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Summary 
Static malware analysis cannot identify malware that uses 
encryption or shell technology. Traditional dynamic malware 
analysis has fingerprints, such as using hooks to monitor function 
calls, which can be recognised and tampered by malware. To 
address this issue, this paper proposes a dynamic malware 
detection mechanism based on the cloud environment. Malware 
is running at the guest level while malware monitoring is 
conducted at the hypervisor level, therefore malware execution 
and monitoring environments are isolated. The breakpoint 
injection technology is utilised to capture the kernel function 
calls so that malware behaviours, such as processes, file access, 
registries and system services, can be monitored and the log is 
generated. The log is processed to extract four dimensions of 
information which is utilised as the input for the deep learning 
network. The deep learning network, trained by a large number 
of samples, can recognise and output the malware types at an 
accuracy as high as 97.3%. 
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1. Introduction 

Static and dynamic analysis are two most common 
methods for malware detection. Static analysis allows 
analyzing the code without actually executing it, which 
involves code auditing, reverse engineering, unpacking, 
HEX checking, etc. Static malware analysis is difficult. To 
begin with, it is not convenient to obtain the malware 
source code. Furthermore, binary programs lost 
information about data structure and variable size. In 
addition, polymorphic malware,  e.g. packer [1], that uses 
packing and encryption technology to alter the way it looks 
makes static analysis even harder.  
Dynamic analysis methods analyze the code by executing it 
without requiring the source code. In the meantime, the 
analyzer monitors its behaviours, such as API calls, file 
accessed, network connection launched, etc. The benefit is 
that even polymorphic malware that changes the binary 
fingerprint cannot escape from detection, because it cannot 
hide the program behaviours when executing. 
In dynamic malware analysis, a single function call reflects 
an operation. Multiple consecutive and relevant function 
calls represent the achieved functionality. All function calls 
can reveal the program behaviour. The Windows operating 

system provides multiple levels of function calls including 
Windows APIs, Windows Native APIs, System Calls and 
Kernel Function Calls, from top to bottom. Windows APIs 
consist of a set of functions that can achieve a particular 
functionality including security, management, etc. 
Windows APIs are open and stable as Windows evolves so 
that analyzers can define user-level function hooks to 
monitor Windows API calls once for all Windows versions. 
However, malware can call Windows Native APIs, System 
Calls or Kernel Function Calls instead to avoid user-level 
Windows API call monitoring. Kernel Function Calls are 
the lowest level functions to complete an operation. If we 
capture Kernel Function Calls, we can solve the escape 
problem achieved by malware calling Windows Native 
APIs,  System Calls or Kernel Function Calls. 
However, defining function hooks, such as that in 
CWSandbox [2], to hook interesting function calls needs to 
modify the operating system. This could be a fingerprint 
that can be utilised by malware to identify the monitoring 
environment. Smart malware will not conduct any 
suspicious actions if the monitoring environment is 
detected. Even smarter malware can modify function hooks 
at the same time cheating analyzers that the monitoring 
environment is working fine so that malicious behaviours 
cannot be detected. 
Therefore, the monitoring environment and malware 
execution environment should be isolated to avoid 
tampering, To build a malware detection mechanism based 
on the cloud environment could be a promising solution. 
The malware execution environment can be a guest system 
running above the hypervisor, e.g. Xen [3]. The malware 
monitoring environment can be realized at the hypervisor 
level to monitor and analyze the guest system behaviour. 
The hypervisor is invisible to the guest system and they are 
isolated so that malware executing at the guest level cannot 
tamper the hypervisor. In this paper, we design, implement 
and evaluate such a malware detection mechanism. We 
capture the Kernel Function Calls of the guest system at 
the hypervisor level and generate a figure, which is utilised 
as the input for the deep learning neural network. Finally, 
the figure is processed and the malware is classified. 
The paper achieves the following contributions. 
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Fig.1  Mechanism modules 

First, We design a transparent, secure dynamic malware 
analysis mechanism, which can secretively monitor 
function call execution of the guest system. Important 
information is extracted including the Kernel Function Call 
trace, function parameters, return values and function 
correlations, which forms the elements for the feature 
picture. It is proved that the information can well describe 
malware behaviours including processes, file access, 
network connections, registries, system services, etc. 
Second, we execute 9000 pieces of malware samples on 
the mechanism and gather corresponding feature figures, 
which forms the training set. A neural network is 
constructed and trained with these samples. Other 3000 
pieces of malware are utilised as the testing set. 
Experiments show that our mechanism can achieve a 
classification accuracy as high as 97.3\%. 
The rest of the paper is organised as follows. Section 2 
discusses the proposed mechanism. The experimental setup 
and results with the mechanism are discussed in section 3. 
The related work is presented in section 4. The paper 
concludes in section 5. 

2. Proposed Mechanism 

In this section, we discuss the proposed mechanism for 
dynamic malware analysis based on a deep learning neural 
network. 
The mechanism, as shown in Fig. 1, consists of a dynamic 
malware behaviour monitoring module (DMBM), a log 
processing module (LPM) and a deep learning neural 
network (DLNN). The DMBM module follows Kernel 
Function Calls to capture malware behaviours. The output 
of the DMBM module is a log file which is processed by 
the LPM module to obtain four dimensions of information 
including Kernel Function Call sequence, function 
parameters, function return value and function correlations. 
Using this information, a figure is generated, which serves 
as the input of the neural network.  Below we illustrate 
these three modules. 

2.1 The DMBM Module 

The DMBM module is shown in Fig. 2. It is designed and 
implemented on the Xen cloud platform [3]. It runs on 

dom0 that is a privileged domain. Dom0 boots first and 
manages the DomU unprivileged domains. Guest operating 
systems, e.g. Guest1, are running on DomUs. The DMBM 
module directly accesses the guest system memory through 
the open source LibVMI library [4]. Three pieces of 
information are monitored including Kernel Function Calls, 
function parameters and return values. 
In order to get access to what is happening on the guest 
system, DMBM inserts a #BP(breakpoint) instruction 
(INT3, instruction code 0xCC) at the code where  DMBM 
is interested.  When the #BP instruction is executed, a 
VMEXIT signal is passed to the dom0 at the hypervisor 
level. Therefore, the hypervisor can capture any instruction 
executed at the guest system. So far the #BP instruction 
has been used in the debugging technique so that the code 
debugged cannot feel the existence of the debugger. In our 
mechanism, we use the breakpoint injection technique to 
trace the execution of the guest operating system to 
achieve transparency, efficiency and stealth. In this paper, 
we focus on Windows 7 SP1 guest system to discuss the 
monitoring principle. 
First, we need to determine the kernel location in the 
memory. We find that Windows 7 stores the kernel virtual 
address (KVA) in the FS and GS registers. KVA points to 
the _KPCR data structure which is usually loaded into a 
relative virtual address (RVA) in the kernel. _KPCR can 
be identified by the KiInitialPCR symbol. We can search 
the symbol in the memory and determine the location of 
_KPCR, named addr1. Then substracting addr1 by RVA, 
we can obtain the kernel base address. 
Second, we need to determine the memory location of 
various kernel functions. This is done by extracting 
relevant information from the kernel debugging 
information. Kernel debugging information is usually used 
for forensic analysis. In our mechanism, we use the Rekall 
[5] forensic analysis tool to process Windows debugging 
information and make a kernel function map. 
Combining the kernel function map and the kernel base 
address, we can use the breakpoint injection technique to 
capture the function execution of the guest system after the 
malware is executed. When a function is called, the 
corresponding parameters and return values will be 
obtained from the registers and stacks. This information is 
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recorded in a log file which will be processed by the LPM 
module. 

 

 

Fig. 2  Dynamic malware behavior monitoring module. 

2.2 The LPM Module 

The LPM module processes the log file that is generated 
by the DMBM module. Four pieces of information are 
extracted. The first one is the Function Call Sequence 
which reflects the malware's behaviours. An m *n matrix is 
generated, named A1, which represents what functions are 
executed for consecutive m kernel function calls. n is the 
total number of kernel functions in the operating system. n 
is obtained by processing the operating system's debugging 
information using the Rekall forensic analysis tool. Kernel 
functions can be represented by f1(),f2(),...fn(). m is the 
monitoring window, which is the number of consecutive 
kernel functions monitored after the malware is executed. 
If element aij in A1 is 1, this means that the ith function 
call is fj(). In the A1 matrix, there is only one element that 
equals to 1 and other elements are 0s for each row because, 
at each monitoring point, there is only one kernel function 
called. The LPM module extracts kernel functions from the 
log file in order and generates the A1 matrix. 
The second and third piece of information is function 
parameters and return values. Malware may modify 
registry keys to make it starts as the system boots, or open 
a certain port to steal private data. Function calls can only 
coarsely reflects operations. The detail of an operation is 
not shown, for example, which registry key is modified to 
what value, or which network port is open and how many 
bytes are transmitted and what is in it. Therefore, it is 
necessary to record and analyze the function parameters. 
The return value can tell whether the function call is 
successful, the allocated memory address, etc. It is as 
important as the function parameters. We append function 
parameters and return values to the right of the A1 matrix 
to make an A2 matrix. When the VMEXIT signal is 
captured by the hypervisor, we obtain the parameters and 
return values using the VMI (virtual machine 
introspection) technology through the LibVMI library.  

The fourth piece of information is function correlations. 
We generate another m*n matrix, called A3. This matrix 
represents which functions are correlated. The LPM 
module follows function parameters and return values. 
Two functions that are working on the same objects are 
correlated. For example, if the ith function fj() return a file 
handler and the kth function fp() writes the file handler, the 
LPM module correlates these two functions. The element 
aij and akp in A3 will be set to the same value z. z starts 
from 1 and increases as the number of groups of correlated 
functions increases. In this way, all captured kernel 
functions are classified into various groups. Correlated 
functions belong to the same group. Groups are 
differentiated by z. 
Then we put the A3 matrix below the A2 matrix and add 
0s at the right of A3 to make an A4 matrix. We take each 
element in the A4 matrix as a pixel value and generate the 
figure that is used as the input of the neural network. 

2.3 The DLNN Module 

The deep neural network is a machine learning model. In 
this model, neurons at different layers are connected by 
weights and activation functions. The key point is to learn 
the weights between neurons and figure out the hidden 
relationship between the input and output. The input is 
passed to the first layer of the neural network to generate a 
number of values. These values will be processed by the 
activation function and then the results are regarded as the 
input of the second layer. Subsequent layers repeat this 
action and finally, the neural network outputs the ultimate 
results. 
The convolutional neural network is a type of deep 
learning networks. It is widely used in the domain of face 
or voice recognition. Typical applications of convolutional 
neural networks include GoogleNet [6], Microsoft ResNet 
[7] and AlphaGo [8]. In this paper, we choose the 
convolutional neural network to detect and classify 
malware. Our convolutional neural network consists of 13 
convolutional layers, 13 max-pooling layers and 5 fully 
connected networks. The relu and sigmoid function are 
utilised as the activation function for the convolutional l 
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Fig.3  Experimental setupayer and fully connected

network layer respectively. However, we use the SoftMax 
function as the activation function at the last fully 
connected network layer to realise malware classification. 
The A4 matrix is regarded as the input feature figure that is 
conducted a convolution operation with multiple filters. 
The filters are matrixes with a number of weights. The 
results are multiple figures that are processed by the max 
pooling layer. After this, multiple small figures are 
generated. These small figures become the input of the 
next convolutional layer. 
The weights are calculated according to the following four 
steps. (1) Forward calculate the output of each neuron. (2) 
Backward calculate error terms. (3) Calculate weight 
gradient. (4) Update the weights using the gradient descent 
algorithm. 

3. Experiments 

In last section, we present the proposed mechanism and 
describe various modules. In this section, we discuss the 
experimental setup and results. 

3.1 Experimental Setup 

The experimental environment is shown in Fig. 3. The Xen 
hypervisor is running on a host running the Ubuntu 17.04 
operating system. On Xen dom0, we implement the 
DMBM Module. Guest 1 installs Windows 7 SP1. On 
guest 1 malware is executed. Its behaviours are monitored 
and recorded at the Xen hypervisor level. Ubuntu 17.04 is 
installed on guest 2. INetSim is running on guest 2 to 
simulate common Internet services including HTTP, 
SMTP, DNS, FTP, etc. The experimental environment is 
isolated from the Internet, to prevent the Internet from 
malware executed. All traffic from guest 1 will be 
forwarded to guest 2 which responses to requests. After 
running a piece of malware, guest 1 will be installed a new 
clean Windows 7 virtual machine to minimize the 
interference from the last malware. 

We gather 10000 malware samples from the Das Malwerk 
server [9]. These samples include virus, trojans, logic 
bombs, worms and spyware. Each has 2000 samples. We 
upload them to VirusTotal [10] and each sample is 
checked by multiple AntiVirus software. Finally, we assign 
a tag to each sample according to the results from 
VirusTotal. In addition, we obtain 2000 non-malware from 
the Internet and most of them are office, audio, and video 
software. 
We classify each type of samples into 4 groups. We choose 
3 groups as a subset of the training set and the fourth group 
as a subset of the testing set. We select four combinations 
of a training set and a testing set to conduct evaluations. 
The deep learning network is implemented by the 
Tensorflow [11] software. We use the training set to train 
the neural network and the testing set to test the 
classification accuracy. 

3.2 Experiment Results 

We present the results using a thermal map, as shown in 
Fig. 4. The x-axis represents the de-facto type of the 
malware. The y-axis represents the output of the neural 
network. For example, The element in the first row, the 
first column in Fig. 4(a) describes that the number of de-
facto viruses which is recognised by the neural network as 
viruses is 481. From Fig. 4, we observe that our malware 
detection mechanism can classify most of the malware. 
After calculation, the classification accuracy is around 
97.3%. 
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Fig. 4  Thermal map of malware detection and classification 

However, the mechanism has some misjudgments. We 
select 20 misjudged samples and analyze the kernel 
function call sequence manually. We find that 
misjudgments may due to the following reasons. Firstly, 
for non-malware that is mistaken as malware,  it has at 
least 3 of the following behaviours: (1) frequently create, 
delete or move files; (2) create or delete registry keys; (3) 
frequent network access; (4) open sensitive system 
services; and (5) create and hide processes. 
Secondly, some logic bombs are misjudged as non-
malware. This is because logic bombs behave normally 
before the trigger event, e.g. web access, occurs. Thirdly, 
some trojan horses are mistaken as viruses. This is because 
these trojan horses read and write files on the disk. Most 
viruses modify files to hide its existence. These operations 
are similar. Fourthly, some worms are misjudged as 
spyware, This is because worms propagate through 
networks. They sniff the network just as spyware does. 
In addition, we study the training accuracy. Fig. 5 shows 
the results for group 1. At 100 iterations, the accuracy can 

reach 90%. After that, it increases slowly and finally 
reaches 97.3% at 2000 iterations. 

 

Fig. 5  Accuracy of malware detection 



IJCSNS International Journal of Computer Science and Network Security, VOL.18 No.7, July 2018 101 

4. Related Work 

Malware detection methods can be categorized into static 
and dynamic methods. Our work belongs to the latter. 
There are a number of dynamic solutions in the literature. 
For example, TTAnalye [12] monitors Windows APIs and 
Windows Native APIs and therefore can only detect user-
level malware. Apart from user-level malware, our 
mechanism can detect rootkits because our mechanism 
monitors Kernel Function Calls. TTAnalye uses the PC 
emulator which simulates computer hardware including 
processors, keyboards, etc. It compares the program 
counter of the virtual processor with the head address of 
the monitored function so that it can record the function 
executed. Our mechanism executes the malware on the 
guest system and uses the breakpoint injection technique to 
monitor guest system (virtual machine) behaviours at the 
hypervisor level. In a computer simulator, all instructions 
are executed in software, but on virtual machines, a part of 
instructions are executed on real CPUs. So our mechanism 
is more efficient. In addition, TTAnalye requires logs to be 
processed manually by professionals. In our mechanism, 
this task is processed by the LPM module automatically.  
CWSandbox [2] and Cuckoo [13] are dynamic analysis 
methods. They install kernel drivers, define function hooks 
to monitor Windows APIs and system calls. When the 
interested function is loaded into the memory, the function 
is rewritten and the code implementing the monitoring 
functionality is appended before or after the function. 
When it is executed, the function can be recorded. 
Malware can detect the monitoring method by integrity 
check of the function. In our method, the malware 
execution and monitoring environments are isolated. In 
addition, Different from our automatical log processing 
module, CWSandbox and Cuckoo require security 
professionals to process the logs manually. 
DeepSign [14] is another dynamic analysis methods, which 
uses Sandbox to record API calls. The return value of 
some APIs in the Sandbox environment is different from 
that in the real environment [15]. This is utilised by 
malware to detect Sandbox. DeepSign uses unsupervised 
methods to train the neural network. Our mechanism 
assigns tags to the training samples, which uses the 
supervised method. The benefit is that it can better classify 
the malware with a relatively high accuracy. 
In [16], Tobiyama et al. employ a convolutional neural 
network to analyze API calls. This is also a dynamic 
analysis method. The captured API calls are at the user 
level and it cannot detect kernel rootkits. In addition, the 
last layer of the neural network uses the sigmoid function. 
Compared to the SoftMax function in our mechanism, it 
can only detect whether a software is a malware or not. It 
cannot tell malware types. Saxe et al. [17] processes the 
binary file of malware. It is a static analysis method. It uses 

a deep-feed-forward neural network to detect malware, of 
which the last layer utilizes a sigmoid function. 
Recently, the neural network is widely used to detect 
malware on the Android platform. However, most of them 
are based on static analysis. For example, R2-D2 [18] 
unzips an android APP to obtain the classes.dex file of 
which each byte is mapped to an RGB value. Then a figure 
is obtained. The figure is used as the input for the 
convolutional neural network. McLuaghlin et al. [19] 
disassemble the binary program and analyze the raw 
opcode sequence.  DroidMiner [19] is another static 
analysis method. It extracts threat action mode sequence 
from the binary file. A machine learning method is utilised 
for malware detection. Yuan et al. [20] extract features 
based on a static and dynamic analysis. A deep belief 
network based on an unsupervised learning algorithm is 
used to train the neural network. Compared to the dynamic 
method used in our paper, these static analysis methods do 
not execute malware or study its behaviours,  therefore, 
they cannot detect polymorphic malware that uses packing 
and encryption technology. 

5. Conclusion 

Static malware analysis cannot detect malware that uses 
packing and encryption technology while traditional 
dynamic malware analysis has fingerprints. To overcome 
this issue, we proposed a dynamic malware detection 
mechanism based on cloud computing to isolate the 
monitoring environment and the malware execution 
environment. The breakpoint injection technology is 
utilised to capture the malware (running at the guest level) 
behaviours at the hypervisor level. Malware detection is 
based on a deep learning neural network and can classify 
various malware types at an accuracy as high as 97.3%. 
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