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1. Introduction 

Sentiment Classification is a division of text mining that 

also incorporates information extraction, lexical analysis 

and other related techniques. A number of methods (used in 

text mining) are utilized in sentiment mining as well. But 

sentiment classification is different from the factual-based 

text analysis in a sense that there are special characters used 

in sentiment expressions in different languages. There are 

many applications of opinion mining and sentiment 

classification. And one of the significant applications is 

customer review mining. There have been many studies 

recorded on different review sites in this regard. In this 

paper, a comparison of nine popular classification methods 

is presented and is cross validated using ensemble approach 

that combines five classification algorithms into an 

ensemble classification algorithm. These standalone 

algorithms include Support Vector Machine (SVM), 

Random Forest Classifier, Decision Tree Classifier, 

Regression, Perceptron and K-Nearest Neighbor methods. 

The ensemble algorithm first takes the results of standalone 

classifiers and then Majority-Vote method is applied to 

determine the final sentiment class prediction.  more, the 

experimental results with comparison of the mentioned 

standalone classifiers with the proposed one are discussed 

in a detailed manner.  

2. Baseline Classifiers and Techniques used 

for Sentiment Analysis 

The training of sentiment classifiers (from the sentiment 

labeled data) is one of the crucial phases of Sentiment 

Analysis. There are several supervised machine learning 

algorithms in order to carry out this training. One of the 

easiest approaches is Lexicon based approach that executes 

this process by calculating the sum of positive and negative 

sentiment words (by extracting them from the input source) 

and then overall sentiment is calculated. This approach is 

unable to identify the effect of negation element on the 

overall sentiment which is its weakness. Besides this, many 

other supervised machine learning methods are there that 

mainly depend upon human annotated samples. One of 

such methods is Naïve Bayes that is widely used in the field 

of text classification and sentiment analysis. The working 

principle of this approach is that the probability of an event 

(when the occurrence of the event is given) can be 

computed by the joint probability of two events. It makes 

as assumption that attributes in classification are 

independent of each other, thus resulting in the reduced 

computational complexity. Another machine learning 

method that is employed in sentient classification and 

analysis on a large-scale is K-Nearest Neighbors. As the 

name implies, this approach performs comparison of the 

similarity (of the given document) with its neighbors. This 

is what differentiates it from other approaches that it does 

not extract any features from the training dataset. Support 

Vector Machine (SVM) is not only a widely used machine 

learning method but considered the best one to perform 

classification. In this approach, the maximization of margin 

between instances and separation hyperplane is performed. 

[1] concluded in this research work that SVM is far better 

than Naïve Bayes. While [2] performed a research in which 

four feature selection methods and five machine learning 

approaches were compared. This research was performed 

on Chinese texts and concluded that Information Gain 

algorithm showed the best results among feature selection 

methods and SVM is the best among classification 

algorithms.   

Several techniques and methods for sentiment classification 

have been employed in the course of previous years. These 

can be classified into the following three categories: 

 Machine Learning Algorithms 

 Link Analysis Methods  

 Score-Based Approaches 

There are various methods and approaches that have been 

utilizing for sentiment classification and opinion extraction. 

These techniques and methods can be categorized into three 

main classes: machine learning algorithms, link analysis 

methods and score-based approaches [3]Most of the 

research on sentiment classification focuses on the opinions 

presented in English. But usually people leave their 

suggestions or comments in their native languages. Due to 

the lack of resources for other languages, sentiment 

classification (in languages other than English) is not that 

much accomplished. But work on other languages is also 

growing [4] 

In the previous years, several approaches and 

methodologies have been applied in text classification for 

extracting sentiments or opinions. All of this research 
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revolves around machine learning approaches [5, 3], 

lexicon-based approaches [6, 7, 8] and hybrid approaches.  

[9] conducted a study that measured the effectiveness of 

machine learning techniques after applying them on 

sentiment classification. Many of the machine learning 

techniques and approaches have been utilized with Support 

Vector Machine (SVM) and Naïve Bayes (NB) as the most 

commonly used methods. Whereas SVM has been widely 

utilized for movie reviews while NB has been in use for 

web discourse and reviews. When these algorithms were 

compared, SVM showed better results and outperformed 

NB and other algorithms. Genetic Algorithms (GAs) are 

basically probabilistic search methods that are similar to the 

process of biological evaluation and natural selection as 

well as survival of the fittest. When they are applied for 

natural selection and genetics (in artificial intelligence), 

they give you a solution (from the set of feasible solutions) 

that is globally optimized [10] GAs perform their working 

with a huge set of syntactic, semantic and discourse level 

feature set. Then, the computational accuracy of 

subjectivity classifier is determined by applying the fitness 

function. The feature seat is actually identified through 

natural selection by the operations of crossover and 

mutation. A different technique (from the discussed ones) 

is ensemble technique. It basically takes outputs from 

different base classification models and integrate them into 

a single output. This is considered to be highly-effective 

technique for different domains [11, 12].The ensemble 

technique also played a vital role in making improvements 

and accuracy in the discipline of classification in topical 

text classification. In early research, a combination of 

different classification algorithms was utilized [13] and 

proved that a higher accuracy is achieved in results by 

utilizing the combination instead of using individual 

approaches. In actual, the ensemble technique acquires this 

accuracy by combining arrays of specialized learners. 

Bootstrapping was one of the initial ensemble techniques. 

This is also called as Bagging [14]. An approach called 

Inverse Document Frequency was proposed by [15] in 

which classification was performed by utilizing bagging 

algorithms. In this study, bagging was applied and 

evaluated on movie reviews in combination with NB, SVM 

and GA, these were used as the base learners. Then, the 

performance of these bagged algorithms was then 

compared with that of individual classifiers.  

3. Baseline Classifiers Selected for Roman 

Urdu Classification 

In this research we selected a variety of classifiers from 

different domains for establishing performance comparison 

metrics for the proposed model (discussed in Chapter 5). 

These are listed below: 

 

Supervised Learning 

Multinomial NB 

[29] MultinomialNB basically practices the Naive Bayes 

algorithm for multinomially distributed data. It is one of the 

two classic Naive Bayes variants that is widely used in text 

classification in which data is typically represented in the 

form of word vector count. 

 

SGD Classifier 

[29] This is the Linear classifiers (SVM, logistic 

regression.) with SGD training. This estimator in actual 

implements the regularized linear models with stochastic 

gradient descent (SGD) learning: the gradient of the loss is 

estimated for each sample at a time and the model is 

updated along the way with a decreasing strength schedule 

(learning rate). 

 

Linear SVC 

[29] The main objective of Linear SVC (Support Vector 

Classifier) is to fit the data (provided to it), returning the 

‘best fit’ hyperplane that divides or categorizes the data. 

 

Ridge Classifier 

[29] Ridge Regression is a remedial measure taken to 

alleviate multi-collinearity amongst regression predictor 

variables in a model. Often predictor variables used in a 

regression are highly correlated. 

 

Unsupervised Learning 

KNeighbors Classifier 

[29] K-Nearest Neighbors is one of the most basic yet 

essential classification algorithms in Machine Learning. It 

belongs to the supervised learning domain and finds intense 

application in pattern recognition, data mining and 

intrusion detection. We are given some prior data (also 

called training data), which classifies coordinates into 

groups identified by an attribute. KNN makes predictions 

using the training dataset directly. Predictions are made for 

a new instance (x) by searching through the entire training 

set for the K most similar instances (the neighbors) and 

summarizing the output variable for those K instances. 

 

Tree Based Model 

Decision Tree Classifier 

[29] Another supervised machine learning classification 

technique utilized in this study is Decision Tree Classifier. 

Decision Trees (DTs) refer to a non-parametric supervised 

learning method used for classification and regression. The 

major aim is to build a model that may predict the value of 

a target variable by learning simple decision rules inferred 

from the data features. 

 

Neural Network Based Model 

Perceptron 
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[29] A simple machine learning algorithm appropriate for 

large scale learning is Perceptron. By default: It does not 

require a learning rate, It is not regularized (penalized) and 

it updates its model only on mistakes. 

 

Ensemble Models 

RandomForest Classifier 

[29] Random Forest is a supervised machine learning 

algorithm that works on the principle that it builds a forest 

- an ensemble of decision trees to make an accurate and 

stable prediction. In random forests, each tree in the 

ensemble is built from a sample drawn with replacement 

(i.e., a bootstrap sample) from the training set. 

 

Voting Ensemble (Equal Weighted) Model 

 [29] The concept of Voting Classifier is to combine 

various machine learning classifiers and use majority vote 

(or the average predicted probabilities referred as soft vote) 

to make a prediction about the class labels. This kind of 

classifier is quite useful in the situation where there is a set 

of equally well-performing model to balance out their 

individual weaknesses.  

4. Data Collection 

To train a sentiment classifier, a fairly large size of training 

dataset of records (already labeled with sentiment) is 

required. In this study, the irrelevant records (i.e. records 

other than those in Roman Urdu) were discarded and each 

relevant record in the dataset was manually labeled as 

positive, negative or neutral sentiment. As shown in Table 

4.1 our data corpus comprises of approximately 22000 

records. Out of which 4500 records are labeled positive, 

4900 records are labeled negative, 13000 records were 

labeled neutral and approximately 5000 records were 

discarded for being irrelevant. A list of web sources and 

Facebook pages used for retrieval of records is presented in 

Table 2 and Table 3.  

Table 4-1: Dataset Distribution 
Total Records Positive Negative Neutral 

22000 4500 4900 13000 

Table 2: Web Sources for Data Collection 
Sources 

Biographies Womens_Fashion 
UrduSafha Express Urdu 
Khabees Reddit 
Others Comments & Reviews 

Bitchy Urdu Cards Urdu Poetry 
AryNewsAsia Sentiment Analysis Interviewer 

Social Workers Careem 
Phones_tablets 2LinePoetry 
Blog Khuwaar Mens_Fashion 
Beauty_Health  

 

Table 3: Facebook Pages for Data Collection 
Source 

Expressnews
pk SHUGAL 

sarcasm12
3 
 

MRSMofficial 
 

UrduAdab TheOlaadM
ovement 

arhamsayss 
 

IdaraTulMusta
faInternational 

 

NaziaH urdughazal 
halalhumo

ur 
 

girls.pk 
 

LolWaalay EdaTuD Dostonkiba
ateinn 

english.emine
m 
 

HusseyOffici
alClub 

HappensInP
k 

Filmygyan
7 

jppk123 
 

Entertainme
nttrackerpag

e 
WBloverss Pakistanii

Awaaaam 
hadeed.khi 

 

css urdupoint Sheikhspea
reofficial 

GHStrangers 
 

Programmer
KiBaatein 

OfficialLaho
reQalandars 

AkbarSays
s 

Gulshan-E-
Hadeed-
Official 

 

shahlylaB7 EmployeesU
pGradation Bfkbaatein 

Hadeediansroc
ks 
 

NVinez UzairAltafP
age 

ChotiSiQa
yamat.seet

v 

yaradaynaalyar
i 

TheMahiraK
hanOfficial 

ChupbeyTha
rki 

Alif-on-
See-TV 

zindgigulzarha 
 

ArifaSobhK
han ItssAZee Humorists

2 Aghaz-Society 

PyaareNabi
KiBaatain    

 

 

Fig. 1  Dataset Distribution based on Sentiment Polarity 

5. Human Annotation 

The large-scale sentiment analysis can be performed 

through any of the two main and prominent approaches: 

i- Lexicon-Based Approach 

ii- Machine Learning Approach 

The first approach carries out sentiment analysis by 

computing sentiment (in the text) from the set of sentiment-

bearing words (present in the given text). But the second 

approach builds a sentiment classification model from the 

set of sentiment labeled text and then applies it on the 

stream of unlabeled texts. The model constructed in this 

Records

Positive Negative Neutral
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approach has a form of function that easily maps features 

(extracted from the text) into sentiment labels (that have 

discrete values: positive, negative or neutral). It is 

important to be noted that a significant human involvement 

(at least at initial level) is required in both approaches of 

sentiment analysis because the perception of sentiment 

(expressed in words or short text) needs to be labeled by 

human beings. This automatically leads to their 

involvement. Moreover, the sentiment labeling is specific 

to domain, topic and language.  

In this study, we have collected and analyzed a set of over 

22000 reviews and comments in Roman Urdu (and these 

posts are labeled by human annotators). To train sentiment 

classifiers in Roman Urdu, these labeled tweets are utilized 

as training data.  

6. Ordering of Sentiment Values 

The polarity of a given text is one of the significant 

elements in sentiment analysis. So, the classification of 

polarity of given text (on document, sentence or feature 

level) is one of the basic tasks in sentiment or opinion 

extraction. This opinion or sentiment (expressed in that 

given document, sentence or feature) may be positive, 

negative or neutral.  

7. F1 Score 

The accuracy of a test is also very important and must be 

proved to show the reliability of that research. F1 score 

(also called as F-measure or F-score) is one of the 

performance measures to measure the accuracy of a test in 

statistical analysis of binary classification. Precision and 

Recall are other important measures that are required to be 

analyzed. Denoted by p, precision refers to the number of 

correct positive results divided by all positive results. 

Whereas recall is denoted by r and represents the number 

of correct positive results divided by the number of positive 

results needed to be returned in original, for computing the 

score, F1 makes use of both precision p and recall r of the 

test. To compute a score, F1 score contemplates both 

precision ‘p’ and recall ‘r’ of the test. It can be explained as 

the weighted average of precision and recall. When F1 

score reaches around 1, it represents its best value while the 

value of 0 represents the worst one.  

As per definition  

 

7.1 F1 Scores of Baseline Classifiers 

The accuracy of the system can be measured through 

variant measures based on precision and recall by 

considering the two target categories comprising of positive 

and negative texts. This accuracy demonstrates that how 

much the results (produced by the proposed sentiment 

analysis approach) match with the human judgements.   

Table 4 gives a comparison of the time it took for the 

classifiers to train themselves on a dataset of almost 18000 

records and to test a dataset of 4000 records for sentiment 

prediction. Figure 2 also shows the same information as an 

illustration. 

Table 4: Classifier wise Training and Testing Time 

Classifiers Training Time 
(Seconds) 

Testing Time 
(Seconds) 

Multinomial NB 0.124 0.0069 
SGD Classifier 2.155 0.0069 

Linear SVC 1.437 0.0039 
Ridge Classifier 2.065 0.0190 

KNeighbors Classifier 0.038 2.963 
Decision Tree Classifier 0.599 0.0060 

Perceptron 0.134 0.0069 
RandomForest 

Classifier 426.577 1.691 

Voting Ensemble (Equal 
Weighted) Model 0 0 

 

 

Fig. 2  Comparison of Training and Testing Time of Classifiers 

0
0.2
0.4
0.6
0.8

1
1.2
1.4
1.6
1.8

2

Training Time Testing Time
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For our study we divided the dataset into two parts: The 

Training Set comprised of 18083 records whereas the Test 

dataset comprised of 4521 records. As apparent from Table 

4 and Figure 3 it takes RandomForest Classifier the longest 

to get trained as well as to process test data whereas 

KNeighbors model took the least time to train and Linear 

SVC model took the least time to predict results for the test 

data. Table 5 shows the values of precision, recall and F1-

score when the baseline classifiers were trained on the 

given dataset. A detailed account of the calculations of 

individual classifiers as well as the confusion matrices are 

presented in Appendix A. The best results were produced 

by Linear SVC giving an F1-score of 81 percent whereas 

the worst performance was given by Decision Tree which 

gave an F1-score of 38 percent. All the other scores were 

between 40 to 80 percent. 

Table 5: Classifier Wise F1 Score and Accuracy 
Classifiers Precision Recall F1-

Score Accuracy 

Supervised Learning 
Multinomial NB 0.69 0.70 0.69 0.700 
SGD Classifier 0.73 0.72 0.70 0.721 

Linear SVC 0.81 0.81 0.81 0.807 
Ridge Classifier 0.78 0.79 0.78 0.785 

Unsupervised Learning 
KNeighbors 

Classifier 0.72 0.6 0.46 0.595 

Tree Based Model 
Decision Tree 

Classifier 0.69 0.41 0.38 0.595 

Neural Network Based Model 
Perceptron 0.76 0.76 0.76 0.763 

Ensemble Models 
RandomForest 

Classifier 0.78 0.76 0.75 0.760 

Voting 
Ensemble (Equal 

Weighted) 
Model 

0.62 0.85 0.71 0.726 

 

 

Fig. 3  Comparison of F1 Scores of Classifiers 

 

Fig. 4  Comparison of Accuracy of Classifiers 

8. Optimization 

Hyper-parameters are parameters that are not directly learnt 

within estimators. In scikit-learn they are passed as 

arguments to the constructor of the estimator classes. 

Typical examples include C, kernel and gamma for Support 

Vector Classifier, alpha for Lasso, etc. Two generic 

approaches to sampling search candidates are provided in 

scikit-learn: for given values, GridSearchCV exhaustively 

considers all parameter combinations, while 

RandomizedSearchCV can sample a given number of 

candidates from a parameter space with a specified 

distribution. Therefore, in order to optimize the algorithm 

parameters, cross-validation is performed on the training 

data using GridSearchCV. In this way the predictions of 

various single learning algorithms can   be improved. There 

were three classifiers selected for this purpose. Linear SVC 

and Ridge Classifier were selected as they gave the best 

results and we wanted to observe if the results could be 

improved using optimization. Perceptron was selected to 

ascertain if neural network model could perform better after 

optimization. 

8.1 Support Vector Machine 

The default parameters used for SVC were: 

Kernel=’rbf’ 

Gamma=’auto’ 

C= 1 

Where: 

Kernel represents the kernel type to be used in the 

algorithm. It can have one of these values ‘linear’, 

‘poly’, ‘rbf’, ‘sigmoid’, ‘precomputed’ or a callable. 

‘rbf’ is used as default value.  

Gamma is the Kernel coefficient for ‘rbf’, ‘poly’ and 

‘sigmoid’. If gamma is ‘auto’ then 1/features are used 

instead. 

C is the Penalty parameter of the error term. Its default 

value is 1. 

0
0.2
0.4
0.6
0.8

1

Precision Recall F1-Score

0 0.2 0.4 0.6 0.8 1
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Ridge Classifier

Perceptron
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SVC revealed the following values for Precision after its 

hyper-parameters were tuned as shown in Table 6. 

Kernel = ['rbf'] gamma= [1e-3, 1e-4] C = [1, 10, 100, 1000] 

Kernel'= ['linear'] C= [1, 10, 100, 1000] 

Table 6: Optimization of SVC for Precision 
Kernel C Gamma Value Std Dev 

rbf 1 0.001 0.194 +/- 0.000 
rbf 1 0.0001 0.194 +/- 0.000 
rbf 10 0.001 0.194 +/- 0.000 
rbf 10 0.0001 0.194 +/- 0.000 
rbf 100 0.001 0.823 +/- 0.048 
rbf 100 0.0001 0.194 +/- 0.000 
rbf 1000 0.001 0.792 +/- 0.016 
rbf 1000 0.0001 0.823 +/- 0.048 

linear 1 - 0.807 +/- 0.012 
linear 10 - 0.786 +/- 0.007 
linear 100 - 0.781 +/- 0.011 
linear 1000 - 0.775 +/- 0.010 

SVC revealed the following values for Recall after its 

hyper-parameters were tuned as shown in Table 7. 

Table 7: Optimization of SVC for Recall 
Kernel C Gamma Value Std Dev 

rbf 1 0.001 0.333 +/- 0.000 
rbf 1 0.0001 0.333 +/- 0.000 
rbf 10 0.001 0.333 +/- 0.000 
rbf 10 0.0001 0.333 +/- 0.000 
rbf 100 0.001 0.390 +/- 0.008 
rbf 100 0.0001 0.333 +/- 0.000 
rbf 1000 0.001 0.652 +/- 0.009 
rbf 1000 0.0001 0.390 +/- 0.007 

linear 1 - 0.607 +/- 0.010 
linear 10 - 0.644 +/- 0.010 
linear 100 - 0.642 +/- 0.010 
linear 1000 - 0.639 +/- 0.009 

8.2 Ridge Classifier 

The default parameters used for Ridge Classifier were: 

tol=1e-2  

solver= ‘sag’ 

Where: 

alpha is the regularization strength. It is a positive 

float and is used to improve the conditioning of the 

problem and reduces the variance of the estimates. 

Larger values specify stronger regularization. 

tol is the Tolerance for stopping criteria having default 

value = 1e-4 

solver could have any one of these values {‘auto’, 

‘svd’, ‘cholesky’, ‘lsqr’, ‘sparse_cg’, ‘sag’, ‘saga’} 

default being ‘auto’ chooses solver based on the data 

type. ‘lsqr’ is used because it is the fastest.  

Ridge Classifier revealed the following values for Precision 

after its hyper-parameters were tuned as shown in Table 8. 

Alpha = [0,1,2,3,4,5] 

tol = [1e-1, 1e-2, 1e-3] 

solver = ['sag'] 

 

 

 

 

Table 8 Optimization of Ridge Classifier for Precision 
Alpha Tolerance Solver Value  Std Dev 

0 0.1 sag 0.769 +/- 0.007 
0 0.01 sag 0.765 +/- 0.007 
0 0.001 sag 0.754 +/- 0.012 
1 0.1 sag 0.791 +/- 0.011 
1 0.01 sag 0.791 +/- 0.013 
1 0.001 sag 0.791 +/- 0.013 
2 0.1 sag 0.796 +/- 0.014 
2 0.01 sag 0.799 +/- 0.015 
2 0.001 sag 0.798 +/- 0.015 
3 0.1 sag 0.804 +/- 0.018 
3 0.01 sag 0.803 +/- 0.018 
3 0.001 sag 0.803 +/- 0.018 
4 0.1 sag 0.805 +/- 0.018 
4 0.01 sag 0.804 +/- 0.022 
4 0.001 sag 0.804 +/- 0.022 
5 0.1 sag 0.804 +/- 0.022 
5 0.01 sag 0.804 +/- 0.020 
5 0.001 sag 0.804 +/- 0.021 

Ridge Classifier revealed the following values for Recall 

after its hyper-parameters were tuned as shown in Table 9. 

Table 9: Optimization of Ridge Classifier for Recall 
Alpha Tol Solver Value Std Dev 

0 0.1 sag 0.651 +/- 0.012 
0 0.01 sag 0.644 +/- 0.010 
0 0.001 sag 0.632 +/- 0.009 
1 0.1 sag 0.599 +/- 0.005 
1 0.01 sag 0.599 +/- 0.008 
1 0.001 sag 0.599 +/- 0.008 
2 0.1 sag 0.552 +/- 0.015 
2 0.01 sag 0.552 +/- 0.014 
2 0.001 sag 0.552 +/- 0.013 
3 0.1 sag 0.519 +/- 0.017 
3 0.01 sag 0.518 +/- 0.017 
3 0.001 sag 0.518 +/- 0.016 
4 0.1 sag 0.492 +/- 0.016 
4 0.01 sag 0.489 +/- 0.018 
4 0.001 sag 0.490 +/- 0.018 
5 0.1 sag 0.467 +/- 0.012 
5 0.01 sag 0.468 +/- 0.013 
5 0.001 sag 0.468 +/- 0.012 

8.3 Perceptron 

The default parameters used for Perceptron were: 

n_iter=50 

Perceptron revealed the following values for Precision after 

its hyper-parameters were tuned as shown in Table 10. 

alpha = [1e-3, 1e-4, 1e-5]  

tol = [1e-2, 1e-3, 1e-4]  

shuffle = [True, False]  

n_iter = [50,100] 

where: 

shuffle is the decision whether to shuffle the training data 

after each epoch or not. Default value is True 

n_iter is the number of passes over the training data. 

 

 

 

 

 

 

 



IJCSNS International Journal of Computer Science and Network Security, VOL.18 No.9, September 2018 

 

162 

Table 10: Optimization of Perceptron for Precision 
Alpha Shuffle Tol N_iter Value Std Dev 
0.001 True 0.01 50 0.728 +/- 0.019 
0.001 True 0.001 50 0.746 +/- 0.011 
0.001 True 0.0001 50 0.750 +/- 0.015 
0.001 False 0.01 50 0.735 +/- 0.024 
0.001 False 0.001 50 0.747 +/- 0.026 
0.001 False 0.0001 50 0.748 +/- 0.026 
0.001 True 0.01 100 0.728 +/- 0.019 
0.001 True 0.001 100 0.746 +/- 0.011 
0.001 True 0.0001 100 0.750 +/- 0.015 
0.001 False 0.01 100 0.735 +/- 0.024 
0.001 False 0.001 100 0.747 +/- 0.026 
0.001 False 0.0001 100 0.748 +/- 0.026 
0.0001 True 0.01 50 0.728 +/- 0.019 
0.0001 True 0.001 50 0.746 +/- 0.011 
0.0001 True 0.0001 50 0.750 +/- 0.015 
0.0001 False 0.01 50 0.735 +/- 0.024 
0.0001 False 0.001 50 0.747 +/- 0.026 
0.0001 False 0.0001 50 0.748 +/- 0.026 
0.0001 True 0.01 100 0.728 +/- 0.019 
0.0001 True 0.001 100 0.746 +/- 0.011 
0.0001 True 0.0001 100 0.750 +/- 0.015 
0.0001 False 0.01 100 0.735 +/- 0.024 
0.0001 False 0.001 100 0.747 +/- 0.026 
0.0001 False 0.0001 100 0.748 +/- 0.026 
1e-05 True 0.01 50 0.728 +/- 0.019 
1e-05 True 0.001 50 0.746 +/- 0.011 
1e-05 True 0.0001 50 0.750 +/- 0.015 
1e-05 False 0.01 50 0.735 +/- 0.024 
1e-05 False 0.001 50 0.747 +/- 0.026 
1e-05 False 0.0001 50 0.748 +/- 0.026 
1e-05 True 0.01 100 0.728 +/- 0.019 
1e-05 True 0.001 100 0.746 +/- 0.011 
1e-05 True 0.0001 100 0.750 +/- 0.015 
1e-05 False 0.01 100 0.735 +/- 0.024 
1e-05 False 0.001 100 0.747 +/- 0.026 
1e-05 False 0.0001 100 0.748 +/- 0.026 

Perceptron revealed the following values for Recall after its 

hyper-parameters were tuned as shown in Table 11. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 11: Optimization of Perceptron for Recall 
Alpha Shuffle Tol n_iter Value Std Dev 
0.001 True 0.01 50 0.677 +/- 0.029 
0.001 True 0.001 50 0.672  +/- 0.018 
0.001 True 0.0001 50 0.669  +/- 0.015 
0.001 False 0.01 50 0.675  +/- 0.017 
0.001 False 0.001 50 0.672  +/- 0.030 
0.001 False 0.0001 50 0.670  +/- 0.025 
0.001 True 0.01 100 0.677 +/- 0.029 
0.001 True 0.001 100 0.672  +/- 0.018 
0.001 True 0.0001 100 0.669  +/- 0.015 
0.001 False 0.01 100 0.675  +/- 0.017 
0.001 False 0.001 100 0.672  +/- 0.030 
0.001 False 0.0001 100 0.670  +/- 0.025 
0.0001 True 0.01 50 0.677 +/- 0.029 
0.0001 True 0.001 50 0.672  +/- 0.018 
0.0001 True 0.0001 50 0.669  +/- 0.015 
0.0001 False 0.01 50 0.675  +/- 0.017 
0.0001 False 0.001 50 0.672  +/- 0.030 
0.0001 False 0.0001 50 0.670  +/- 0.025 
0.0001 True 0.01 100 0.677 +/- 0.029 
0.0001 True 0.001 100 0.672  +/- 0.018 
0.0001 True 0.0001 100 0.669  +/- 0.015 
0.0001 False 0.01 100 0.675  +/- 0.017 
0.0001 False 0.001 100 0.672  +/- 0.030 
0.0001 False 0.0001 100 0.670  +/- 0.025 
1e-05 True 0.01 50 0.677 +/- 0.029 
1e-05 True 0.001 50 0.672  +/- 0.018 
1e-05 True 0.0001 50 0.669  +/- 0.015 
1e-05 False 0.01 50 0.675  +/- 0.017 
1e-05 False 0.001 50 0.672  +/- 0.030 
1e-05 False 0.0001 50 0.670  +/- 0.025 
1e-05 True 0.01 100 0.677 +/- 0.029 
1e-05 True 0.001 100 0.672  +/- 0.018 
1e-05 True 0.0001 100 0.669  +/- 0.015 
1e-05 False 0.01 100 0.675  +/- 0.017 
1e-05 False 0.001 100 0.672  +/- 0.030 
1e-05 False 0.0001 100 0.670  +/- 0.025 

A close analysis of the optimization process reveals that the 

precision and recall values do not differ very much for the 

different combination of input values. 

9. Results 

As can be determined from the results shown in Tables 6 to 

11, the values of precision achieved after optimization by 

SVC, Ridge Classifier and Perceptron model is close to the 

precision achieved by the default models however a minor 

difference between these can be observed and that is 

probably because of overfitting. Overfitting takes place 

when a model learns the detail and noise in the training data 

to the extent that it negatively impacts the performance of 

the model on new data. This means that the noise or random 

fluctuations in the training data is picked up and learned as 

concepts by the model. The problem is that these concepts 

do not apply to new data and negatively impact the model’s 

ability to generalize. GridSearch utilizes Cross-Validation 

while default models don’t use it hence cause them to 

overfit. In this case best result was given by SVC with F1 

score and accuracy of 0.81 whereas the worst results were 

computed by Decision Tree classifier having F1 Score 

value 0.38 and accuracy of 0.595. All the other classifiers 

gave an accuracy between 0.6 and 0.8. 
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The values of Recall achieved after optimization were 

however significantly lower than the ones produced by 

default models. The Voting Ensemble model gave best 

results for recall of 0.85 with linear SVC giving a value of 

0.81 whereas the best value recorded after optimization was 

of perceptron model with the value of 0.677 although Ridge 

Classifier 0.651 and SVC 0.652 follow closely. The main 

reason for this is the significant imbalance or skewness of 

the label class. In our data corpus more than half of the data 

is labelled neutral whereas the remaining are almost equally 

divided into positive and negative labelled records.   

10. Conclusion 

Extracting an individual’s attitude or thoughts from text is 

not an easy task and therefore Sentiment Analysis (also 

called Opinion Extraction or Opinion Mining) brings a ton 

of challenges. This analysis does not only extract the 

overall sentiment of a paragraph or a document. But this 

analysis must be thorough and in-depth enough to extract 

sentiments or opinions on a very granular level. And then 

relate that sentiment to the aspect it corresponds to. The 

process can be more complicated on an advanced level 

when it goes beyond positive or negative attitude and may 

encounter difficult data types. We have conducted this 

study for performing sentiment analysis on Roman Urdu 

dataset (acquired from various resources) and also analyzed 

results yielded from nine classifiers. We   targeted the 

datasets in Roman Urdu that were extracted from social 

media websites. The results demonstrated a fair percentage 

of success rate based on F1 score. In future, more accuracy 

can be achieved by increasing the size of the dataset, having 

stronger preprocessing algorithms and having data 

annotated by larger number of different human annotators. 
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