IJCSNS International Journal of Computer Science and Network Security, VOL.18 No.9, September 2018 43

Computational and Analytical solution of Fractional order Linear
Partial Differential equations using Sumudu Transform and its
properties

a) Faryal Aijaz Ansari b) Israr Ahmed c) Kashif Ali Dharejo d) Abdul Naeem Kalhoro

a) Department of Education, Government of Sindh
b) Department of Mathematics, Shah Abdul Latif University Khairpur
c) Benazir Bhutto Shaheed University of technology and skill development Khairpur
d) Shah Abdul Latif University Khairpur

Summary

In this work, an analytical outcome of fractional order Linear
Partial differential equations is solved, which is collective result
of the Sumudu Transform and its differential and integral
properties and shows its ability on fractional order Linear Partial
differential equations. In this method the outcomes are achieved
in the form of quickly convergent infinite series with simply
computable terms and approximate solutions of fractional orders
are compared graphically. It is mention that this technique
removes linearization and biologically unrealistic assumptions
and gives an effective solution. The achieved outcomes are
calculated using the symbolic calculus software Maple 16. This
technique was undoubtedly very effective and powerful scheme in
finding the solutions of approximate and numerical solutions as
well as exact solutions.
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1. Introduction

Mathematicians have introduced FDEgs beneficial in
numerous fields. FDEQgs have been the attention on several
fields due to their frequent appearance on many studies
such as engineering, physics and chemistry. The fractional
derivative has been occurring in various physical and
chemical fields. Recently fractional diffusion equations
have attracted attention of many researchers due to its wide
applicability both in the theory of mathematical science and
technology. The latest work [1, 2, 3] on fractional diffusion
equations are useful in this field. Schneider and Wyss [4],
Dhaigude and Nikam [5] considered the time fractional
diffusion equation and wave equation and obtained their
solutions. The heat and wave-like models are the integral
part of applied sciences and arise in numerous physical
problems. Numerous techniques containing spectral,
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characteristic, modified variational iteration, ADM and
He's polynomials have been applied for solving these
problems. In this paper, Fractional Sumudu Transform
method [6] is applied for solving Time fractional Diffusion
equation, One-dimensional Fractional wave-like equation,
Two dimensional Fractional heat-like equation.

2. Basic Definitions of Fractional Calculus

Definition: A real function v (x), x >0is in the space

K
H HeR if there is a real number A>p such that

l//(X) = Xﬂvg(x)1 where g(X) & K[O’OO) and it is in

m
(m,. K

the space K # ifandonlyif ¥~ ¢ “H forMéeN

Definition The Riemann-Liouville fractional integral

K
operator of order 9 of a function w(x) g Nu , 'uz—l
is given as follows

X
I (x) = ﬁj(x_f)q_l‘/’(f)dﬁ q>0, x>0
0
V/(X)i q:0 21

The operator 34 has some properties, for g, r>0,
SiH=z-1 and C a real constant:

)=y |
IJN () =39y (x)
393y () =3"3%(x)
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q~__C q
* JC=rpX

Definition The Caputo Fractional derivatives DA of a

function v (x) of any real number 4  such that

m
m—l<q£m,m E N, forX>Oand ye C—l as:

X
1 _ \m-g-1(m)
. ) -0 Ty M )
D (x) = 0
My (9 q=m,
o™ 2.2
and has the following properties for

m-l<q<mme N,u>-land y £Cj
o DU =w() .
Xk

m-1
e JIDYY () =yp(x)- T y® ()X, for
k=0

ki’
x>0 .

Eq(X
Definition The Mittag-Leffler function q( ) with 9~ 0
has developed by G. M. Mittag-Leffler, for one-parameter
simplification of exponential function, which is represented
by

o0 Xn

%09= 2 tgnen)

n=0 2.3

3. Sumudu Transform and its derivative and
integral properties

The Sumudu transform is an integral transform, first
proposed by Watugala in 1998, [8] to solve engineering
problems [7,8,9].

The Sumudu transform is explained over the set of
functions:

A—{l//(r):EM,tl,tz>O,y/(r)< Me'l | if 7 (=11 x[0,00)} ,
3.1

given by

FW) =Sy =[S (o dr.
0

3.2
The existence and uniqueness was given in [10]. For more
information and properties of Sumudu transform and its
derivatives, [10,11,12,13].

Definition The Sumudu transform Sly (7)] of the
Riemann-Liouville fractional integral is given as below

[14-15]

S[3% ()] =u9S[w (7)]. 3.3

Definition The Sumudu transform Sly (7)] of the Caputo
14-15] :

fractional derivative is given as below [

m-1
SID% ()] =uS[y ()] - 3 u "y (), m-1<q=<m,
k=0 3.4
and the inverse sumudu transform of:

m-1 m-1_k. (k)
g1 ky® oo S 20
[gbu w7 (0)] gb Fkr)

4. Analysis of Fractional Sumudu Transform
Method

To show the fundamental scheme of this technique, we let
the following linear fractional PDE:

Dy (x,7) + L[y (x,7)] =Q(x,7),7 >0,m-1<q<m, 41
by the initial condition

v (%0)=fo(x), 42
q_5»d q

here D7 =0 /ot is the fractional Caputo derivative

’Lis the linear differential operator and Q(x,7) is the

source term of the function ¥ (x,7) .
Now, operating both sides the Sumudu transform (4.1),

SID? y (%, 7)1+ SILIy (x, D)1 = SR(X, 7). 4 5
Applying the differential property of Sumudu transform,

S[y (%, 2)] = [y (x, 0] + uIS[Q(x, 2)] ~uIS[LLy (x, 7)]I1. 4 4
Applying both sides the Sumudu inverse (4.4)

v (%,7) =y (x,0)+ S uIS[Q(X7) ~ Ly (x. )I] 4.5
Operating with the integral property of Sumudu transform
w(%7) =y (x,0)+ IAQ(x,7) ~ Liy (x, 7)1l , 4

The technique shows a series solution for v (x.7) defined
as
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wo(x7)=w(x,0) = fo(x),

Y% 1) = 39Q(x, ) = 39 (Lyp(x,2)) = Z fn()=—

F(qn+l) 4.7
then the terms ¥/N (x,7) follows:
0 nq
w(x7)= X wh(X1)= Z fn(X)=———
neo n=0 r(gn+1)

5. Comparison and Implementation of
Computational Results

In order to discuss the efficiency of our proposed technique,
we will illustrate the applications of our algorithm and
investigate its accuracy on some fractional order Linear
PDEgs. The efficiency and simplicity of the proposed
technique is discussed through the following three
examples. Graphs are given for the purpose of comparison
Example 1: Solution of Time Fractional Diffusion
equation
Let the following time fractional diffusion equation :

Ay Py oy

=——+X—+y, 0<qg<1

aTq 8X2 OX 5.1
by initial condition

Now, applying the New Fractional Sumudu transform
technique with the initial condition,

Sly (%, )] = (%,0) + UIS[wxx +Xyx +¥]. ¢ 4
Using both sides the Inverse Sumudu in (5.3),

p(x,7) =y (,0)+ S UIS[yy + Xy +]).

5.4
Operating with the integral property of Sumudu transform,
w(x7) =y (X0 + I W +Xxwx+wl. o
The method shows a series solution for y(x7)
wo(x7) =y (x,0)= fo(x),
~ha
Wna1 (X T)*J [‘//nxx‘*Xl//nx‘H//n]*n f(x )F(qn+l) 56

and the functions( fk ) k=0... are given by:

fo=vo.,

f1 = foux + Xfox + fo ,
fo = fux + Xfy + 1,
f3 = foyy + Xfoy + fo,

frar = frxx + XFax + fo 57

So that the solution y (X, 7) in series form is defined as:
2q TBq £nd

q
‘ + fy ‘ + f3 +oot fp——.
T(g+1) r'2q+1) I'(3g+1) I'(ng+l) 5.8

w(x,7)= f0+ f]_

Now the solution y(x,7) in closed form is defined as

0 2n ng
w(x7)= z vn(x7) = xz = XEq(27%),
59
Eq(¥) . . .
Where is Mittag-Leffler function in one parameter.
For special condition 4 = 1 ,
2
w(x,7) =xe", 5.10

which is an exact solution of the above time fractional
diffusion equation (5.1) for 9 =1
The solution of y(x,7) wrt X and 7 when

q=0204,071 47=01j given in Figure 5.1.

Fig. 5.1 The figure shows the solution of time fractional diffusion eq
wren 7 =0.1,, 0=02,04,07,1

The solution of y(x7) with respect to X and 7 when

q=05 using 0<x<band 0<r<5 is given in

Figure 5.2.
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Fig. 5.2 The figure shows the solution of time fractional diffusion eq
when q :0'5’using 0<x<5and 0<r<5

Table 5.1: Comparison between derivitaives of different non-integer

orders of time fractional diffusion equation with different values of q .
X |t |9q=1 |g=0.7{q=04|9g=0.2
025 | 0.1 0.3053506 | 0.40064030.8693237[3.0851961
) ) 667 836 140 85
050 | 0.1 0.61070130.80128071.738647416.1703923
) ) 333 673 27 71
075 | 01 0.9160520(1.2019211|2.6079711(9.2555885
) ) 000 52 42 56
1.0992624(1.4423053(3.1295653 |11.106706
090 | 01 |™"o0 1 7 27

8 0
1 0.1 |1.2214026|1.6025615(3.477294812.340784
: 67 34 55 74

Example 2: Solution of One-dimensional fractional wave-
like equation

Let the following one-dimensional fractional wave-like
equation:

q 2
oy _1 x2 8_1/2/ , 0<q<1
8‘[q 2 OX 5.11
subject to initial condition
w(x,0)=x* = fo(x).
' 5.12

Now, applying the New Fractional Sumudu transform
method with the initial condition,

Sy (% 7)] = (x,0)+uIS [ X .

Using both sides the Inverse Sumudu in (5.13),

w(x7) =y (1,0)+ 5 UISE K]
5.14

Operating with the integral property of Sumudu transform,

5.13

10
p(x,7) =y (x,0)+ I Xyl
2 5.15

The method assumes a series solution for v (x7)
l//o(X, T) = l//(xv O) = fO(X) ’
1, . ™

X'T:qux :foi

Vi1 (X.7) T[Z Vi n=1 n )F(qn+1) 5.16

and the functions( fk ) k=0... are given by:

fo=wo,
12
f1 = =X foyy .
1 2 0xx
12
fo = =X"frux s
2 2 Ixx
12
f3==X"foyx,
3 2 2XX
1.2
fn+1=§X frixx

5.17

So that the solution V/(X’ 7) in series form is defined as
2q 3

Tq T an
+ Ty + f3 +eet
r(q+1) r2q+1) T'(3q+1)

fn r(ng+) 518

wxz)="fo+f
Now the solution W(X’ 7) is defined as
) 0 ng
_ _\2 T _y2 q
y(x7) ngol//n(xnf) X E)F(nqﬂ) X“Eq(z7),
Eq (%)

For special condition q= 1, we have

5.19

Where is Mittag-Leffler function in one parameter.

2
w(x,7)=x%€". 5.20
which is an exact solution of the above one-dimensional

fractional wave-like equation (5.11) for 9= 1

The solution of y(x7) with respect to X and 7 when
g =0.05,0.25,0.75,1 and7=0.5

5.3.

is given in Figure
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-10 -3 0 3 10
X

Fig. 5.3 The figure shows the solution of one dimensional wave-like eq
when

q=0.050.250.751 and =05

The solution of y(x7) with respect to X and T when
q=05 using ~2 S X <5 gng —9=7<D j5 given in
Figure 5.4.

Fig. 5.4 The figure represents the solution of one-dimensional fractional
wave-like eq when q=0.5, using —5<X<5
-5<7r<5

Table 5.2: Comparison between derivitaive of different non-integer
orders of one-dimensional fractional wave-like equation with different

values of q .
X |t |q=1 |g=0.75/0=0.25|0=0.05
0.10304361(0.126294270.26522959(0.36 342294
0.25| 0.5 7

9 10 26 93
0.4T21744700.50517708|1.06091837[1.45369179

050 | 05 92 43 1 7
0.92739257/1.13664843[2.387066333 27080654

05 82 9 4 3
1.335445311.636773753.437375524. 70996142

090 05 A X 5 >
1.64869791[2.020708334.24367348/5 81476718

1105 7 7 2 8

0.75

Example 3: Solution of Two dimensional fractional heat-
like equation

Consider the following two dimensional fractional heat-like
equation:

9y _ 821// N azw

: 0<g<1
ord  x?  oy?
x>0, 7>0, y<2r 591
by initial condition
W(X, Y, 0) = Sin( X) Sin( y) = f (X) ) 5.22

Now, applying the New Fractional Sumudu transform
technique with the initial condition,

S[y (%, ¥, D)l =w(X, ¥,0) + uIS[yy + wyyl-
Using both sides the Inverse Sumudu in (5.23),

5.23
p(% Y1) =y (% y,.0+S T UISIx +wyy D ¢
Operating with the integral property of Sumudu transform,

l//(X, y’ 2-) = l//(X, y! O) + qu[!//XX + l//yy] .
The method assumes a series solution for

5.25

y(xy,7)
l//O(X| Y 2—) = l//(X, Y, O) =f (X) )
] nq

=J4 -y f v
(X Y,7) Jr[anx"“//nyy] nz::1 n(X)r(qn+1)15.26

and the functions( fk ) k=0... are given by:
fo=wo.
fi = foxx + foyy »
fo = fi + fiyy
f3 = foxx + foyy

frer = Frxx + fryy - 597
So that the solution W(X’ Y T) in series form is defined as
A S N S AR
veoyn) = o+ ot o rogin T BrEgen
an
+ f, .
T'(ng+1) 5.28

So that the solution y(xy,7) is represented as
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< (2)""
i F(ng+1)

V% :0)= 5y (0y.e) =SS y)

= sin(X)sin( y)Eq (-29),
Eq(x)

For special condition q= l, we have
w(x,y,7) =sin( x)sin( y)e % .5.30
which is an exact solution of the above two dimensional

fractional heat-like equation (5.21) for 9 = 1

5.29

where is Mittag-Leffler function in one parameter.

The solution of y(xy,7) with respect to X and 7 when
g=0.25,0.50,0.75,1 and 7=5

5.6,5.7,5.8.

isgivenin Figure 5.5,

Fig. 5.7 The figure represents the solution of two dimensional fractional

q=075_, =5

heat-like eq when d

Fig. 5.5 The figure shows the solution of two dimensional fractional

q=025_, 7=5

heat-like eq when d

Fig. 5.8 The figure represents the solution of two dimensional fractional

heat-like eq when q= 1 and r=5

Table 5.3: Comparison between derivatives of different non-integer
orders of two dimensional fractional heat-like equation with different

values of q .

X [¥z [z | 9=1 [q=0.75]q=050]q=0.25
0.25 4 0.01 0.1714769]0.1634118]0.1415290[0.0960447

: | 530 951 070 315
050! 4 |oo1 0.3322922[0.3166636[0.2742584[0.1861178|

: | 997 303 262 673
0.75 4 0.01 0.4724473|0.4502267]0.3899357]|0.2646190)

) T | 205 544 846 951
0.90 4 0.01 0.5429278|0.5173924(0.4481071]0.3040954

) T ) 985 265 368 684
1 4 o01 0.5832278]0.5557969]0.4813688]0.32666 75|

) 552 598 246 892

Fig. 5.6 The figure represents the solution of two dimensional fractional

q=050 =5

heat-like eq when nd
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6. Conclusion

In this paper, a theory of the Sumudu transform and its
derivatives is successfully applied for fractional order
linear partial differential equations. Three examples from
the literature [16-17] are presented to determine the
accuracy and simplicity of this proposed technique. It is
mention that when we compare our work with the literature
[16-17], this technique removes linearization and
biologically unrealistic assumptions and gives an effective
numerical solution than other techniques. The achieved
outcomes are calculated using the symbolic calculus
software Maple 16. This technique was undoubtedly very
effective and powerful scheme in finding the solutions of
approximate and numerical solutions as well as exact
solutions.
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