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Summary 
Distributed applications have been frequently developed with 
distributed thread pools (DTP) for performance boost. An 
important design aspect of thread pool system (TPS) is the use of 
one of two synchronization mechanisms called mutex and 
spinlock that controls access to producer-consumer shared queue 
(PCSQ).  When to use which one depends upon several factors 
including computer architecture and application behavior. Each 
one has its own pros and cons. In our previous work, we have 
proposed a distributed frequency based thread pool (DFBTP), 
where PCSQ was implemented by mutex. Mutex causes context 
switches due to sleeping and waking of threads, hence degrades 
system performance.  In this paper we are presenting a new 
distributed thread pool named Hybrid Synchronization Based 
Distributed Thread Pool (HSBDTP) that implements a combined 
synchronization approach of both spinlock and mutex in order to 
gain advantages of both synchronization primitives. The 
evaluation results have proved that HSBDTP outperformed old 
approach by sustaining maximum performance in terms of 
response time and wait times. 
Key words: 
Distributed System, Multi-threading, Thread Pool System, 
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1. Introduction 

The ever-growing expansion of internet and World Wide 
Web demands scalable services that must be performance 
efficient and highly available. The prominent progression 
of internet’s user doubles internet traffics every two or three 
months. For example, OSN sites such as LinkedIn, Flickr, 
Myspace, Twitter and Facebook provide facilities to over 
half a billion users at the same time [1]. The OSN’s not only 
provide basic communication capabilities but also provide 
other services by third party applications e.g. sharing 
documents, sending virtual gifts, or gaming. Facebook 
alone is running over 81,000 third-party applications [1]. 
These third-party applications have a profound impact on 
the application server’s scalability and performance thus 
results in additional traffic. For example, when Facebook 
launched its developer platform, the traffic increased by 
30% in a week after launching [2], while in case of Twitter 
the traffic increased by a factor of twenty after opening up 
its API [3]. Also, the variations in demand go to extreme 
levels in some  
internet services that cause overload condition and needs 
special attention to manage server side resources. In order 

to deal with these complexities, internet services are 
provided by distributed application servers that are 
responsible of providing run time services to one or more 
applications, where these applications service requests to a 
large number of concurrent users. 
Today, distributed systems have been implemented in 
almost all domains including telecommunication, defense, 
industrial automation, financial services, entertainment, 
government and e-commerce. And that is why, the 
requirements of complexity management, scaling and 
overload management are increasing day by day. As 
discussed earlier, distributed systems handle heavy 
workloads, where client’s requests are incoming from a 
remote source through some network protocol. These heavy 
workloads are handled by distributed systems through 
extremely concurrent design configurations that are 
implemented as middleware. The performance of 
distributed systems is dominated by middleware that 
provide different functionalities, e.g. multithreading 
policies, remote communication mechanisms, persistence 
services and transaction management etc. [4]. It is the 
middleware that makes distributed system scalable, highly 
available and highly performant [4]. Some remarkable 
examples of middleware services for distributed systems 
are Distributed Object Computing (DOC) middleware (such 
as CORBA, SOAP, RMI) Component middleware (such 
as .NET, Java Beans, CORBA Component Model), 
Message Oriented Middleware (such as Java Message 
Queue, BEA’s WebLogic MessageQ) etc. 
One of the most important performance related feature of 
any middleware service in distributed systems is 
concurrency control that handles multiple concurrent 
requests. Two most commonly used concurrency models 
are Thread Pool System (TPS) and event driven model 
(EDM).  
As compared to TPS, EDM is more performance efficient, 
but at the same time it is much complicated and challenging 
to implement than TPS [5]. The most challenging task in 
EDM is to handle scheduling and assembling of events [6]. 
Moreover, EDM leads to enormous cascading callback 
chains [7]. As compared to EDM, TPS offers more solid 
structuring constructs for concurrent servers by means of 
threads that are light weight and represent work from the 
perception of the task itself [8,9].   Moreover, TPS avoids 
resource thrashing and overheads of thread creation and 
destruction [10]. Some examples of TPS in middleware for 
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distributed systems include .NET thread pool [11], Java 
Message Queue Thread Pool [12]. 
A typical TPS contains a request queue, a pool of threads 
(workers) and dynamic optimization algorithm (DOA) that 
optimizes pool size, as shown in Figure (1). 
 

 

Fig. 1  Conceptual model of thread pool system embedded in a server 

Request queue stores incoming client’s requests. Worker 
threads in the pool fetches and executes these requests. 
These worker threads in the pool are recycled (instead of 
being destroy) to process next client’s request from queue. 
The re-spawning and recycling of worker threads avoids 
thread creation and destruction costs, but, under a heavy 
load scenario, additional threads must be dynamically 
created and inserted inside pool to cope with the load. The 
DOA component of TPS is responsible to decide the 
quantity of extra threads. It is a challenging task of DOA to 
maintain an optimal pool size on run time, in order to 
produce better response times and maximum throughput so 
that quality of service can be maintained. If thread pool size 
is beyond an optimal limit, then it increases thread context 
switches and thread contention (on shared resource), that 
ultimately provides poor performance. On the other hand, if 
pool size is smaller than an optimal limit then it results in 
poor response time and throughput. Handling this tradeoff 
on run time is essential to achieve best performance. 
Optimizing thread pool size by DOA is not an exact science 
and it can be performed on the basis number of parameters 
and factors. 
The variety of target servers where TPSs are installed makes 
DOA more challenging, as there are varied characteristics 
of the deployment system with a diverse nature of tasks. 
Because of this reason, TPS has been evolved from single-
pool to multi-pool and from multi-pool to distributed. 
Distributed thread pools (DTP) are designed for distributed 
systems where they are horizontally scaled over number of 
nodes available on the network. Each node has its own TPS 
and a central server forwards requests to these nodes as 
shown in Figure (2). 

 

Fig. 2 Conceptual model of distributed thread pool system 

We have presented DFBTP in our previous work [13], 
where an explicit instance of TPS is running on each slave 
node. Each TPS is optimized by request rate on 
corresponding node. In DFBTP, we used mutex based 
PCSQ at server and slave nodes.  In case of mutex based 
PCSQ only one thread can acquire a lock, putting all other 
threads to sleep. The winner thread dequeues a request and 
then unlock PCSQ for other threads to pick a request. All 
other threads wakeup and try to acquire a lock on PCSQ. 
Frequently putting threads to sleep and wake states is 
expensive in terms of time as it needs a lot of CPU 
instructions. If mutex is locked for very short amount of 
time, then the time spent in sleeping and waking of a thread 
might exceed the time a thread has actually slept by far. 
With plenty of short time locks, the time wasted for 
continuously putting threads to sleep and wake decreases 
runtime performance. Another disadvantage of mutexes is 
that the sleeping threads cannot do any useful work even 
some CPU-cores are free to use.  
An alternative of mutex based queue is spinlock based 
queue that do not let a thread to sleep (if the lock is already 
held by another thread), instead, the looser thread takes 
benefit of its full runtime quantum and tries again to acquire 
a lock on PCSQ. It then immediately continues its work by 
acquiring the lock on PCSQ. But at the same time, spinlock 
persistently wastes CPU time and if a lock is held longer, 
then this will waste a lot of CPU time and it would have 
been better if the thread was sleeping instead. 
In case of PCSQ, the lock is held for short amount of time 
as it just requires to enqueue or dequeuer operations, so 
using some spinlocks (by threads) on PCSQ can greatly 
improve performance. 
In order to achieve advantages of both synchronization 
primitives, this paper presents a hybrid synchronization 
based distributed thread pool (HSBDTP) that utilizes 
combination of both mutex and spinlock that avoids context 
switch overhead by spinlock and CPU-cycles overhead by 
mutex. 
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The rest of the paper is organized as follows. Section 2 
presents previous work. Material and methods are presented 
in section 3. Proposed system is validated through 
simulation in section 4 and finally conclusion is given in 
section 5. 

2. Related Work 

An investigation of optimal pool size is presented in [14] 
that developed a mathematical model that is based on a 
relationship among system’s request rate, pool size, thread 
context switch and costs associated with thread creation and 
destruction. However, it is difficult to precisely estimate the 
time for thread context switch and thread creation and 
destruction. Therefore, estimated pool size might be 
erroneous.  
Idle time of requests that are waiting in the request queue 
are utilized in [15] in order to dynamically optimize pool 
size. An average idle time of all requests waiting in the 
queue is calculated after threshold time period and 
compared with the previous average idle time. Pool size 
increases by certain threshold value if average increases 
otherwise pool size is reduced. 
TPS presented in [16] used prediction scheme by Gaussian 
distribution in order to predict the pool size in advance. Due 
to synchronization overhead these predictions may be 
inaccurate. 
Another prediction based TPS is presented in [17] that 
calculated exponential moving averages of change in pool 
size. Redundant threads were created by this TPS if 
predictions are wrong. 
Multiple pools of thread were utilized in [18] where each 
pool servers specific service, and thread borrowing scheme 
between pools was used. But, managing multiple pools was 
itself a cost effective procedure. 
TPS presented in [19] used a model fuzzing approach in 
order to optimize pool size. Number of constraints and 
parameters were applied for dynamic optimization which 
was too difficult to rapidly make a decision, hence this 
scheme was not suitable for the system having frequent 
change in request rates. 
Response coefficients were calculated in [20] for dynamic 
optimization of TPS. But, response coefficient is normally 
effected by number of run time parameters.   
TPS developed in [21] was extension of [17]. This TPS 
analyzed trends of time series in order to avoid redundant 
threads. But its downside was creation of lacking threads. 
A speculative framework for distributed TPS was presented 
in [22], that was governed by software agents that optimized 
pool size on the basis of load conditions. But, no 
prototypical verification was presented. 
A framework of hierarchical thread pool executor was 
presented in [23] that was targeted to only DSM systems. 

A multiple request queue scheme is utilized in [24] where a 
single pool of threads serves multiple request queues and 
each queue stores particular type of requests. URL is used 
to classify type of request. Each request arrived at the server 
is pushed to its corresponding queue by using a lookup table. 
Each queue is allotted specific number of threads in the pool 
based on the average service time of waiting requests and 
request arrival rate. 
TPS presented in [25] applied a divide and conquer 
approach that divide a task into subtasks and run those tasks 
in parallel in order to reduce computational cost. But, it was 
very difficult to dynamically divide a task into subtasks.  
A multiple pool approach is used in [26] where each pool is 
reserved for requests having specific service time. In this 
way requests having large service times are separated from 
requests having small service times, hence avoiding large 
requests to block small ones in order to occupy all threads 
in the pool. 
In our previous work [13], we have presented a DFBTP with 
mutex based PCSQ at server and slave nodes, where an 
explicit instance of TPS is running on each slave node. Each 
TPS is optimized by request rate on corresponding node. 
Due to mutex based PCSQ, DFBTP faces overheads of 
context switches and thread contention. 

3. Material and Methods 

3.1 Hybrid Synchronization Scheme 

The PCSQs used in the proposed DTP utilizes hybrid 
synchronization scheme. The synchronization strategy 
proceeds by behaving spinlock first. If PCSQ is not locked 
by a thread, the thread won’t be put to sleep (to avoid 
context switch overhead), instead, it will perform two more 
attempts. In case it fails in successive attempts, it changes 
its strategy to mutex and go to sleep for 10 milliseconds. 
After waking up it again tries to acquire a lock. Figure (3) 
shows the strategy of a Consumer thread that dequeues 
request from PCSQ.  If a Consumer thread succeeds in 
acquiring a lock on PCSQ in any attempt, then it will 
dequeue request (if queue is not empty) and unlock PCSQ, 
execute request and again proceed by spinlock strategy. If 
PCSQ is empty, then thread will go to sleep for 10 
milliseconds and again try locking PCSQ after waking up. 
Figure (4) shows the strategy of a Producer thread that 
enqueue request in PCSQ. If a Producer thread succeeds in 
acquiring a lock on PCSQ in any attempt, then it will 
enqueue request and unlock PCSQ. Later, when it wants to 
produce again it will proceed by the same spinlock strategy. 
If the lock is not acquired till three attempts, then producer 
thread will back off and go to sleep for 10 milliseconds. It 
will again proceed by same strategy after waking up. 
This scheme neither lets a thread to monopolize the CPU 
core (and gives a chance to other thread to get CPU 
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resource), nor this scheme causes too many context 
switches (as it might let a thread to grab PCSQ in its   

 

Fig. 3  Consumer's Hybrid Synchronization Scheme 

 

Fig. 4  Producer's Hybrid Synchronization Scheme 

successive three attempts). The hybrid synchronization 
scheme behaves smoothly when there are too many threads 
in the pool trying to conquer PCSQ, as it generates a 
mixture of spinlock and mutex scenario, having benefits of 
both strategies. In this way the hybrid model neither causes 
wasting CPU cycles in sleeping and waking of threads, nor 
it allows CPU monopolization. 

3.2 Proposed Distributed TPS Architecture 

The architecture of proposed distributed TPS is shown in 
Figure (5). 
 

 

Fig. 5  Proposed Distributed Thread Pool Architecture 

The Coordinator is a central authority that starts first. It first 
initializes RRS, a hybrid PCSQ and a linked list (to hold 
IP’s of slave systems where TPSs are running). The hybrid 
PCSQ initialized by the Coordinator is a Single-Producer-
Single-Consumer queue. It is accessed by a Receiver thread 
and RRS thread. A Receiver thread will receive client’s 
request and put it in the PCSQ, that is picked by RSS 
(consumer thread) that forwards it to TPS. All requests 
arrived at Coordinator are sent to available TPS by RRS that 
loops on the linked list that contains IPs of available TPSs. 
RSS and Receiver Thread will apply hybrid 
synchronization scheme on PCSQ. 

3.3 Proposed TPS Architecture 

The Architecture of proposed TPS is shown in Figure (6). 
When a TPS starts on a slave server it initializes its system 
components that governs TPS execution. First of all, two 
hybrid PCSQs (Request Queue and Response Queue) are 
dynamically initialized. After initializing queues, TPS 
connects to the Coordinator with the help of Connection 
Manager. Coordinator stores its corresponding IP in the 
linked list. Next, TPS waits for client’s requests (sent by 
RRS from server side). On request arrival, the value of 
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Counter is incremented and the request is stored in request 
queue that is picked by a thread resides in the thread pool.  
Request Queue is a Single-Producer-Multiple-Consumer 
queue. A single receiver thread will receive client’s requests 
(sent by RRS) and store these requests in this queue, 
whereas worker threads in the pool will try to pick these 
requests by acquiring a hybrid lock on PCSQ. Response 
queue is a Multiple-Producer-Single-Consumer queue. 
Threads in the pool are responsible to put processed 
requests in this queue (in form of response) and a single 
consumer thread will dequeue each response from the queue 
and send it to Coordinator that will in turn send it to the 
client. 
 

 

Fig. 6  Proposed TPS Architecture 

The Load Monitor is a timer object that monitors client’ 
request rate by repeatedly activating after every second. It 
reads the value of Counter and again sets it to zero so that 
next request arrival rate can be measured. Pool Tuner also 
activates after every second, reads current request arrival 
rate from load monitor and compares it with the previous 
rate. If rate is increasing, then Pool Tuner will increase 
thread pool size (by adding more threads) and makes pool 
size equal to the request rate. In order to shrink pool size 
each thread has an internal timer object that starts when a 
thread becomes free. If a thread is free till five seconds in 
the pool, then timer object will delete its thread. On low 
requests rates some threads in the pool would be free that 
will be deleted automatically in order to reduce pool size. 

4. Results and Discussion 

In this section we are validating the performance of 
proposed system by a JPoolRunner simulation kit. 
JPoolRunner is a client-server based system. We first 
loaded Coordinator at server tier of JPoolRunner. The 

client-side of toolkit consists of load generator and GUI 
system that plots simulation results.    
Testing is done on a network of four computers. One 
computer is used for client-side of JPoolRunner, second 
computer is used as a main server where we ran Coordinator 
that accepts requests sent by the load generator. Remaining 
two machines are slave servers, each is running a TPS.  
 Table (1) lists testing parameters. JPoolRunner simulates 
client’s requests by set of Task objects with different service 
times. In this testing we have used a single Task of 100ms. 
Load generator of JPoolRunner will burst set of these tasks 
to coordinator for processing. We have selected poisson 
load generation strategy with an average request frequency 
of 1000 (requests). 

Table 1: Test Plan Parameters 
Workload Service Time Load Generation λ 

Task ≈100millisec Poisson 1000 
 
We performed testing for 60 seconds. Figure (7) shows 
dynamic request rate that is generated by load generator of 
JPoolRunner, that sent this load of Task objects to the main 
server where Coordinator is running. In Figure (7), x axis 
shows time in seconds, whereas y axis shows the load sent 
on specific time. The load in Figure (7) shows that request 
rate (1000 frequency) is generated by poisson distribution. 
There are almost sixty-thousand requests submitted to the 
server in 60 seconds. 
 

 

Fig. 7  Load generated for simulation with Poisson Distribution 

Figure (8) presents a comparative analysis of response time 
between proposed scheme(HSBDTP) and old 
scheme(DFBTP), where x-axis shows each response 
received at client-tier of JPoolRunner and y-axis shows 
response time of each response in milliseconds. HSBDTP 
has significantly minimized response times as compared to 
DFBTP, because hybrid synchronization scheme in 
HSBDTP produces less context switch overhead as it 
utilizes spinlocks most of the time that avoids context 
switches, whereas in DFBTP the time is wasted in 
frequently putting threads to sleep and wake states that 
ultimately decreased runtime performance. 
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Fig.8  Comparative Analysis of Response Times 

In DFBTP, plenty of locks are held for a very short amount 
of time, threads contention on the shared resource (Request 
Queue) is high, due to which, requests spent more time in 
waiting queue (Request Queue) that can be seen in Figure 
(9) that represents a comparative analysis of wait times of 
requests in request queue between DFBTP and HSBDTP. 
The x-axis shows each response received and y-axis shows 
wait time of each response in milliseconds. HSBDTP 
outperformed DFBTP by minimizing wait times of requests 
noticeably, as mutex based PCSQ (Request Queue) in 
DFBTP is causing so many context switches and run time 
overhead, hence the process of picking requests from queue 
is slow that increased their wait time in the queue. In 
DFBTP, many threads are competing to lock PCSQ and 
only one will acquire lock that causes all other thread to 
withdraw and go to waiting state by performing context 
switches. In case of HSBDTP the overhead of thread 
contention on hybrid PCSQ (Request Queue) is minimal 
due to spinlock and requests are picked by threads quickly, 
hence reduced wait times. 
 

 

Fig. 9  Comparative Analysis of Wait Times 

5. Conclusion 

This work presented a distributed thread pool that utilized a 
hybrid synchronization scheme by using combination of 
spinlock and mutex in order to gain advantages of both 
primitives. The simulation results have proved that hybrid 
synchronization based distributed thread pool system is 

more performance efficient in terms of response and wait 
times than mutex based distributed thread pool, because 
hybrid synchronization scheme produces less context 
switch overhead as it utilizes spinlocks most of the time that 
avoids context switches, whereas in DFBTP the time is 
wasted in frequently putting threads to sleep and wake states, 
that ultimately decreased runtime performance. 
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