
IJCSNS International Journal of Computer Science and Network Security, VOL.18 No.7, July 2018

61

Manuscript received July 5, 2018
Manuscript revised July 20, 2018

Computational Memory Architecture Supporting in Bit-Line
Processing

Driss Azougagh, Ahmed Rebbani, and Omar Bouattane

SSDIA Laboratory, ENSET Mohammedia, Hassan II University of Casablanca, Morocco

Summary
Processing In Memory (PIM) is in demand more than ever to
cope with the growth of Big Data, memory wall and power wall.
It eliminates the overhead of data movement between processing
unit and memory resulting in high bandwidth, massive
parallelism, and high energy efficiency. Most existing PIM works
are concentrated on near-memory processing (NMP) and/or in-
memory processing (IMP). In this paper we present a
computational memory architecture supporting in bit-line
processing, or simply compute-line, using Directed dual bit-line
Keeper. In one clock cycle and through bit-line selection, the
compute-line allow multi-rows read, bitwise logic compute and
multi-rows write, simultaneously. The bit-line keeper projects the
outcome in the selected bit-line to the non-selected one before
write operation. The architecture is backward compatible with
conventional Static Random Access Memory (SRAM) but it has
advantage of not using bit-line pre-charging and sensing for read
and write operations. It reduces bit-line activities by more than
half. When used as an in-memory computing, it also eliminates
overhead of data movement demonstrating considerable
reduction in bandwidth and energy consumption.
The proposed compute-line is validated and tested to show
considerable performance and effectiveness according to the new
capabilities offered. This architecture can support a variety of
interconnect topology between multiple compute-lines which
will benefit many parallel applications.
Key words:
SRAM Memory, Built-in Computing, bit-line keeper, in-place
processing.

1. Introduction

The growth of Big Data, memory wall and power wall are
posing unprecedented demand for Processing In Memory
(PIM) [1]. The PIM solutions proposed to move
processing logic near the cache [2], [3] or main memory
[4], [5]. 3D stacking can make this possible [6]. Compute
Caches significantly push the envelope by enabling in-
place processing using existing cache elements, where at
least one of the operands used in computation has cache
locality for data-centric applications. Several Processor-in-
Memory architectures have been proposed [7], [8].
Authors in [9] proposed Compute Caches architecture that
uses an emerging SRAM circuit technology, which can be
referred to as bit-line computing [10], [11].

Today, in [12], RRAM was viewed as a promising
candidate that can meet future storage and computing
needs. Author discussed potential computing applications
enabled by RRAM devices within both conventional and
emerging computing paradigms and introduced a concept
of RRAM based Memory Processing Unit (MPU). In their
investigation, due to the sneak-path effect and the tradeoff
between data retention and endurance, device-level and
system level innovations are still needed for large-scale
implementation and storage systems. RRAM device tends
to be applicable for LUT-based circuitry to store truth
table of a Boolean function and for programmable switch
to link other CMOS sub-circuits in Field Programmable
Gate Arrays (FPGAs).
Static Random Access Memory (SRAM) has been the
predominant technology used to implement memory cell in
computer systems [13]. In conventional SRAM, bit-lines
need to be pre-charged prior any read operation and
requires differential sensing or amplification of its voltage
levels.
In this paper, we introduce a computational memory
architecture based on a compute-line with directed dual
bit-line Keeper. It’s main purpose is to bring parallel
computation as close as possible to the location of the
stored data/bits. The compute-line is reflexive in the sense
that read, logic, and write operations can be executed
locally. In each cycle, a compute-line fulfills one bit-wise
operation in the following sequences. It first selects and
sets up an operation, reads bit information from external
inputs and/or local memory cells in parallel and
simultaneously, stabilizes the bit-lines throughout the
keeper, and finally writes the data to external outputs
and/or local memory cells.
Next is organized as follow. In the next section we start
with an introduction of the computational memory
architecture. In the third section we describe it
functionality and analyze the results. And finally, we
conclude with perspective remarks.

2. Computational Memory Architecture

A Computational Memory Architecture is composed of m
parallel compute-lines as shown in Fig. 1(a). Each

IJCSNS International Journal of Computer Science and Network Security, VOL.18 No.7, July 2018

62

compute-line is composed of d blocks, a pair of bit-lines
(XBL and YBL) and an extra pair of select-lines (XSL and
YSL), as depicted in Fig. 1(b). Each block can be either an
output (OUTPUT), an input (INPUT), a memory cell
(MCELL) or a bit-line Keeper (KEEPER) as illustrated in
Fig. 1(c). For functional compute-line, all block
components and their dimension d×m need to be carefully
chosen in order to allow stable multiple read/writes from/to
MCELLs to/from candidate bit-line(s), simultaneously and
efficiently.
The architecture has a control unit with extra control
column lines (XSL and YSL) for orchestration and
synchronization of in-place processing operations. To save
circuitry overhead, one global pair of select-lines XSL and
YSL is sufficient and can be shared in an interleaved
manner between each two adjacent compute-lines by
replacing, for each column k, XSLk with XSL and YSLk
with YSL. Furthermore, horizontal blocks BLOCKj* of the
same kind from different compute-lines can share the same
word line commands from the control unit. In such a setup,
computational memory will act as a bit-wise Single
Instruction Multiple Data (bit-wise SIMD).
The circuitry of the blocks OUTPUT, INPUT, MCELL
and KEEPER are described in details in the Fig. 2(a), (b),
(c), and (d), respectively. For a given particular compute-
line, all blocks share the same bit-lines and selected lines.
We use the initial letters "X" and "Y" to emphasize the
symmetry in the compute-line between left and right bit-
lines XBL and YBL, the directed/inverted read word lines
XR/YR, the direct/inverted write word line XW/YW,
storage nodes XB and YB, inputs XI and YI and outputs
XO and YO, respectively. Similar analogy applies for
nMOS/pMOS transistors and AND logical gates. However,
during simulation, AND logic gates in the figure are
replaced with pass transistors. The KEEPER, select-line(s)
and bit-lines play major role in supporting in-place/in-line
computing when operand locality constraint is satisfied.
Similarly to [14], our Computational Memory does not
require a pre-charging cycle for read. However, unlike [14],
it does not use separated extra read-line (RL) for read
operation, instead it uses the existing bit-lines for read
operation and in addition it uses extra select-line(s) for
operation control.

2.1 OUTPUT Block

The OUTPUT block comprised of storage nodes (XB and
YB) tightly connected to the outputs (XO and YO) and
four nMOS pass transistors (XT1, YT1, XT2 and YT2). At
write command (when only XW or YW is set high), the
OUTPUT stores the bit-lines state into it’s corresponding
storage nodes XB and YB directly (XW="1") or inversely
(YW="1"). Similar to a buffer, OUTPUT’s bit of
information are continuously projected as an output XO

and YO for external use by other compute-lines and/or
devices.

Fig. 1 The Computational Memory Architecture at (a), compute-line at
(b) and possible kinds of block at (c).

2.2 INPUT Block

The INPUT block comprised of two read word lines (XR
and YR), two inputs (XI and YI) and four groups of a
couple of AND logic gate and nMOS transistor;
(XG1,XN1), (YG1,YN1), (XG2,XN2) and (YG2,YN2).
The nMOS transistors XN1 and XN2 are connected to the
bit-line XBL, symmetrically; transistors YN1 and YN2 are
connected to the bit-line YBL. When one of the AND logic
gate Gj outputs a "1", the corresponding nMOS transistor
Nj is activated and pulls-down the bit-line connected the
it’s drain.

IJCSNS International Journal of Computer Science and Network Security, VOL.18 No.7, July 2018

63

2.3 MCELL Block

The MCELL structure combines and couples the above
two blocks (INPUT and OUTPUT) by simply wiring XO
and YO with XI and YI, respectively. In the following,
MCELL will be addressed as an INPUT or an OUTPUT
whenever fit. The MCELL intermediates between it’s
storage nodes XB and YB and the bit-lines XBL and YBL
throughout read/write word lines (XR/XW, and YR/YW)
and select-lines (XSL and YSL).

2.4 KEEPER Block

The KEEPER block is composed of two capacitors XC
and YC, two bit-lines XBL and YBL, four pulling up
transistors XK, XP, YK and YP, two AND logic gates XG
and YG and two pulling-down nMOS pass transistors XN
and YN. All these components are used internally except
for the bit-lines that are shared with the remaining blocks
in the compute-line. KEEPER’s role is to keep the pair of
bit-lines superposed using a controlled cross-coupled
inverter. Through the control line BK, the KEEPER may
translate the inverted state in the selected bit-line to the
non-selected one.
When BK is "1", the nMOS transistors XK1 and YK1 are
activated and supply weak voltage to charge the selected
bit-line if no block is pulling down the bit-line. At the same
time, the KEEPER forces the state inverse of selected bit-
line to the other. The direction where to keep the bit-lines’
voltage levels inverted depends on which select-line is
activated. When XSL and BK are set high (with YSL="0"),
the logic gate XG forwards the XBL state to the inverter
composed of YP and YN transistors causing YBL to a
state opposite to that of XBL.
In case no pull down is exercised on XBL, the XBL’s state
is forced to high by charging the capacitor XC, through
XK and XP transistors commanded by AND logic gate YG
with output is "0" since YSL is "0", and consequently the
capacitor YC is discharged. Otherwise, if XBL is strongly
pulled down and forced to "0", the capacitor XC is
discharged and the capacitor YC is charged afterward.

3. Functionalityand Results

The compute-line supports all bit-wise basic logic
operations summarized in the equation 1, including NOT,
NOR and NAND. It is worth mentioning that when both
XSL and YSL and/or both XW and YW (of the same
OUTPUT) are set high, the states of bit-lines XBL and
YBL become undetermined. When both XR and YR (of
the same INPUT) are set high both bit-lines are pulled
down to "0". In the following, we try to avoid the use and
omit investigation details of these cases.

Fig. 2 Compute-line circuitry for (a) OUTPUT, (b) INPUT, (c) MCELL
and (d) KEEPER blocks.

IJCSNS International Journal of Computer Science and Network Security, VOL.18 No.7, July 2018

64

.)**(*

)**(*

;**

1

1

∑

∑

=

=

+=

+=

+=

d

j
jjjj

d

j
jjjj

iii

XBYRYBXRYSLYBL

andYBYRXBXRXSLXBL

whereYBLYWXBLXWXB

 (1)

This section provides a timing diagram exemplary of a
memory controller for the proposed compute-line. We then
apply the timing diagram sequence to read and write a bit
of information. We used a setup that uses a compute-line
with one KEEPER, four MCELLs, one INPUT and one
OUTPUT while sharing the same bit-lines and select-
line(s).
To reduce the circuitry overhead in the compute-line, we
omitted all commands starting with initials Y and their
related logics as in Fig. 3. Therefore, we excluded line YW
and transistors XT2 and YT2 in all OUTPUTs, and line
YR, transistors XN2, YN1 and YN2, and the AND logic
gates XG2, YG1, and YG2 in all INPUTs. In the KEEPER
block, we removed the transistor XN and the logical gate
YG and wired the gate of XP to the ground. To
differentiate between INPUT and OUTPUT from
MCELLs commands we renamed read word-line XR of
INPUT with RD and write word-line W of OUTPUT with
WR, and we numbered from 1 to 4 the ones of MCELLs.
For a case study, we propose the implementation of a
bitwise Full adder to compute an addition of two n-bits
values a and b with an initial carry bit c0. This is the
arithmetic operation used the most in any computation unit.
For demonstration purpose, our implementation takes two
input operands ai and bi and one carry ci, and returns an
output si and a carry ci+1.
On a compute-line, there is an order in which a set of
operations will be conducted in time to fulfill one full
adder operation. At the beginning, three cycles are
consumed to read one carry c0 and two bits of information
a0 and b0 from a streamed input XI. These cycles can be
omitted when the data are available locally. It then follows
nine cycles for nine basic logical operations required by
the full adder to compute the outcome addition s0 and
carry c1. For further use of the outcome carry c1, we might
need to just fetch the next significant bits of information a1
and b1 if not available locally.
For spice simulation, we used 45nm PTM model, as cited
in [15], for high-performance application (PTM-HP),
incorporating high-k metal gate and stress effect (level=54
& version=4.0). Other tested transistor models provided
similar results with noticeable difference in the choice of
the working configuration for the capacitor and transistors.

Fig. 3 Compute-line circuitry for (a) OUTPUT, (b) INPUT, (c) MCELL
and (d) KEEPER blocks

IJCSNS International Journal of Computer Science and Network Security, VOL.18 No.7, July 2018

65

Fig. 4 Voltage waveforms for simulated Full Adder for (c) control commands and, for i {0,..,7}, row (i) shows XI, XBL, YBL, XB1, XB2, XB3, XB4,
XO for input operands value extracted from the binary representation b0|a0|c0 of i

IJCSNS International Journal of Computer Science and Network Security, VOL.18 No.7, July 2018

66

2.1 Memory Controller

The role of controller is to orchestrate one or many
operations to be computed in the bit-lines. The controller
can receive a stream of operations to apply in a form of
command words. For one cycle, a command word can be
decoded and applied to a circuitry clocked to generate an
output command, as in Fig. 4(c), and apply the generated
commands to the compute-line(s). For a number i∈{0,..,7}
with its equivalent 3-bit binary representation i = b0|a0|c0,
the Fig. 4(i) represents the voltage evolution in time of the
compute-line running the full adder of a0 and b0 with a
carry c0. Initially c0 is fetched from the inverse of XI input
and stored into XB1. Then, for each iteration k, when ak
and bk are not available locally, they are fetched to XB2
and XB3 sequentially from the inverse of XI input,
respectively.
In the figure, a cycle is determined by a clock (CLK).
Within a clock CLK, we can distinguish eight intervals or
phases. The first phase is reserved for operands selection
when setting read word lines XRD, XR1, XR2, XR3 and
XR4 to high and before setting the select-line XSL to high.
The second phase start from the time XSL is set high until
before the bit-line keeper command BK is set high. At this
stage, if any participant INPUT pulls-down the bit-line
XBL, the capacitor XC is discharged and maintains it new
state.
As BK is set high, in the third phase, both XBL and YBL
are adjusted as explained before. The KEEPER might
charge XBL and then transfers the inverse of XBL to YBL.
Right after, follows the fourth phase where write word-
lines XWR, XW1, XW2, XW3 and XW4 are set high and
all storage nodes of the selected OUTPUTs will be
updated. The remaining phases, five to eight, start by
setting to low BK, WR, XSL and XR, in the given order.
These phases are used to keep consistency and stability of
stored data. Any changes applied in the input operands
after sixth phase has no effect and is not advised to do so
for efficiency purpose. The critical zone that might temper
with the operation outcome is localized between the third
phase and the fifth. Hence, any change in the INPUTs at
this zone might result into an inconsistent outcome.

2.2 Analysis and Results

In the diagram, the first CLK cycle-1 is reserved to reset
storage nodes of all OUTPUTs to zero in one single row
read (XRD="1") and multiple-rows write
(XWR=XW1=XW2=XW3=XW4="1"). The next clock
cycle0 is reserved to load the initial carry c0 in XI’s
inverse and store it in XB1. The clocks cycle1 and cycle2
are reserved to load the sequential content of a0 and b0
read from the inverse of the INPUT’s XI to be stored in

XB2, and XB3, respectively. Nine cycles from cycle3 to
cycle11 are used to achieve the full adder based only on a
NOR logic operation. At first, the contents in XB2 and
XB3 are retrieved by read word-lines XR2 and XR3 and
their NOR result is stored into the XB4 using XW4.
Similarly, full sequence of operations is summarized in the
following list:
 load initial carry :

cycle0 : XB1 = NOT(XI) ; for XI = NOT(c0)
 first bit-wise operation :

cycle1 : XB2 = NOT(XI) ; for XI = NOT(a0)
cycle2 : XB3 = NOT(XI) ; for XI = NOT(b0)
cycle3 : XB4 = NOR(XB2, XB3)
cycle4 : XB2 = NOR(XB2, XB4)
cycle5 : XB3 = NOR(XB3, XB4)
cycle6 : XB2 = NOR(XB2, XB3)
cycle7 : XB3 = NOR(XB1, XB2)
cycle8 : XB1 = NOR(XB1, XB3)
cycle9 : XB2 = NOR(XB2, XB3)
cycle10 : XO = NOR(XB1, XB2) ; s0 = XO
cycle11 : XB1 = NOR(XB3, XB4) ; c1 = XB1

 second bit-wise operation :
cycle1 : XB2 = XI ; where XI = a1
cycle2 : XB3 = XI ; where XI = b1

 first bit-wise operation :
… (2)

After cycle11, in the kth iteration, the next significant bits
ak+1 and bk+1 can be fetched into XB2 and XB3
respectively, and proceed with the next bit-wise full adder
using the carry remained from the previous computation in
XB1. As the proposed computational memory architecture
can have m compute-lines, the time to compute an addition

of two n-bits values can be amortized to 11 mn× cycles
when data are locally available. As m increases, the
average overall time of an n-bits addition becomes
promising and exempted from the overhead of exchanging
data with CPU in conventional systems.
Consistent results are obtained in the OUTPUTs XO and
XB1 for all combination of i = b0|a0|c0 and they are
depicted in the corresponding row (i) in the figure. Cycles
cycle4, cycle5, cycle6, cycle5 and cycle6 experience
recursive bit-wise NOR operation, where one of the
involved operands is used as well to store the outcome
result. Before storing the outcome results, as the operand
voltage level is high, a slight impact on the bit-line XBL
can be noticed. However, Recursion consistency is
guaranteed due to the stability enforced by the KEEPER
on the bit-lines.
To analyze performance, we estimated the count of
charging capacitors and bit-line activities when the
conventional SRAM is used instead and compared the
results with the proposed compute-line for conducting one

IJCSNS International Journal of Computer Science and Network Security, VOL.18 No.7, July 2018

67

full-adder. The Fig. 5 summarizes the performance gained
by using compute-line and shows an improvement of 60%
for bit-line activities and 68% capacitor charging count.
Although the operands are symmetric for a full-adder, the
performance varies depending also on the content of the
involved operands. Therefore, the sequence in which the
bit-wise NOR operation is applied does impact the bit-line
activities and capacitor charging count. In the x axis in the
curve, the content of the operands (the input i = b0|a0|c0)
are ordered so that the performance keeps increasing.
Overall, as the number of input values with high voltage
value is large as the performance increase for the full adder.

Fig. 5 Performance improvement for capacitor charge count and bit-line
activities

3. Conclusion

In this paper we introduced a computational memory for
in-place storage processing based on compute-line concept
with support of extensive data locality. It is a memory with
built-in computing capabilities designed to support bit-
wise basic binary operations (including NOR, NAND and
NOT) on multiple local and/or remote data simultaneously.
A compute-line was centralized by KEEPER that keeps
directing bit-lines to stay distinguished and stable right
before every write operation. KEEPER was able to correct
the result in the selected bit-line and apply the inverse to
the non-selected one after reading from INPUTs and
before writing the outcome result to OUTPUTs.
We introduced new computational memory architecture
with little overhead compared to conventional SRAM
while having extra computational power that reduces data
movement and allows designer to massively harness
parallelism it can offer. Generally, depending on the
program code of interest, a suitable connection topology
between multiple compute-lines can be investigated to
achieve massive parallelism at execution. An illustrator
example was introduced and showed how data movement
can be reduced considerably while executing built-in bit-

wise operations. In compute-line, the bit-lines do
experience little activities offering great potential of
reducing power consumption. In our testing example, the
bit-line charging was reduced by about 68% and bit-line
activity by 60%.

References
[1] W. A. Wulf and S. A. McKee, “Hitting the memory wall:

Implications of the obvious,” SIGARCH Comput. Archit.
News, vol. 23, no. 1, pp. 20–24, Mar. 1995. [Online].
Available: https://doi.org/10.1145/216585.216588

[2] P. A La Fratta and P. M Kogge, “Design enhancements for
in-cache computations,” Workshop on Chip Multiprocessor
Memory Systems and Interconnects, 01 2009. [Online].
Available:
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.5
77.4395&rep=rep1&type=pdf

[3] F. Duarte and S. Wong, “Cache-based memory copy
hardware accelerator for multicore systems,” IEEE
Transactions on Computers, vol. 59, no. 11, pp. 1494–1507,
Nov 2010. [Online]. Available:
https://doi.org/10.1109/TC.2010.41

[4] D. Patterson, T. Anderson, N. Cardwell, R. Fromm, K.
Keeton, C. Kozyrakis, R. Thomas, and K. Yelick, “A case
for intelligent ram,” IEEE Micro, vol. 17, no. 2, pp. 34–44,
Mar 1997. [Online]. Available:
https://doi.org/10.1109/40.592312

[5] V. Seshadri, Y. Kim, C. Fallin, D. Lee, R. Ausavarungnirun,
G. Pekhimenko, Y. Luo, O. Mutlu, P. B. Gibbons, M. A.
Kozuch, and T. C. Mowry, “Rowclone: Fast and energy-
efficient in-dram bulk data copy and initialization,” in 2013
46th Annual IEEE/ACM International Symposium on
Microarchitecture (MICRO), ser. MICRO-46. New York,
NY, USA: ACM, Dec 2013, pp. 185–197. [Online].
Available: https://doi.org/10.1145/2540708.2540725

[6] J. Ahn, S. Yoo, O. Mutlu, and K. Choi, “Pim-enabled
instructions: A low-overhead, locality-aware processing-in-
memory architecture,” in 2015 ACM/IEEE 42nd Annual
International Symposium on Computer Architecture (ISCA).
ACM, June 2015, pp. 336–348. [Online]. Available:
https://doi.org/10.1145/2749469.2750385

[7] C. E. Kozyrakis, S. Perissakis, D. Patterson, T. Anderson, K.
Asanovic, N. Cardwell, R. Fromm, J. Golbus, B. Gribstad,
K. Keeton, R. Thomas, N. Treuhaft, and K. Yelick,
“Scalable processors in the billion-transistor era: Iram,”
Computer, vol. 30, no. 9, pp. 75–78, Sep 1997. [Online].
Available: https://doi.org/10.1109/2.612252

[8] M. Oskin, F. T. Chong, and T. Sherwood, “Active pages: a
computation model for intelligent memory,” in Proceedings.
25th Annual International Symposium on Computer
Architecture (Cat. No.98CB36235). Washington, DC, USA:
IEEE Computer Society, Jun 1998, pp. 192–203. [Online].
Available: https://doi.org/10.1109/ISCA.1998.694774

[9] S. Aga, S. Jeloka, A. Subramaniyan, S. Narayanasamy, D.
Blaauw, and R. Das, “Compute caches,” in 2017 IEEE
International Symposium on High Performance Computer
Architecture (HPCA), Feb 2017, pp. 481–492. [Online].
Available: https://doi.org/10.1109/HPCA.2017.21

https://doi.org/10.1145/216585.216588
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.577.4395&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.577.4395&rep=rep1&type=pdf
https://doi.org/10.1109/TC.2010.41
https://doi.org/10.1109/40.592312
https://doi.org/10.1145/2540708.2540725
https://doi.org/10.1145/2749469.2750385
https://doi.org/10.1109/2.612252
https://doi.org/10.1109/ISCA.1998.694774
https://doi.org/10.1109/HPCA.2017.21

IJCSNS International Journal of Computer Science and Network Security, VOL.18 No.7, July 2018

68

[10] S. Jeloka, N. B. Akesh, D. Sylvester, and D. Blaauw, “A 28
nm configurable memory (tcam/bcam/sram) using push-rule
6t bit cell enabling logic-in-memory,” IEEE Journal of
Solid-State Circuits, vol. 51, no. 4, pp. 1009–1021, April
2016. [Online]. Available:
https://doi.org/10.1109/JSSC.2016.2515510

[11] M. Kang, E. P. Kim, M. s. Keel, and N. R. Shanbhag,
“Energy-efficient and high throughput sparse distributed
memory architecture,” in 2015 IEEE International
Symposium on Circuits and Systems (ISCAS), Lisbon,
Portugal, May 2015, pp. 2505–2508. [Online]. Available:
https://doi.org/10.1109/ISCAS.2015.7169194

[12] M. A. Zidan and W. D. Lu, “Rram fabric for neuromorphic
and reconfigurable compute-in-memory systems,” in 2018
IEEE Custom Integrated Circuits Conference (CICC), April
2018, pp. 1–8.

[13] A. Valero, S. Petit, J. Sahuquillo, P. LÃ¸spez, and J. Duato,
“Design, performance, and energy consumption of
edram/sram macrocells for l1 data caches,” IEEE
Transactions on Computers, vol. 61, no. 9, pp. 1231–1242,
Sept 2012. [Online]. Available:
https://doi.org/10.1109/TC.2011.138

[14] N. Verma and A. P. Chandrakasan, “A 256 kb 65 nm 8t
subthreshold sram employing sense-amplifier redundancy,”
IEEE Journal of Solid-State Circuits, vol. 43, no. 1, pp.
141–149, Jan 2008. [Online]. Available:
https://doi.org/10.1109/JSSC.2007.908005

[15] “Predictive technology model.” [Online]. Available:
http://ptm.asu.edu/

Driss Azougagh received his B.S.
degree in Computer Science in 1995 from
Mohamed ben Abdellah University, Fes,
Morocco. He received his Master degree in
Computer Science in 2002 from Korea
Advanced Institute of Science and
Technology, Deajeon, Korea. He is a Ph.D.
student at the University Hassan II
Mohammedia, ENSET Institute. His

research is focused on computer architecture. His research
interests include (Massively Distributed and Parallel) Computer
Architecture and Processing.

Ahmed Rebbani received the B.S.
degree in Electronics in 1988 the M.S.
degree in Applied Electronics in 1992 from
the ENSET Institute, Mohammedia,
Morocco. He received the DEA diploma in
information processing in 1997 from the
Ben Msik University of Casablanca
MOROCCO. He is now a teacher of
computer networks, and researcher at the

University Hassan II Mohammedia, ENSET Institute. His
research is focused on renewable energy.

Omar Bouattane has his Ph.D. degree in
2001 in Parallel Image Processing on
Reconfigurable Computing Mesh from the
Faculty of Science Ain Chock,
CASABLANCA, Morocco. He has
published more than 30 research
publications and brevets in various
National, International conference
proceedings and Journals. His research

interests include Massively Parallel Architectures, cluster
analysis, pattern recognition, image processing and fuzzy logic.

https://doi.org/10.1109/JSSC.2016.2515510
https://doi.org/10.1109/ISCAS.2015.7169194
https://doi.org/10.1109/TC.2011.138
https://doi.org/10.1109/JSSC.2007.908005
http://ptm.asu.edu/

