
IJCSNS International Journal of Computer Science and Network Security, VOL.18 No.7, July 2018

89

Manuscript received July 5, 2018
Manuscript revised July 20, 2018

Hybrid Synchronization Based Distributed Thread Pool

Faisal Bahadur, Arif Iqbal Umar, Fahad Khurshid, Ali Imran Jehangiri, Ibrar Afzal

Department of Information Technology, Hazara University, Mansehra, K.P.K. Pakistan

Summary
Distributed applications have been frequently developed with
distributed thread pools (DTP) for performance boost. An
important design aspect of thread pool system (TPS) is the use of
one of two synchronization mechanisms called mutex and
spinlock that controls access to producer-consumer shared queue
(PCSQ). When to use which one depends upon several factors
including computer architecture and application behavior. Each
one has its own pros and cons. In our previous work, we have
proposed a distributed frequency based thread pool (DFBTP),
where PCSQ was implemented by mutex. Mutex causes context
switches due to sleeping and waking of threads, hence degrades
system performance. In this paper we are presenting a new
distributed thread pool named Hybrid Synchronization Based
Distributed Thread Pool (HSBDTP) that implements a combined
synchronization approach of both spinlock and mutex in order to
gain advantages of both synchronization primitives. The
evaluation results have proved that HSBDTP outperformed old
approach by sustaining maximum performance in terms of
response time and wait times.
Key words:
Distributed System, Multi-threading, Thread Pool System,
Performance.

1. Introduction

The ever-growing expansion of internet and World Wide
Web demands scalable services that must be performance
efficient and highly available. The prominent progression
of internet’s user doubles internet traffics every two or three
months. For example, OSN sites such as LinkedIn, Flickr,
Myspace, Twitter and Facebook provide facilities to over
half a billion users at the same time [1]. The OSN’s not only
provide basic communication capabilities but also provide
other services by third party applications e.g. sharing
documents, sending virtual gifts, or gaming. Facebook
alone is running over 81,000 third-party applications [1].
These third-party applications have a profound impact on
the application server’s scalability and performance thus
results in additional traffic. For example, when Facebook
launched its developer platform, the traffic increased by
30% in a week after launching [2], while in case of Twitter
the traffic increased by a factor of twenty after opening up
its API [3]. Also, the variations in demand go to extreme
levels in some
internet services that cause overload condition and needs
special attention to manage server side resources. In order

to deal with these complexities, internet services are
provided by distributed application servers that are
responsible of providing run time services to one or more
applications, where these applications service requests to a
large number of concurrent users.
Today, distributed systems have been implemented in
almost all domains including telecommunication, defense,
industrial automation, financial services, entertainment,
government and e-commerce. And that is why, the
requirements of complexity management, scaling and
overload management are increasing day by day. As
discussed earlier, distributed systems handle heavy
workloads, where client’s requests are incoming from a
remote source through some network protocol. These heavy
workloads are handled by distributed systems through
extremely concurrent design configurations that are
implemented as middleware. The performance of
distributed systems is dominated by middleware that
provide different functionalities, e.g. multithreading
policies, remote communication mechanisms, persistence
services and transaction management etc. [4]. It is the
middleware that makes distributed system scalable, highly
available and highly performant [4]. Some remarkable
examples of middleware services for distributed systems
are Distributed Object Computing (DOC) middleware (such
as CORBA, SOAP, RMI) Component middleware (such
as .NET, Java Beans, CORBA Component Model),
Message Oriented Middleware (such as Java Message
Queue, BEA’s WebLogic MessageQ) etc.
One of the most important performance related feature of
any middleware service in distributed systems is
concurrency control that handles multiple concurrent
requests. Two most commonly used concurrency models
are Thread Pool System (TPS) and event driven model
(EDM).
As compared to TPS, EDM is more performance efficient,
but at the same time it is much complicated and challenging
to implement than TPS [5]. The most challenging task in
EDM is to handle scheduling and assembling of events [6].
Moreover, EDM leads to enormous cascading callback
chains [7]. As compared to EDM, TPS offers more solid
structuring constructs for concurrent servers by means of
threads that are light weight and represent work from the
perception of the task itself [8,9]. Moreover, TPS avoids
resource thrashing and overheads of thread creation and
destruction [10]. Some examples of TPS in middleware for

IJCSNS International Journal of Computer Science and Network Security, VOL.18 No.7, July 2018 90

distributed systems include .NET thread pool [11], Java
Message Queue Thread Pool [12].
A typical TPS contains a request queue, a pool of threads
(workers) and dynamic optimization algorithm (DOA) that
optimizes pool size, as shown in Figure (1).

Fig. 1 Conceptual model of thread pool system embedded in a server

Request queue stores incoming client’s requests. Worker
threads in the pool fetches and executes these requests.
These worker threads in the pool are recycled (instead of
being destroy) to process next client’s request from queue.
The re-spawning and recycling of worker threads avoids
thread creation and destruction costs, but, under a heavy
load scenario, additional threads must be dynamically
created and inserted inside pool to cope with the load. The
DOA component of TPS is responsible to decide the
quantity of extra threads. It is a challenging task of DOA to
maintain an optimal pool size on run time, in order to
produce better response times and maximum throughput so
that quality of service can be maintained. If thread pool size
is beyond an optimal limit, then it increases thread context
switches and thread contention (on shared resource), that
ultimately provides poor performance. On the other hand, if
pool size is smaller than an optimal limit then it results in
poor response time and throughput. Handling this tradeoff
on run time is essential to achieve best performance.
Optimizing thread pool size by DOA is not an exact science
and it can be performed on the basis number of parameters
and factors.
The variety of target servers where TPSs are installed makes
DOA more challenging, as there are varied characteristics
of the deployment system with a diverse nature of tasks.
Because of this reason, TPS has been evolved from single-
pool to multi-pool and from multi-pool to distributed.
Distributed thread pools (DTP) are designed for distributed
systems where they are horizontally scaled over number of
nodes available on the network. Each node has its own TPS
and a central server forwards requests to these nodes as
shown in Figure (2).

Fig. 2 Conceptual model of distributed thread pool system

We have presented DFBTP in our previous work [13],
where an explicit instance of TPS is running on each slave
node. Each TPS is optimized by request rate on
corresponding node. In DFBTP, we used mutex based
PCSQ at server and slave nodes. In case of mutex based
PCSQ only one thread can acquire a lock, putting all other
threads to sleep. The winner thread dequeues a request and
then unlock PCSQ for other threads to pick a request. All
other threads wakeup and try to acquire a lock on PCSQ.
Frequently putting threads to sleep and wake states is
expensive in terms of time as it needs a lot of CPU
instructions. If mutex is locked for very short amount of
time, then the time spent in sleeping and waking of a thread
might exceed the time a thread has actually slept by far.
With plenty of short time locks, the time wasted for
continuously putting threads to sleep and wake decreases
runtime performance. Another disadvantage of mutexes is
that the sleeping threads cannot do any useful work even
some CPU-cores are free to use.
An alternative of mutex based queue is spinlock based
queue that do not let a thread to sleep (if the lock is already
held by another thread), instead, the looser thread takes
benefit of its full runtime quantum and tries again to acquire
a lock on PCSQ. It then immediately continues its work by
acquiring the lock on PCSQ. But at the same time, spinlock
persistently wastes CPU time and if a lock is held longer,
then this will waste a lot of CPU time and it would have
been better if the thread was sleeping instead.
In case of PCSQ, the lock is held for short amount of time
as it just requires to enqueue or dequeuer operations, so
using some spinlocks (by threads) on PCSQ can greatly
improve performance.
In order to achieve advantages of both synchronization
primitives, this paper presents a hybrid synchronization
based distributed thread pool (HSBDTP) that utilizes
combination of both mutex and spinlock that avoids context
switch overhead by spinlock and CPU-cycles overhead by
mutex.

IJCSNS International Journal of Computer Science and Network Security, VOL.18 No.7, July 2018 91

The rest of the paper is organized as follows. Section 2
presents previous work. Material and methods are presented
in section 3. Proposed system is validated through
simulation in section 4 and finally conclusion is given in
section 5.

2. Related Work

An investigation of optimal pool size is presented in [14]
that developed a mathematical model that is based on a
relationship among system’s request rate, pool size, thread
context switch and costs associated with thread creation and
destruction. However, it is difficult to precisely estimate the
time for thread context switch and thread creation and
destruction. Therefore, estimated pool size might be
erroneous.
Idle time of requests that are waiting in the request queue
are utilized in [15] in order to dynamically optimize pool
size. An average idle time of all requests waiting in the
queue is calculated after threshold time period and
compared with the previous average idle time. Pool size
increases by certain threshold value if average increases
otherwise pool size is reduced.
TPS presented in [16] used prediction scheme by Gaussian
distribution in order to predict the pool size in advance. Due
to synchronization overhead these predictions may be
inaccurate.
Another prediction based TPS is presented in [17] that
calculated exponential moving averages of change in pool
size. Redundant threads were created by this TPS if
predictions are wrong.
Multiple pools of thread were utilized in [18] where each
pool servers specific service, and thread borrowing scheme
between pools was used. But, managing multiple pools was
itself a cost effective procedure.
TPS presented in [19] used a model fuzzing approach in
order to optimize pool size. Number of constraints and
parameters were applied for dynamic optimization which
was too difficult to rapidly make a decision, hence this
scheme was not suitable for the system having frequent
change in request rates.
Response coefficients were calculated in [20] for dynamic
optimization of TPS. But, response coefficient is normally
effected by number of run time parameters.
TPS developed in [21] was extension of [17]. This TPS
analyzed trends of time series in order to avoid redundant
threads. But its downside was creation of lacking threads.
A speculative framework for distributed TPS was presented
in [22], that was governed by software agents that optimized
pool size on the basis of load conditions. But, no
prototypical verification was presented.
A framework of hierarchical thread pool executor was
presented in [23] that was targeted to only DSM systems.

A multiple request queue scheme is utilized in [24] where a
single pool of threads serves multiple request queues and
each queue stores particular type of requests. URL is used
to classify type of request. Each request arrived at the server
is pushed to its corresponding queue by using a lookup table.
Each queue is allotted specific number of threads in the pool
based on the average service time of waiting requests and
request arrival rate.
TPS presented in [25] applied a divide and conquer
approach that divide a task into subtasks and run those tasks
in parallel in order to reduce computational cost. But, it was
very difficult to dynamically divide a task into subtasks.
A multiple pool approach is used in [26] where each pool is
reserved for requests having specific service time. In this
way requests having large service times are separated from
requests having small service times, hence avoiding large
requests to block small ones in order to occupy all threads
in the pool.
In our previous work [13], we have presented a DFBTP with
mutex based PCSQ at server and slave nodes, where an
explicit instance of TPS is running on each slave node. Each
TPS is optimized by request rate on corresponding node.
Due to mutex based PCSQ, DFBTP faces overheads of
context switches and thread contention.

3. Material and Methods

3.1 Hybrid Synchronization Scheme

The PCSQs used in the proposed DTP utilizes hybrid
synchronization scheme. The synchronization strategy
proceeds by behaving spinlock first. If PCSQ is not locked
by a thread, the thread won’t be put to sleep (to avoid
context switch overhead), instead, it will perform two more
attempts. In case it fails in successive attempts, it changes
its strategy to mutex and go to sleep for 10 milliseconds.
After waking up it again tries to acquire a lock. Figure (3)
shows the strategy of a Consumer thread that dequeues
request from PCSQ. If a Consumer thread succeeds in
acquiring a lock on PCSQ in any attempt, then it will
dequeue request (if queue is not empty) and unlock PCSQ,
execute request and again proceed by spinlock strategy. If
PCSQ is empty, then thread will go to sleep for 10
milliseconds and again try locking PCSQ after waking up.
Figure (4) shows the strategy of a Producer thread that
enqueue request in PCSQ. If a Producer thread succeeds in
acquiring a lock on PCSQ in any attempt, then it will
enqueue request and unlock PCSQ. Later, when it wants to
produce again it will proceed by the same spinlock strategy.
If the lock is not acquired till three attempts, then producer
thread will back off and go to sleep for 10 milliseconds. It
will again proceed by same strategy after waking up.
This scheme neither lets a thread to monopolize the CPU
core (and gives a chance to other thread to get CPU

IJCSNS International Journal of Computer Science and Network Security, VOL.18 No.7, July 2018 92

resource), nor this scheme causes too many context
switches (as it might let a thread to grab PCSQ in its

Fig. 3 Consumer's Hybrid Synchronization Scheme

Fig. 4 Producer's Hybrid Synchronization Scheme

successive three attempts). The hybrid synchronization
scheme behaves smoothly when there are too many threads
in the pool trying to conquer PCSQ, as it generates a
mixture of spinlock and mutex scenario, having benefits of
both strategies. In this way the hybrid model neither causes
wasting CPU cycles in sleeping and waking of threads, nor
it allows CPU monopolization.

3.2 Proposed Distributed TPS Architecture

The architecture of proposed distributed TPS is shown in
Figure (5).

Fig. 5 Proposed Distributed Thread Pool Architecture

The Coordinator is a central authority that starts first. It first
initializes RRS, a hybrid PCSQ and a linked list (to hold
IP’s of slave systems where TPSs are running). The hybrid
PCSQ initialized by the Coordinator is a Single-Producer-
Single-Consumer queue. It is accessed by a Receiver thread
and RRS thread. A Receiver thread will receive client’s
request and put it in the PCSQ, that is picked by RSS
(consumer thread) that forwards it to TPS. All requests
arrived at Coordinator are sent to available TPS by RRS that
loops on the linked list that contains IPs of available TPSs.
RSS and Receiver Thread will apply hybrid
synchronization scheme on PCSQ.

3.3 Proposed TPS Architecture

The Architecture of proposed TPS is shown in Figure (6).
When a TPS starts on a slave server it initializes its system
components that governs TPS execution. First of all, two
hybrid PCSQs (Request Queue and Response Queue) are
dynamically initialized. After initializing queues, TPS
connects to the Coordinator with the help of Connection
Manager. Coordinator stores its corresponding IP in the
linked list. Next, TPS waits for client’s requests (sent by
RRS from server side). On request arrival, the value of

IJCSNS International Journal of Computer Science and Network Security, VOL.18 No.7, July 2018 93

Counter is incremented and the request is stored in request
queue that is picked by a thread resides in the thread pool.
Request Queue is a Single-Producer-Multiple-Consumer
queue. A single receiver thread will receive client’s requests
(sent by RRS) and store these requests in this queue,
whereas worker threads in the pool will try to pick these
requests by acquiring a hybrid lock on PCSQ. Response
queue is a Multiple-Producer-Single-Consumer queue.
Threads in the pool are responsible to put processed
requests in this queue (in form of response) and a single
consumer thread will dequeue each response from the queue
and send it to Coordinator that will in turn send it to the
client.

Fig. 6 Proposed TPS Architecture

The Load Monitor is a timer object that monitors client’
request rate by repeatedly activating after every second. It
reads the value of Counter and again sets it to zero so that
next request arrival rate can be measured. Pool Tuner also
activates after every second, reads current request arrival
rate from load monitor and compares it with the previous
rate. If rate is increasing, then Pool Tuner will increase
thread pool size (by adding more threads) and makes pool
size equal to the request rate. In order to shrink pool size
each thread has an internal timer object that starts when a
thread becomes free. If a thread is free till five seconds in
the pool, then timer object will delete its thread. On low
requests rates some threads in the pool would be free that
will be deleted automatically in order to reduce pool size.

4. Results and Discussion

In this section we are validating the performance of
proposed system by a JPoolRunner simulation kit.
JPoolRunner is a client-server based system. We first
loaded Coordinator at server tier of JPoolRunner. The

client-side of toolkit consists of load generator and GUI
system that plots simulation results.
Testing is done on a network of four computers. One
computer is used for client-side of JPoolRunner, second
computer is used as a main server where we ran Coordinator
that accepts requests sent by the load generator. Remaining
two machines are slave servers, each is running a TPS.
 Table (1) lists testing parameters. JPoolRunner simulates
client’s requests by set of Task objects with different service
times. In this testing we have used a single Task of 100ms.
Load generator of JPoolRunner will burst set of these tasks
to coordinator for processing. We have selected poisson
load generation strategy with an average request frequency
of 1000 (requests).

Table 1: Test Plan Parameters
Workload Service Time Load Generation λ

Task ≈100millisec Poisson 1000

We performed testing for 60 seconds. Figure (7) shows
dynamic request rate that is generated by load generator of
JPoolRunner, that sent this load of Task objects to the main
server where Coordinator is running. In Figure (7), x axis
shows time in seconds, whereas y axis shows the load sent
on specific time. The load in Figure (7) shows that request
rate (1000 frequency) is generated by poisson distribution.
There are almost sixty-thousand requests submitted to the
server in 60 seconds.

Fig. 7 Load generated for simulation with Poisson Distribution

Figure (8) presents a comparative analysis of response time
between proposed scheme(HSBDTP) and old
scheme(DFBTP), where x-axis shows each response
received at client-tier of JPoolRunner and y-axis shows
response time of each response in milliseconds. HSBDTP
has significantly minimized response times as compared to
DFBTP, because hybrid synchronization scheme in
HSBDTP produces less context switch overhead as it
utilizes spinlocks most of the time that avoids context
switches, whereas in DFBTP the time is wasted in
frequently putting threads to sleep and wake states that
ultimately decreased runtime performance.

IJCSNS International Journal of Computer Science and Network Security, VOL.18 No.7, July 2018 94

Fig.8 Comparative Analysis of Response Times

In DFBTP, plenty of locks are held for a very short amount
of time, threads contention on the shared resource (Request
Queue) is high, due to which, requests spent more time in
waiting queue (Request Queue) that can be seen in Figure
(9) that represents a comparative analysis of wait times of
requests in request queue between DFBTP and HSBDTP.
The x-axis shows each response received and y-axis shows
wait time of each response in milliseconds. HSBDTP
outperformed DFBTP by minimizing wait times of requests
noticeably, as mutex based PCSQ (Request Queue) in
DFBTP is causing so many context switches and run time
overhead, hence the process of picking requests from queue
is slow that increased their wait time in the queue. In
DFBTP, many threads are competing to lock PCSQ and
only one will acquire lock that causes all other thread to
withdraw and go to waiting state by performing context
switches. In case of HSBDTP the overhead of thread
contention on hybrid PCSQ (Request Queue) is minimal
due to spinlock and requests are picked by threads quickly,
hence reduced wait times.

Fig. 9 Comparative Analysis of Wait Times

5. Conclusion

This work presented a distributed thread pool that utilized a
hybrid synchronization scheme by using combination of
spinlock and mutex in order to gain advantages of both
primitives. The simulation results have proved that hybrid
synchronization based distributed thread pool system is

more performance efficient in terms of response and wait
times than mutex based distributed thread pool, because
hybrid synchronization scheme produces less context
switch overhead as it utilizes spinlocks most of the time that
avoids context switches, whereas in DFBTP the time is
wasted in frequently putting threads to sleep and wake states,
that ultimately decreased runtime performance.

Acknowledgment

We are grateful to Hazara University, Mansehra, Pakistan
for their support to publish this research work.

References
[1] A. Nazir, S. Raza, D. Gupta, C-N. Chuah, B. Krishnamurthy.

Network level footprints of facebook applications. In
Proceedings of the 9th ACM SIGCOMM conference on
Internet measurement, 2009, pp. 63-75. ACM.

[2] A. Nazir, S. Raza, and C.-N. Chuah. Unveiling facebook: A
measurement study of social network based applications. In
Proc. Internet Measurement Conference (IMC), 2008.

[3] B. Krishnamurthy, P. Gill, and M. Arlitt. A few chirps about
twitter. In Workshop on Online Social Networks, 2008.

[4] G. Denaro, A. Polini, W. Emmerich. Performance testing of
distributed component architectures. In Testing Commercial-
off-the-Shelf Components and Systems. Springer, Berlin,
Heidelberg, 2005, pp. 293-314.

[5] M. Andreolini; V. Cardellini; M. Colajanni. Benchmarking
models and tools for distributed web-server systems. In: IFIP
International Symposium on Computer Performance
Modeling, Measurement and Evaluation, September, 2002,
pp. 208-235.

[6] M. Welsh; D. Culler; E. Brewer. SEDA: an architecture for
well-conditioned, scalable internet services. ACM SIGOPS
Operating Systems Review, 2001, 35(5) pp. 230-243.

[7] A. Gustaffson. Threads without the Pain. Queue, 2005,
3(9):34-41.

[8] R.V. Behren; J. Condit; E. Brewer. Why events are a bad idea
(for high-concurrency servers). In: Proceedings of the 9th
conference on Hot Topics in Operating Systems, May, 2003,
pp.4-4.

[9] R.V. Behren; J. Condit; F. Zhou; G.C. Necula; E. Brewer.
Capriccio: scalable threads for internet services. ACM
SIGOPS Operating Systems Review, 2003, 37(5): 268-281.

[10] T. Peierls; B. Goetz; J. Bloch; J. Bowbeer; D. Lea; D. Holmes.
Java Concurrency in Practice, Addison-Wesley Professional,
2005.

[11] The Managed Thread Pool.
[12] https://msdn.microsoft.com/enus/library/0ka9477y(v=vs.110

).aspx (accessed on 10 July 2018).
[13] ORACLE, Java System Message Queue 4.3 Technical

Overview
[14] https://docs.oracle.com/cd/E19316-01/820-

6424/aerck/index.html (accessed on 10 July 2018).
[15] S. Ahmad, F. Bahadur, F. Kanwal, R. Shah, “Load balancing

in distributed framework for frequency based thread pools,”
Computational Ecology and Software,2016, Vol. 6, No. 4, pp.
150-164.

IJCSNS International Journal of Computer Science and Network Security, VOL.18 No.7, July 2018 95

[16] Y. Ling, T. Mullen, X. Lin, “Analysis of optimal thread pool
size,” ACM SIGOPS Operating System Review,2000, Vol.
34, No. 2, pp. 42–55, 2000.

[17] D. Xu, B. Bode, “Performance Study and Dynamic
Optimization Design for Thread Pool System,” In Proc. of the
Int. Conf. on Computing Communications and Control
Technologies, Texas, USA, 2004, pp.167-174.

[18] J. Kim, S. Han, H. Ko, H. Youn, “Prediction- based Dynamic
Thread Pool Management of Agent Platform for Ubiquitous
Computing,” International Conference on Ubiquitous
Intelligence and Computing, Springer, Berlin, Heidelberg,
2007, pp. 1098-1107.

[19] D. Kang, S. Han, S. Yoo, S. Park, “Prediction based Dynamic
Thread Pool Scheme for Efficient Resource Usage,” In Proc.
of the IEEE 8th Int. Conf. on Computer and Information
Technology Workshop, IEEE Computer Society,
Washington, DC, USA, 2008, pp. 159-164.

[20] T. Ogasawara, "Dynamic Thread Count Adaptation for
Multiple Services in SMP Environments," IEEE International
Conference on Web Services (ICWS '08), Beijing,
China,2008, pp. 585-592, September.

[21] J. Hellerstein, “Configuring resource managers using model
fuzzing: A case study of the .NET thread pool,” IFIP/IEEE
International Symposium on Integrated Network
Management (IM '09), Long Island, NY, USA, 2009, pp. 1-8.

[22] N. Chen, P. Lin, “A Dynamic Adjustment Mechanism with
Heuristic for Thread Pool in Middleware,” 3rd Int. Joint Conf.
on Computational Science and Optimization. IEEE Computer
Society, Washington, DC, USA, 2010, pp. 324-336.

[23] K. Lee, H. Pham, H. Kim, H. Youn, O. Song, “A novel
predictive and self-adaptive dynamic thread pool
management,” In: Proceedings - 9th IEEE International
Symposium on Parallel and Distributed Processing with
Applications, Busan, South Korea, 2011, pp. 93–98.

[24] P. Martin, A. Brown, W. Powley, J. Luis, V. Poletti,
“Autonomic management of elastic services in the cloud,” In:
Proceedings - IEEE Symposium on Computers and
Communications, Kerkyra, Greece, 2011, pp. 135–140.

[25] S. Ramisetti, R. Wankar, “Design of hierarchical thread pool
executor for DSM,” Second International Conference on
Intelligent Systems Modelling and Simulation (ISMS), Kuala
Lumpur, Malaysia, 2011, pp. 284-288.

[26] G. You, Y. Zhao, “A weighted-fair-queuing (WFQ)-based
dynamic request scheduling approach in a multi-core system,”
Future Generation Computer System, Vol. 28, No.7, 2012,
pp.1110–1120.

[27] M. Chen, Y. Lu, G. Zhang, W. Zou, “Real-Time Simulation
in Dynamic Electromagnetic Scenes Using Pipeline Thread
Pool,” Tenth International Conference on Computational
Intelligence and Security (CIS), Kunming, China, 2014, pp.
770-774.

[28] J. Mace, P. Bodikz, M. Musuvathiz, R. Fonseca, K.
Varadarajanz, “2DFQ: Two- Dimensional Fair Queueing for
Multi-Tenant Cloud Services,” In Proceedings of the ACM
SIGCOMM Conference, ACM, Florianopolis, Brazil, 2016,
pp. 144-159.

