
IJCSNS International Journal of Computer Science and Network Security, VOL.18 No.7, July 2018

96

Manuscript received July 5, 2018
Manuscript revised July 20, 2018

A Dynamic Malware Detection Mechanism Based on Deep
Learning

Wei YIN, Hongjian ZHOU, Mingyang WANG, Zhiwen JIN, Jun XU

North China Institute of Computing Technology, China

Summary
Static malware analysis cannot identify malware that uses
encryption or shell technology. Traditional dynamic malware
analysis has fingerprints, such as using hooks to monitor function
calls, which can be recognised and tampered by malware. To
address this issue, this paper proposes a dynamic malware
detection mechanism based on the cloud environment. Malware
is running at the guest level while malware monitoring is
conducted at the hypervisor level, therefore malware execution
and monitoring environments are isolated. The breakpoint
injection technology is utilised to capture the kernel function
calls so that malware behaviours, such as processes, file access,
registries and system services, can be monitored and the log is
generated. The log is processed to extract four dimensions of
information which is utilised as the input for the deep learning
network. The deep learning network, trained by a large number
of samples, can recognise and output the malware types at an
accuracy as high as 97.3%.
Key words:
dynamic malware detection, deep learning, guest monitoring

1. Introduction

Static and dynamic analysis are two most common
methods for malware detection. Static analysis allows
analyzing the code without actually executing it, which
involves code auditing, reverse engineering, unpacking,
HEX checking, etc. Static malware analysis is difficult. To
begin with, it is not convenient to obtain the malware
source code. Furthermore, binary programs lost
information about data structure and variable size. In
addition, polymorphic malware, e.g. packer [1], that uses
packing and encryption technology to alter the way it looks
makes static analysis even harder.
Dynamic analysis methods analyze the code by executing it
without requiring the source code. In the meantime, the
analyzer monitors its behaviours, such as API calls, file
accessed, network connection launched, etc. The benefit is
that even polymorphic malware that changes the binary
fingerprint cannot escape from detection, because it cannot
hide the program behaviours when executing.
In dynamic malware analysis, a single function call reflects
an operation. Multiple consecutive and relevant function
calls represent the achieved functionality. All function calls
can reveal the program behaviour. The Windows operating

system provides multiple levels of function calls including
Windows APIs, Windows Native APIs, System Calls and
Kernel Function Calls, from top to bottom. Windows APIs
consist of a set of functions that can achieve a particular
functionality including security, management, etc.
Windows APIs are open and stable as Windows evolves so
that analyzers can define user-level function hooks to
monitor Windows API calls once for all Windows versions.
However, malware can call Windows Native APIs, System
Calls or Kernel Function Calls instead to avoid user-level
Windows API call monitoring. Kernel Function Calls are
the lowest level functions to complete an operation. If we
capture Kernel Function Calls, we can solve the escape
problem achieved by malware calling Windows Native
APIs, System Calls or Kernel Function Calls.
However, defining function hooks, such as that in
CWSandbox [2], to hook interesting function calls needs to
modify the operating system. This could be a fingerprint
that can be utilised by malware to identify the monitoring
environment. Smart malware will not conduct any
suspicious actions if the monitoring environment is
detected. Even smarter malware can modify function hooks
at the same time cheating analyzers that the monitoring
environment is working fine so that malicious behaviours
cannot be detected.
Therefore, the monitoring environment and malware
execution environment should be isolated to avoid
tampering, To build a malware detection mechanism based
on the cloud environment could be a promising solution.
The malware execution environment can be a guest system
running above the hypervisor, e.g. Xen [3]. The malware
monitoring environment can be realized at the hypervisor
level to monitor and analyze the guest system behaviour.
The hypervisor is invisible to the guest system and they are
isolated so that malware executing at the guest level cannot
tamper the hypervisor. In this paper, we design, implement
and evaluate such a malware detection mechanism. We
capture the Kernel Function Calls of the guest system at
the hypervisor level and generate a figure, which is utilised
as the input for the deep learning neural network. Finally,
the figure is processed and the malware is classified.
The paper achieves the following contributions.

IJCSNS International Journal of Computer Science and Network Security, VOL.18 No.7, July 2018 97

Fig.1 Mechanism modules

First, We design a transparent, secure dynamic malware
analysis mechanism, which can secretively monitor
function call execution of the guest system. Important
information is extracted including the Kernel Function Call
trace, function parameters, return values and function
correlations, which forms the elements for the feature
picture. It is proved that the information can well describe
malware behaviours including processes, file access,
network connections, registries, system services, etc.
Second, we execute 9000 pieces of malware samples on
the mechanism and gather corresponding feature figures,
which forms the training set. A neural network is
constructed and trained with these samples. Other 3000
pieces of malware are utilised as the testing set.
Experiments show that our mechanism can achieve a
classification accuracy as high as 97.3\%.
The rest of the paper is organised as follows. Section 2
discusses the proposed mechanism. The experimental setup
and results with the mechanism are discussed in section 3.
The related work is presented in section 4. The paper
concludes in section 5.

2. Proposed Mechanism

In this section, we discuss the proposed mechanism for
dynamic malware analysis based on a deep learning neural
network.
The mechanism, as shown in Fig. 1, consists of a dynamic
malware behaviour monitoring module (DMBM), a log
processing module (LPM) and a deep learning neural
network (DLNN). The DMBM module follows Kernel
Function Calls to capture malware behaviours. The output
of the DMBM module is a log file which is processed by
the LPM module to obtain four dimensions of information
including Kernel Function Call sequence, function
parameters, function return value and function correlations.
Using this information, a figure is generated, which serves
as the input of the neural network. Below we illustrate
these three modules.

2.1 The DMBM Module

The DMBM module is shown in Fig. 2. It is designed and
implemented on the Xen cloud platform [3]. It runs on

dom0 that is a privileged domain. Dom0 boots first and
manages the DomU unprivileged domains. Guest operating
systems, e.g. Guest1, are running on DomUs. The DMBM
module directly accesses the guest system memory through
the open source LibVMI library [4]. Three pieces of
information are monitored including Kernel Function Calls,
function parameters and return values.
In order to get access to what is happening on the guest
system, DMBM inserts a #BP(breakpoint) instruction
(INT3, instruction code 0xCC) at the code where DMBM
is interested. When the #BP instruction is executed, a
VMEXIT signal is passed to the dom0 at the hypervisor
level. Therefore, the hypervisor can capture any instruction
executed at the guest system. So far the #BP instruction
has been used in the debugging technique so that the code
debugged cannot feel the existence of the debugger. In our
mechanism, we use the breakpoint injection technique to
trace the execution of the guest operating system to
achieve transparency, efficiency and stealth. In this paper,
we focus on Windows 7 SP1 guest system to discuss the
monitoring principle.
First, we need to determine the kernel location in the
memory. We find that Windows 7 stores the kernel virtual
address (KVA) in the FS and GS registers. KVA points to
the _KPCR data structure which is usually loaded into a
relative virtual address (RVA) in the kernel. _KPCR can
be identified by the KiInitialPCR symbol. We can search
the symbol in the memory and determine the location of
_KPCR, named addr1. Then substracting addr1 by RVA,
we can obtain the kernel base address.
Second, we need to determine the memory location of
various kernel functions. This is done by extracting
relevant information from the kernel debugging
information. Kernel debugging information is usually used
for forensic analysis. In our mechanism, we use the Rekall
[5] forensic analysis tool to process Windows debugging
information and make a kernel function map.
Combining the kernel function map and the kernel base
address, we can use the breakpoint injection technique to
capture the function execution of the guest system after the
malware is executed. When a function is called, the
corresponding parameters and return values will be
obtained from the registers and stacks. This information is

IJCSNS International Journal of Computer Science and Network Security, VOL.18 No.7, July 2018 98

recorded in a log file which will be processed by the LPM
module.

Fig. 2 Dynamic malware behavior monitoring module.

2.2 The LPM Module

The LPM module processes the log file that is generated
by the DMBM module. Four pieces of information are
extracted. The first one is the Function Call Sequence
which reflects the malware's behaviours. An m *n matrix is
generated, named A1, which represents what functions are
executed for consecutive m kernel function calls. n is the
total number of kernel functions in the operating system. n
is obtained by processing the operating system's debugging
information using the Rekall forensic analysis tool. Kernel
functions can be represented by f1(),f2(),...fn(). m is the
monitoring window, which is the number of consecutive
kernel functions monitored after the malware is executed.
If element aij in A1 is 1, this means that the ith function
call is fj(). In the A1 matrix, there is only one element that
equals to 1 and other elements are 0s for each row because,
at each monitoring point, there is only one kernel function
called. The LPM module extracts kernel functions from the
log file in order and generates the A1 matrix.
The second and third piece of information is function
parameters and return values. Malware may modify
registry keys to make it starts as the system boots, or open
a certain port to steal private data. Function calls can only
coarsely reflects operations. The detail of an operation is
not shown, for example, which registry key is modified to
what value, or which network port is open and how many
bytes are transmitted and what is in it. Therefore, it is
necessary to record and analyze the function parameters.
The return value can tell whether the function call is
successful, the allocated memory address, etc. It is as
important as the function parameters. We append function
parameters and return values to the right of the A1 matrix
to make an A2 matrix. When the VMEXIT signal is
captured by the hypervisor, we obtain the parameters and
return values using the VMI (virtual machine
introspection) technology through the LibVMI library.

The fourth piece of information is function correlations.
We generate another m*n matrix, called A3. This matrix
represents which functions are correlated. The LPM
module follows function parameters and return values.
Two functions that are working on the same objects are
correlated. For example, if the ith function fj() return a file
handler and the kth function fp() writes the file handler, the
LPM module correlates these two functions. The element
aij and akp in A3 will be set to the same value z. z starts
from 1 and increases as the number of groups of correlated
functions increases. In this way, all captured kernel
functions are classified into various groups. Correlated
functions belong to the same group. Groups are
differentiated by z.
Then we put the A3 matrix below the A2 matrix and add
0s at the right of A3 to make an A4 matrix. We take each
element in the A4 matrix as a pixel value and generate the
figure that is used as the input of the neural network.

2.3 The DLNN Module

The deep neural network is a machine learning model. In
this model, neurons at different layers are connected by
weights and activation functions. The key point is to learn
the weights between neurons and figure out the hidden
relationship between the input and output. The input is
passed to the first layer of the neural network to generate a
number of values. These values will be processed by the
activation function and then the results are regarded as the
input of the second layer. Subsequent layers repeat this
action and finally, the neural network outputs the ultimate
results.
The convolutional neural network is a type of deep
learning networks. It is widely used in the domain of face
or voice recognition. Typical applications of convolutional
neural networks include GoogleNet [6], Microsoft ResNet
[7] and AlphaGo [8]. In this paper, we choose the
convolutional neural network to detect and classify
malware. Our convolutional neural network consists of 13
convolutional layers, 13 max-pooling layers and 5 fully
connected networks. The relu and sigmoid function are
utilised as the activation function for the convolutional l

IJCSNS International Journal of Computer Science and Network Security, VOL.18 No.7, July 2018 99

Fig.3 Experimental setupayer and fully connected

network layer respectively. However, we use the SoftMax
function as the activation function at the last fully
connected network layer to realise malware classification.
The A4 matrix is regarded as the input feature figure that is
conducted a convolution operation with multiple filters.
The filters are matrixes with a number of weights. The
results are multiple figures that are processed by the max
pooling layer. After this, multiple small figures are
generated. These small figures become the input of the
next convolutional layer.
The weights are calculated according to the following four
steps. (1) Forward calculate the output of each neuron. (2)
Backward calculate error terms. (3) Calculate weight
gradient. (4) Update the weights using the gradient descent
algorithm.

3. Experiments

In last section, we present the proposed mechanism and
describe various modules. In this section, we discuss the
experimental setup and results.

3.1 Experimental Setup

The experimental environment is shown in Fig. 3. The Xen
hypervisor is running on a host running the Ubuntu 17.04
operating system. On Xen dom0, we implement the
DMBM Module. Guest 1 installs Windows 7 SP1. On
guest 1 malware is executed. Its behaviours are monitored
and recorded at the Xen hypervisor level. Ubuntu 17.04 is
installed on guest 2. INetSim is running on guest 2 to
simulate common Internet services including HTTP,
SMTP, DNS, FTP, etc. The experimental environment is
isolated from the Internet, to prevent the Internet from
malware executed. All traffic from guest 1 will be
forwarded to guest 2 which responses to requests. After
running a piece of malware, guest 1 will be installed a new
clean Windows 7 virtual machine to minimize the
interference from the last malware.

We gather 10000 malware samples from the Das Malwerk
server [9]. These samples include virus, trojans, logic
bombs, worms and spyware. Each has 2000 samples. We
upload them to VirusTotal [10] and each sample is
checked by multiple AntiVirus software. Finally, we assign
a tag to each sample according to the results from
VirusTotal. In addition, we obtain 2000 non-malware from
the Internet and most of them are office, audio, and video
software.
We classify each type of samples into 4 groups. We choose
3 groups as a subset of the training set and the fourth group
as a subset of the testing set. We select four combinations
of a training set and a testing set to conduct evaluations.
The deep learning network is implemented by the
Tensorflow [11] software. We use the training set to train
the neural network and the testing set to test the
classification accuracy.

3.2 Experiment Results

We present the results using a thermal map, as shown in
Fig. 4. The x-axis represents the de-facto type of the
malware. The y-axis represents the output of the neural
network. For example, The element in the first row, the
first column in Fig. 4(a) describes that the number of de-
facto viruses which is recognised by the neural network as
viruses is 481. From Fig. 4, we observe that our malware
detection mechanism can classify most of the malware.
After calculation, the classification accuracy is around
97.3%.

IJCSNS International Journal of Computer Science and Network Security, VOL.18 No.7, July 2018 100

Fig. 4 Thermal map of malware detection and classification

However, the mechanism has some misjudgments. We
select 20 misjudged samples and analyze the kernel
function call sequence manually. We find that
misjudgments may due to the following reasons. Firstly,
for non-malware that is mistaken as malware, it has at
least 3 of the following behaviours: (1) frequently create,
delete or move files; (2) create or delete registry keys; (3)
frequent network access; (4) open sensitive system
services; and (5) create and hide processes.
Secondly, some logic bombs are misjudged as non-
malware. This is because logic bombs behave normally
before the trigger event, e.g. web access, occurs. Thirdly,
some trojan horses are mistaken as viruses. This is because
these trojan horses read and write files on the disk. Most
viruses modify files to hide its existence. These operations
are similar. Fourthly, some worms are misjudged as
spyware, This is because worms propagate through
networks. They sniff the network just as spyware does.
In addition, we study the training accuracy. Fig. 5 shows
the results for group 1. At 100 iterations, the accuracy can

reach 90%. After that, it increases slowly and finally
reaches 97.3% at 2000 iterations.

Fig. 5 Accuracy of malware detection

IJCSNS International Journal of Computer Science and Network Security, VOL.18 No.7, July 2018 101

4. Related Work

Malware detection methods can be categorized into static
and dynamic methods. Our work belongs to the latter.
There are a number of dynamic solutions in the literature.
For example, TTAnalye [12] monitors Windows APIs and
Windows Native APIs and therefore can only detect user-
level malware. Apart from user-level malware, our
mechanism can detect rootkits because our mechanism
monitors Kernel Function Calls. TTAnalye uses the PC
emulator which simulates computer hardware including
processors, keyboards, etc. It compares the program
counter of the virtual processor with the head address of
the monitored function so that it can record the function
executed. Our mechanism executes the malware on the
guest system and uses the breakpoint injection technique to
monitor guest system (virtual machine) behaviours at the
hypervisor level. In a computer simulator, all instructions
are executed in software, but on virtual machines, a part of
instructions are executed on real CPUs. So our mechanism
is more efficient. In addition, TTAnalye requires logs to be
processed manually by professionals. In our mechanism,
this task is processed by the LPM module automatically.
CWSandbox [2] and Cuckoo [13] are dynamic analysis
methods. They install kernel drivers, define function hooks
to monitor Windows APIs and system calls. When the
interested function is loaded into the memory, the function
is rewritten and the code implementing the monitoring
functionality is appended before or after the function.
When it is executed, the function can be recorded.
Malware can detect the monitoring method by integrity
check of the function. In our method, the malware
execution and monitoring environments are isolated. In
addition, Different from our automatical log processing
module, CWSandbox and Cuckoo require security
professionals to process the logs manually.
DeepSign [14] is another dynamic analysis methods, which
uses Sandbox to record API calls. The return value of
some APIs in the Sandbox environment is different from
that in the real environment [15]. This is utilised by
malware to detect Sandbox. DeepSign uses unsupervised
methods to train the neural network. Our mechanism
assigns tags to the training samples, which uses the
supervised method. The benefit is that it can better classify
the malware with a relatively high accuracy.
In [16], Tobiyama et al. employ a convolutional neural
network to analyze API calls. This is also a dynamic
analysis method. The captured API calls are at the user
level and it cannot detect kernel rootkits. In addition, the
last layer of the neural network uses the sigmoid function.
Compared to the SoftMax function in our mechanism, it
can only detect whether a software is a malware or not. It
cannot tell malware types. Saxe et al. [17] processes the
binary file of malware. It is a static analysis method. It uses

a deep-feed-forward neural network to detect malware, of
which the last layer utilizes a sigmoid function.
Recently, the neural network is widely used to detect
malware on the Android platform. However, most of them
are based on static analysis. For example, R2-D2 [18]
unzips an android APP to obtain the classes.dex file of
which each byte is mapped to an RGB value. Then a figure
is obtained. The figure is used as the input for the
convolutional neural network. McLuaghlin et al. [19]
disassemble the binary program and analyze the raw
opcode sequence. DroidMiner [19] is another static
analysis method. It extracts threat action mode sequence
from the binary file. A machine learning method is utilised
for malware detection. Yuan et al. [20] extract features
based on a static and dynamic analysis. A deep belief
network based on an unsupervised learning algorithm is
used to train the neural network. Compared to the dynamic
method used in our paper, these static analysis methods do
not execute malware or study its behaviours, therefore,
they cannot detect polymorphic malware that uses packing
and encryption technology.

5. Conclusion

Static malware analysis cannot detect malware that uses
packing and encryption technology while traditional
dynamic malware analysis has fingerprints. To overcome
this issue, we proposed a dynamic malware detection
mechanism based on cloud computing to isolate the
monitoring environment and the malware execution
environment. The breakpoint injection technology is
utilised to capture the malware (running at the guest level)
behaviours at the hypervisor level. Malware detection is
based on a deep learning neural network and can classify
various malware types at an accuracy as high as 97.3%.

Acknowledgments

The work is supported by the NSFC project 61702542 and
the China Postdoctoral Science Foundation project
2016M603017.

References
[1] M. Egele, T. Scholte, E. Kirda, and C. Kruegel. A survey on

automated dynamic malware-analysis techniques and
tools.ACM computing surveys, 44(2):1-42, 2012.

[2] C. Willems, T. Hotz, and F. Freiling. Toward automated
dynamic malware analysis using cwsandbox. In Proceedings
of IEEE Symposium on security and privacy, pages 1-
9,2007.

[3] Paul Barham, Boris Dragovic, Keir Fraser, Steven Hand,
Tim Harris, Alex Ho, Rolf Neugebauer, Ian Pratt, and
Andrew Warfield. Xen and the art of virtualization. In
Proceedings of SOSP, pages 164-177, 2003.

IJCSNS International Journal of Computer Science and Network Security, VOL.18 No.7, July 2018 102

[4] LibVMI. https://github.com/libvmi/libvmi, 2018.
[5] Rekall Forensics. http://www.rekall-forensic.com/, 2018.
[6] Christian Szegedy, Wei Liu, Yangqing Jia, Pierre Sermanet,

Scott Reed, Dragomir Anguelov, Dumitru Erhan, Vincent
Vanhoucke, and Andrew Rabinovich. Going deeper with
convolutions. In Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition (CVPR), June
2015.

[7] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun.
Deep residual learning for image recognition. In
Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition (CVPR), 2015.

[8] D. Silve, A. Huang, C. J. Maddison, A. Guez, L. Sifre, and
G. v. d. Driessche. Mastering the game go with deep neural
netwoks and tree searchs. Nature, 529:484-489, 2016.

[9] Das Malwerk. http://dasmalwerk.eu/, 2018.
[10] VirusTotal. https://www.virustotal.com/, 2018.
[11] Mart__n Abadi, Ashish Agarwal, Paul Barham, Eugene

Brevdo, and et al. TensorFlow: Large-scale machine
learning on heterogeneous systems, 2015. Software
available from tensor ow.org.

[12] U. Bayer, A. Moser, C. Kruegel, and E. Kirda. Dynamic
analysis of malicious code. J. Comput Virol, 2:67-77, 2006.

[13] J. Bremer. Blackhat 2013 workshop: Cuckoo sandbox open
source automated malware analysis.
http://cuckoosandbox.org/2013-07-27-blackhat-las-vegas
2013.html, 2013.

[14] O. E. David and N. S. Netanyahu. Deepsign: Deep learning
for automatic malware signature generation and classication.
In Proceedings of International Joint Conference on Neural
Networks (IJCNN), 2015.

[15] T. Vidas and N. Christin. Evading android runtime analysis
via sandbox detection. In Proceedings of the 9th ACM
symposium on information, computer and communication
security (ASIA CCS14), pages 1-9, 2014.

[16] S. Tobiyama, Y. Yamagachi, H. Shimada, T. Ikuse, and T.
Yagi. Malware detection with deep neural network using
process behavior. In Proceedings of the 40th IEEE annual
computer software and applications conference, 2016.

[17] J. Saxe and K. Berlin. Deep neural network based malware
detection using two dimensional binary program features. In
Proceedings of 10th International Conference on Malicious
and Unwanted Software (MALWARE), 2015.

[18] T. H.-D. Huang and H.-Y. Kao. R2-d2: Color-inspired
covolutional neural network (cnn)-based android malware
detections. Cryptography and Security, 2017.

[19] N. McLuaghlin, J. M. d. Rlincon, B. Kang, and S. Yerima.
Deep android malware detection. In Proceedings of the 7th
ACM on conference on data and application security and
privacy, 2017.

[20] Z. Yuan, Y. Lu, Z. Wang, and Y. Xue. Droid-sec: deep
learning in android malware detection. In Proceedings of the
2014 ACM conference on SIGCOMM, pages 371-372,
2014.

Wei YIN received his Ph.D degrees from
the University of Queensland, Australia in
2012. He is a research engineer in North
China Institute of Computing Technology.
His research interest include rate adaptation
in wireless networks, honeypots and
honey encryption.

