with dynamic analysis. For our 

solution, we prefer to use Generative Adversarial Network 

(GAN) [30], [31], [32], which are unsupervised machine 

learning, and is best working for big data. It is reported 

during review of literature that GANs work well when we 

don’t have labeled data. Since the malware samples are 

increasing drastically likewise, there are increasing 

number of android user’s behaviors and applications that 

constitute huge volumes of data to be analyzed and mostly 

these are unlabeled. The traditional machine learning 

algorithms are not capable to analyze these volumes of 

data. Since, our large of dataset does not have labels, we 

opted GANs and surprisingly, the results are quite 

adequate and show the strengths of GANs over the 

previous machine learning models. The results section 

demonstrates both supervised and unsupervised machine 

learning and their results on the dataset of applications. In 

the past many parameters of applications are considered 

for analysis of malware. Security measured were taken on 

program levels, functions level, security sensitive 

functions were analyzed, others opted data structures that 

hold information regarding processes. Many researchers 

utilized system calls sequences on desktop and smart 

devices as well as behavioral analysis and permissions 

used over desktop and smart devices [33], [34], [35], [36]. 

Programs and functions exhibit various behaviors during 

execution which constitute behavioral profile on windows, 

Unix and Linux Operating Systems. Many researches have 

considered these parameters as notion of analysis [37], 

[38], [39], [40]. Since Android has its own architecture as 

depicted in figure 1 and the same architecture frequently 

adopts changes consequently, the dex format, permission 

model and the runtime environment are changed, however, 

the intents, as generated by applications remains the same. 

The system calls sequences that are dealt at comparatively 

very lower level in the Android Architecture has not 

remained good choice for analysis of malware over 

android device. The notion of selection of Android intents 

as behavioral analysis is opted as its dealt on top layer of 

Android architecture i.e. the application layer and even if 

the architecture is changed again, the intents as generated 

by the applications shall remain intact. As an extension in 

size of our database, we downloaded 60, 000 applications, 

containing 40000 benign and 20000 malicious 

applications, from Google Play Store and various other 

sources used for malicious applications. To run these 

programs and to record their possible intents, we 

downloaded. 

Android Source Code, the Oreo Version 8.01 and build 

the same on a machine with reasonable memory and 

processing speed. Hooks were placed in Android OS to 
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capture sequences of intents as generated by various 

applications. The generated sequences of intents from the 

good and bad applications were recorded in log files. The 

dataset constituted 6 Gb of data in size. These intents 

dataset were preprocessed for training GANs and other 

machine learning models. Moreover, the dataset was split 

into a ratio of 60 percent for training set and 40 percent for 

testing set. On a standard GPU, the different traditional 

machine learning algorithms along with deep learning 

models were employed. we observed that GANs 

outperformed rest of other machine learning algorithms as 

our earlier machine learning algorithms were not 

generating up to that extension. The results section 

elaborates how machine learning traditional models and 

the deep generative adversarial networks efficiently 

classifies the good and bad behavior of applications. 

6. Evaluations 

In this section, we report results of employing various 

machine learning models on our dataset to affirm which 

model is more accurate in terms of correctly classifying 

behavior of applications. We consider a number of model 

evaluation tools including confusion matrix, classification 

accuracy, F1 score and ROC curve. The results of 

employing traditional machine learning and deep 

generative models are provided in this section. 1) 

Confusion Matrix: The correct and incorrect classification 

of applications is reflected through confusion matrix . Our 

confusion matrix reports that GANs are better than others. 

The details are listed in table I. 

Table I: Confusion Matrix 
Algo TP TN FP FN 

SVM Poly 331 16 109 202 
SVM Linear 326 21 40 271 

Log Reg 325 22 38 273 
SVM RBF 321 26 50 261 

GAN 335 14 112 207 

 

Where 

True Positive (TP): Model predicts true while its True  

False Positive (FP): Model Predicts true while its False  

False Negative (FN): Model Predicts Negative and its 

False  

True Negative (TN): Model Predicts Negative and it is 

True 

2) Accuracy in classification: It presents how correct the 

model classifies given input. It provides percentage of 

correct classification [41]. It is calculated through the 

following expression: 

Model’s Accuracy =  
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝑇𝑁+𝐹𝑁+𝐹𝑃
  

The classification accuracy is presented in the beneath 

table II. 

 

 

Table II: Classification Accuracy 
Logis Reg: 0.908814589666 
SVM RBF: 0.884498480243 

SVM Linear: 0.907294832827 
SVM Poly: 0.810030395137 

GAN: 0.947864987621 

6.1 F1 Score 

The F1-score is listed in table III 

Table III: F1 Score 
Logis Reg: 0.91549296 0.9009901 
SVM RBF: 0.914446 0.89883914 

SVM Linear: 0.914446 0.89883914 
SVM Poly: 0.841169 0.7637051 

GAN: 0.837799 0.7587562 

6.2 ROC Curve 

Receiver Operating Characteristic (ROC) curve is the 
graphical representation of the performance of any 
binary machine learning classification algorithm on 
multiple thresholds [44]. Below are the ROC curves of 
our model. 

 

Fig. 4  ROC Curve of SVM Poly 

 

Fig. 5  ROC Curve of SVM Linear 
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Fig. 6  ROC Curve of Logistic Regression 

 

Fig. 7  ROC Curve of GAN 

 

Fig. 8  ROC Curve of SVM RBF 

6.3 AUC Score 

After employing various models, the following AUC is 

recorded: 

Table IV: Auc Score 
Logis Reg: 0.954497437846 
SVM RBF: 0.945754607708 

SVM Linear: 0.945416384814 
SVM Poly: 0.914503738985 

GAN: 0.92679213678 

 

 
 
 

6.4 Histogram 

The histograms after implementation of various models 

are provided below: 

 

Fig. 9  Histogram of SVM Poly 

 

Fig. 10  Histogram of SVM Linear 

 

Fig. 11  Histogram of Logistic Regression 

 

Fig. 12  Histogram of SVM RBF 
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7. Conclusion 

The study provides a novel approach for detection of 

malware for Android operating systems based on intent 

based dynamic behavior capture. The presented approach 

successfully distinguishes between benign and intruded 

intent sequences. The fact is ascertained through 

experimental results which confirms the effectiveness of 

framework in detection of malware. Moreover, the 

documented results suggest that selection  of Generative 

Adversarial Networks produces more better results. GANs 

generated 0.94 accuracy which are better than those of 

SVM and logistic regression for learning features and 

patterns within android intents for classification of 

behaviors into benign and malicious of various 

applications. 
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