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Summary 
Recent studies have shown the negatives impact of malware 
attacks are increasing. To prevent malware attack in more 
proactive way, predictions of such attacks are needed. However, 
the quality and the accuracy of these predictions are determined 
by the applied techniques. In this paper, we report our findings on 
selecting and implementing such techniques in predicting malware 
attacks. For the selection process, we conducted a systematic 
review and searched over 5 major databases. 89 articles on 
malware predictions were finally included and prediction 
techniques are classified. As part of our on-going development 
project known as Integrated Cyber Evidence (ICE), we evaluated 
the selected technique using actual data of malware attacks. The 
results of evaluation had helped us to decide the final technique to 
be implemented in prediction module of ICE systems. 
Key words: 
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1. Introduction 

The threat (and the effects thereof) of malware will expand 
considerably in the coming years, mainly due to the 
improvements in techniques and goals (Crimeware, APTs, 
etc.) There is struggle against malware spins off from 
different areas which ranging from the awareness among 
users to adopt security measures to the development of anti-
malware software by specialized companies [68, 36]. This 
struggle also develops through the setting up of adequate 
security policies in different agencies and companies. Over 
the past decade, there has been an increase in the number of 
types of malware created and this eventually leads to the 
existence of their effects. According to a study reported by 
PandaLabs Annual Report 2017, the mean number of 
computers infected by malware is currently 31.88%, the 
countries with the highest infection rates are China 
(52.26%), Turkey (43.59%), Peru (42.14%), and Bolivia 
(41.67%). On the other hand, the countries least affected are 
Sweden (21.03%), Nor-way (21.14%), and Germany 
(24.18%). 
The economic losses caused by malware in its different 
scenarios (government agencies, companies and 
individuals) are huge and have been estimated at thousands 
of millions of dollars per year. The 2016 McAfee Labs 
Report mentioned that mal-ware is still at large with 
significant new changes to the kinds of threats such as file-

less attacks, exploitation of remote shell and remote control 
protocols, encrypted infiltrations, and credential theft which 
are harder to detect. In addition, this report claimed that 
Stuxnet and supporting Duqu, Flame, and Gauss malware 
have been developed tosecretly target specific devices and 
make minor configuration changes that would result in a 
major impact, for example to a nuclear program. The intent 
was not to destroy a computer or harvest massive amounts 
of data. Instead, it was to achieve the attackers’ goals by 
carefully selecting the modified working systems. 
In December 2016, Kaspersky Lab detected over 1,966,324 
registered notifications on attempted malware infections 
that aimed to steal money via online access to bank 
accounts. Ransomware programs were detected on 753,684 
computers of unique users; 179,209 computers were 
targeted by encryption ransomware. Kaspersky antivirus 
solution also detected 121,262,075 unique malicious 
objects: scripts, exploits, executable files, etc. and this 
could be one of the reasons why 34.2% of computer users 
were subjected to at least one web attack over the year. 
These dramatically increased threat had given us the 
significant reason to strengthen the national security in 
more proactive way. Thus, in our on-going research project, 
we are developing an integrated malware analytics 
framework that will expose the future threats of malware 
attacks. However, in order to predict the future threats, we 
need to select an efficient prediction technique and apply 
them in the malware analytics framework. In this paper, we 
will present the selection process using systematic literature 
review over 5 major databases and 89 articles on malware 
prediction were finally included. These 89 articles on 
malware prediction has been reviewed, analyzed, and then 
classified. We then perform an experimental evaluation 
using actual malware attack data and report the 
performance of the selected technique. 
The remaining of this paper is structured as follow: In 
Section 2, we briefly describe the project methodology and 
brief overview of ICE project. Section 3 describes the 
methodology of the conducted systematic review. In section 
4 describes the result of the systematic review and the 
selection of malware prediction technique. We described 
the implementation and evaluation of the selected 
techniques in Section 5. Finally, in Section 6 we conclude 
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this paper by summarizing the results, and highlighting 
some ideas on future work. 

2. ICE Overview and Project Methodology 

In this section we briefly describe the overview of the on-
going project known as Integrated Cyber-Evidence (ICE) 
systems and part of the project methodology. ICE is a 
system in which aimed to have the ability to learn the trend 
of malware attacks and predict the future attacks. This 
system consists of three main modules which include: Data 
Warehouse, Data Analytics and Visualization. Data 
Warehouse is a component that will be the central 
repository for the storing the collected data. Any 
unstructured data will be transformed into a structured data 
and some will need to be enriched to become more 
meaningful for further analysis. 
In Data Analytics component, data will be further analyzed, 
correlated and uncovered any possible hidden patterns or 
connections using collected historical data. Besides, 
descriptive analytics, this component will also be 
performing predictive analytics to discover the future or 
unknown malware attacks. Finally, in Data Visualization 
component, the data patterns, connections, and prediction 
will be presented in a pictorial or graphical format to enable 
decision makers to view the analytics graphically. These 
reports are crucially important as it will be used as evidence 
in forensic investigations and can be used to distribute 
warning to the targeted organization. However, in this paper, 
we only present part of the on-going project that related to 
data analytics. Figure 1 depicted the project methodology 
presented in this paper, consists of four main phases. 
In phase 1, we conducted an extensive Systematic 
Literature Review (SLR) in order to investigate the current 
techniques used for malware prediction. This task will be 
further described in Section 3. The results of the SLR 
provided us with a list of techniques. In phase 2, we rank 
the list and short-listed the most used techniques. We then 
analyze each technique and match the suitability with 
collected malware attacks data. In phase 3, we evaluated the 
selected technique, by benchmarking it with other 
commonly used technique and confirm the performance. 
Finally, in Phase 4 we identified the best technique and 
implemented in predicting malware attacks in Data 
Analytics module. 

 

Fig. 1  The Project Methodology 

3. Systematic Literature Review 

In this section we present the methodology used in 
conducting this systematic review. This methodology was 
built based on the well-known guideline by Kitchenham 
and Brereton [45]. 

3.1 Formulating the Research Questions 

The first step conducted in this SR methodology is to derive 
the research question. Based on our early investigation on 
the problem background, we derived the following research 
question: What are the existing prediction techniques for 
malware threats/attacks? 

3.2 Identify the Search String 

By considering the identified research questions, we 
outlined the research keywords which include: Malware 
OR Malicious OR Attacks OR Threat, Prediction, 
Technique. Then, by using the outlined research keywords, 
we identify the search string and used it in searching the 
related literature. The identified search string is: 
<< ((Malware OR Malicious OR Attacks OR Threat) 
AND Prediction AND Techniques)>> 

3.3 Search Strategy 

The third step in our SR is to execute the literature search 
using the identified search string. We execute the search for 
the period of Jan 2010 to October 2016, using the following 
search strategy: (1) Automatic search in 5 major databases 
(IEEE Explore Digital Library, Science Direct, ACM 
Digital Library, Springer Link and Wiley Online Library); 
(2) Manual search in conferences proceedings and journals; 
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(3) Snowballing for a complete set of primary Malware 
papers. The result of the initial search is shown in Table 1. 

Table 1: Search Result 
Num Databases Number of Papers 

1. IEEE Explore Digital Library 11 
2. Science Direct 280 
3. ACM Digital Library 25 
4. Springer Link 254 
5. Wiley Online Library 100 
   

3.4 Applying the Inclusion and Exclusion Criteria  

During the initial selection we apply a set of inclusion and 
exclusion criteria based on guideline proposed by 
Kitchenham and Brereton [45] and Khanian and Mahrin 
[41], to ensure only relevant works on malware prediction 
were accepted into the SR. The inclusion and exclusion 
criteria were applied in 6 phases and the results are 
presented in Table 2. 

Table 2: Inclusion and Exclusion Criteria 
Phase Inclusion/exclusion criteria Number of paper 

(P)  after applying 
  Inclusion/exclusion 

P1 Searching literature via the 
search 670 

 string on electronic databases to  
 cover journal articles, workshops  
 and conference papers  
P2 Excluding numbers of literature 

that is a short paper, a poster 
presentation, prefaces, editorials, 
slides presentation, non-English 
papers 

310 
  
  
  

P3 Removing duplicate literatures 
that 280 

 emerge in different databases  
P4 The literature must be a peer- 150 
 reviewed  
P5 Read the full paper (the 110 
 introduction, method section and  
 conclusion)  
P6 Excluding literatures that were 

not 89 
 related to malware prediction  

4. Prediction Techniques Selection 

In order to select the prediction techniques, we reviewed 
and classified the 89 articles according to the proposed 
techniques for malware prediction. The effectiveness of 
these techniques are based on features extracted using 
dynamic or static analysis that has been presented in the 
domain of malware detection and the field of malicious 
document detection. The prediction techniques proposed by 
researches in the 89 articles are listed in Table 3(a) and 
Table 3(b). These prediction techniques provide the 
relevance of the features for identifying the searched 
malwares, and on the quality of training data for being 
unbiased and representative of malwares. Some articles 

[77,12,4] have proposed the structural feature extraction 
methodology for the detection of unknown malwares using 
machine learning algorithms. The same result was also 
proposed by [22] who apply classification algorithms to 
classify unknown malicious in documents based on 
structural features. 

Table 3(a): Malware Prediction Techniques 
Techniques for malware prediction References 

Bipartite graph [61] 
API call graph [29] 
Graph structure + Clustering process [47] 
Control flow graph (CFG) [1], [26] 
Fuzzy [48], [37], 

[38],[39] 
Fuzzy + Association rules [19], [20] 
Fuzzy+ Clustering method [4] 
Network intrusion activity  
on computer network [80] 
Markov Model [44], [74] 
Markov Model + Entropy-based detection [14] 
Stochastic Model [50] 
Ensemble learning algorithms [51], [67], [54], 
 [12] 
Ensemble Methods + Harmony search [69] 
Clustering algorithms [31],[8], [58], [10] 
Clustering + Genetic algorithm [52] 
Propagation model [17] 
Propagation model + File relation graph, 
Active learning method [59] 
Honeypot technique + Association rule 
mining [34] 
Honeypot technique [60] 
  
Decision tree classifiers (J48, Random Forest 
(RF)) [76], [81], 
 [24], [5] 
Decision tree + Feature selection algorithm [77] 
Decision trees + Adaboost [42] 
Decision trees + Support Vector Machines 
(SVMs) [18] 

Support Vector Machine (SVM) [78], [36],[53], 
[71] 

SVM + Interpretable string analysis [88] 
SVM + graph kernels [11], [9] 
Speculative execution [84] 
Forecasting modeling [34], [42] 
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Table 3(b): Malware Prediction Techniques 
Techniques for malware prediction References 

Multi Agent Systems [56] 
Neural Network [65] 
Application's network traffic patterns [68] 
Logistic Regression [40] 
Static analysis techniques + Classification 
algorithm [82] 
Static analysis techniques [63], [73] 
Static analysis + Dynamic analysis [75] 
Partial matching classification algorithm [91] 
AccessMiner (system-centric approach) [32] 
Collaborative decision fusion [69] 
Motivation Theory [23] 
Text mining + Information retrieval [72] 
Sequential association rule [43] 
Association algorithm + connectivity metric [16] 
Associative classification (Classification + 
Association rule) [85] 
Association rule + Learning-based method [90] 
Object oriented association mining + called 
API’s [25], [87] 
Sequential pattern mining + Nearest Neighbor 
classifier [30] 
Pattern mining + Hooking [6] 
Frequent pattern mining [26] 
Nearest-Neighbor algorithm (KNN) [2], [46] 
Naive Bayes classifier [27] 
Naive Bayes classifier + Logistic regression + 
Threshold matching + Rank based [66] 
Naive Bayes + Dimensionality reduction with 
Markov Blanket [62] 
Classification algorithms (Decision trees, KNN, 
SVM, Artificial neural network, Logistic 
Regression, Hierarchical Clustering) 

[55] 

Classification algorithms (Decision trees, KNN, 
SVM, Naive Bayes) [64] 
Classification algorithms (Decision trees, SVM, [81] 
AdaBoost, logistic regression)  
Classification algorithms (AdaBoost, Decision 
trees, [22] 
Bayesian Network, Naive Bayes, Sequential 
Minimal  
Optimization, Logistic Regression, Bagging)  
Classification algorithms (Decision trees, Bayes 
network, KNN, multi-layer perceptron) + 
Anomaly-based 

[57] 

Classification algorithms (SVM, rule learning, 
Decision tree classifiers (J48, Random Forest)) [3] 
Classification algorithms (Decision trees, SVM, 
KNN, logistic, Naive Bayes, Adaptive 
regularization of weights) 

[83] 

Lazy associative classification algorithm + 
Execution- based dynamic analysis [89] 
Positive selection classification algorithm [33] 
Behavior-based detection technique [49] 
N Gram-based attribution method [21] 
Header information technology [79] 
Swarm-based approach + Stigmergic 
communication [15] 
Hierarchical associative classification [86] 
 
The articles were classified by the most used techniques in 
malware detection as showed at Figure 1. Techniques that 
have been employed less than three times have been 
classified in “Others”. It is apparent malware prediction 
researches increased the employing classification 
algorithms such as Decision trees (14 out of 89 papers) and 

SVM (12 out of 89 papers). Among data mining techniques, 
also Fuzzy, KNN, Clustering and association rule mining 
have been used the most often in malware prediction 
researches (7 out of 89 papers). 
These techniques are able to predict the unknown, new 
malwares accurately, by feature selection process and 
feature extraction process. Researchers selected these 
techniques to categorize the features of malware into static 
features which are pertaining to installation files, dynamic 
features which are pertaining to the behavior of the 
application after installation or hybrid features which are 
combination of both dynamic and static features and 
features extracted from executable files include printable 
strings, byte code n-gram, system calls, instruction 
sequence and opcode n-gram. On the other hand, these 
classification techniques extracted the features (i.e., byte 
sequences, printable strings, and system resource 
information) from malware samples via dynamic analysis 
or static analysis and based on the extracted features 
identify the malware automatically. 
 

 

Fig. 2  Classified Prediction Techniques 

5. Prediction Techniques Evaluation 

As shown in Figure 2, decision tree and SVM was mainly 
used for malware prediction. However, we selected SVM 
over decision tree as our data set is not suitable to be used 
with decision tree in predicting the malware attack. Thus, 
we further compare SVM with four other techniques to 
evaluate the technique performance, before implementing it 
in the development of Integrated Cyber Evidence (ICE) 
systems. Figure 2 shows the results of predictive analytics 
of Botnet attacks trend forecasting for December 2016 
using SVM, ARIMA (Auto-Regressive Integrated Moving 
Average) model, linear regression, random forest and ANN. 
The analytics was estimated on the training data from 
January 2016 to November 2016. The actual attack data for 
the period of December 2016 are also shown in blue line. 
Sliding window method has been used to model our 
predictive analytics. The sliding window method performs 
in a way: in the training set, we use y(i) as input and y(i+1) 
as output, iteratively constructed the sample in this way to 
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form the training set, then train the model to predict one step 
ahead (or multi-steps). To evaluate the forecast accuracy, 
most commonly used scale-dependent measures are based 
on the absolute errors or squared errors, and scaled mean 
absolute. The forecast errors are the difference between the 
actual values in the test set and the forecasts produced using 
only the data in the training set. The forecast accuracy 
measures of botnet attack prediction model by using 
selected ML algorithms are computed in Table 4. 

Table 4: Malware Prediction Techniques 
 MSE RMSE MAE 
 (Mean (Root Mean (Mean Absolute 
 Square Square Error) Error) 
 Error)   

Linear 0.0581 0.241 0.1994 
Regression    
Random Forest 0.1959 0.4426 0.3852 
ANN 0.1083 0.3291 0.2872 
SVM 0.0442 0.2102 0.1689 
ARIMA 0.0454 0.213 0.1711 
 
The results show the comparison of trend forecasting based 
on SVM, linear regression, random forest, ANN and 
ARIMA. Notice that the MAE values of forecasting using 
linear regression, SVM and ARIMA accuracy measures are 
less than 0.5. This means that the scaled error of the ML 
forecast algorithms is better than the average forecast 
computed on the training data. In our context, it is harder to 
predict the mal-ware attack more accurately could be 
because of smaller training dataset.  
 

Fig. 3  Prediction Techniques Evaluation 

As shown in Figure 3, the fluctuation trend of botnet attack 
could also have influenced on the accuracy of the prediction. 
Random Forest forecast algorithm, which is shown in dark 
orange line color, has the lowest accuracy with the highest 
estimation error of MAE at 0.385. 

6. Conclusion and Future Work 

Malware is the primary choice of weapon to carry out 
malicious intents in the cyberspace, either by exploitation 
into existing vulnerabilities or utilization of unique 

characteristics of emerging technologies. In this paper, we 
have presented an extensive systematic literature review on 
the malware prediction technique. Using 6 clearly 
predefined selection criteria, 89 malware prediction papers 
have been strictly selected, and then reviewed. From these 
primary malware prediction papers, we have extracted and 
synthesized the data to answer the research question. These 
89 articles on malware prediction has been reviewed, and 
then classified by techniques proposed in detection of new 
malware. Among the classified techniques, we have 
implemented the chosen technique SVM using actual 
malware attack data and evaluated the technique with other 
common used prediction techniques. Based on the 
experimental evaluation, SVM was also proven to be the 
most accurate. Thus, we have proposed this prediction 
technique to be implemented in the Data Analytics module 
of the Integrated Cyber Evidence (ICE) systems. 
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