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Summary 
Dynamic hybrid systems (DHS) cover a wide variety of real time 

system as well as embedded systems where the behavior is 

captured by an interaction between discrete and continuous 

components. Typically, these systems are modelled by general 

Hybrid Automata (HA) which extend Finite state automata by 

differential equations and linear inequalities on the variables that 

model the system. The reachability problem is known undecidable 

for general Hybrid Automata. This means that there is no 

algorithm capable to sole the general form of the problem by a 

computer. However, many restrictions on general hybrid automata 

are proposed in literature where the reachability problem becomes 

decidable and covers in the same time a large category of systems. 

We focus on an interesting class of Rectangular HA (RHA) 

covering important aspects of real time systems. Besides, 

configurations and transitions of this modelling framework are 

defined by conjunction of linear constraints. And, the system of 

constraints related to system variables forms a convex polyhedron. 

In many cases, the constraints are computed by specific algorithms 

that may produce redundant constraints and where this redundancy 

is not easy to disclose. In this paper, we propose an approach to 

transform the initial linear constraints by an equivalent and 

minimized polyhedron. 
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1. Introduction 

Dynamic Hybrid Systems [1, 2, 3, 4] (DHS) are systems 

characterized by the interaction of both discrete and 

continuous components. A large variety of real-time and 

embedded systems and many computer automated systems 

as well as industrial and electrical systems are described by 

both continuous and discrete aspects. Tasks related to DHS, 

such as modeling, supervision and analysis, often pose 

complicated and challenging problems. Two types of 

communities are interested in DHS models: the discrete 

event systems (DES) community and the continuous 

systems community. 

Within the community of continuous systems, DHS are 

modeled as systems that transition among various 

continuous models. This enables the researchers and 

engineers with continuous systems backgrounds to apply 

readily available techniques from the continuous systems 

literatures. Nevertheless, performing computations and 

analysis with such models can easily become a daunting 

task, especially for hybrid systems with a strong discrete 

component, which exhibit frequent switching between a 

multitude  of different continuous models. Currently within 

the DES field, several different modeling frameworks are 

being used for modeling DHS. The most commonly used 

amongst them are timed and hybrid extensions of Petri nets 

[5,8,9,10,11] and automata [6,7]. 

As for the timed extensions, based on automata, such as 

timed automata [12,13], stop watch automata [14,15] and 

time transition systems [16,17], time constraints are added 

to states/configurations and event transitions. Global clocks 

are used to characterize the continuous system behavior.  

However, since automata do not naturally benefit from an 

intuitive graphical representation, the models they capture 

can easily become unmanageable, especially for complex 

DHS, requiring a large number of configurations, clocks, 

and/or clock resets. 

As for the hybrid automata models, we can list hybrid 

automata [18, 19], linear hybrid automata [20, 21] and 

rectangular automata [22, 23] as the most commonly used 

ones. The behavior of the system in hybrid automata is 

captured by a multitude of variables that reflect the 

continuous states of the system and where the evolution is 

governed by differential equations. Switching between 

configurations is triggered by transitions with variable 

constraints called Guards. Remaining in one configuration 

is conditioned also by variable constraints called Invariant. 

The set of possible values of variables in a given 

configuration is called the reached space. In general, the set 

of reached space is given by a number of inequalities that 

forms a polyhedron [24, 25]. One of the problems to solve 

is to presents theses inequalities in a minimalistic way. 

This paper is organized as follows. In the next section, we 

characterize a subclass of RHA formalism and its time 

transition system semantic. In section 3, we present and 

solve the minimization problem that we illustrate with some 

case study modelling. Our aim is to show that our approach 

is efficient to present reachable space of RHA in a 

minimalistic way. 
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2. Rectangular Hybrid Automata subclass 

We consider these notations. 𝒳 = {𝑥1, 𝑥2, … , 𝑥𝑛}  is a 

finite set of real valued clocks (variables). 𝒳̇ = {𝑥̇, 𝑥 ∈ 𝒳} 
denotes the set of first derivative variables of 𝒳. A variable 

x is considered piece-wise linear variable if 𝑥̇ ∈ ℝ . ~ 

denotes an element of operator’s set {<,≤,=,≥,>,≠}. A 

rectangular inequality over 𝒳, is an inequality of the form, 

𝑥~𝑐 , where 𝑐 ∈ ℝ , and 𝑥 ∈ 𝒳 . A rectangular predicate 

over 𝒳 is a conjunction of rectangular inequalities over 𝒳. 

𝑅𝑒𝑐𝑡(𝒳) denotes the set of rectangular predicates over 𝒳. 

A polyhedral inequality over 𝒳 is an inequality of the form 

𝑐1𝑥1 +⋯+ 𝑐𝑘𝑥𝑘~𝑐 , where 𝑐, 𝑐1, … , 𝑐𝑘 ∈ ℝ , and 

𝑥1, … , 𝑥𝑘 ∈ 𝒳 . A polyhedral predicate over 𝒳  is boolean 

combination of polyhedral inequalities over 𝒳. Ψ(𝒳) is the 

set of polyhedral predicates over 𝒳 . 𝐯 = (𝑣1, … , 𝑣𝑛) , 

denotes an element of ℝ𝑛, that captures clocks valuation, 

𝑣𝑖 ∈ ℝ, of every clock 𝑥𝑖 ∈ 𝒳. 𝑣(𝑥𝑖) = 𝑣𝑖  corresponds to 

the value of 𝑥𝑖. We denote by region a subset of ℝ𝑛. For a 

region 𝑧 and 𝑥𝑖 ∈ 𝒳, 𝑧(𝑥𝑖) = {𝑣𝑖|𝐯 ∈ 𝑧}. 𝜓(𝐯) denotes the 

boolean function which equals true if the predicate 𝜓  is 

satisfied by the input vector 𝐯 and false if not. We denote 

by [[𝜓]], the region composed by the set of vectors 𝐯 ∈ ℝ𝑛, 

where the predicate 𝜓 is true when we substitute each 𝑥𝑖 by 

its corresponding 𝑣𝑖 . [[𝜓]](𝑥𝑖)  denotes the interval of 

values captured by 𝑣𝑖, ∀𝐯 ∈ [[𝜓]]. 

2.1 Constant Slope RHA 

We start by defining Constant Slope Linear Hybrid 

Automata. 

Definition 1. [26, 27, 28] A constant slope linear hybrid 

automaton (CSRHA) is a tuple 𝒜 = (𝒳, 𝒬, 𝒯 ∪
{𝑒0}, 𝑖𝑛𝑣, 𝑑𝑦𝑛, 𝑔𝑢𝑎𝑟𝑑, 𝑎𝑠𝑠𝑖𝑔𝑛, 𝑙0) where: 

• 𝒳, is a finite set of variables. 

• 𝒬, is a finite set of locations. 
•  𝒯 , is a finite set of transitions.   transition 𝑒 =

(𝑙, 𝑙′) ∈ 𝒯 , leads tee ssstem from tee sorrce 

location ,𝑙 ∈ 𝒬 , to tee end location, 𝑙′ ∈ 𝒬 . hee 
entrs transition of tee initial state 𝑙0 is denoted bs 
𝑒0. 

•  𝑖𝑛𝑣  : 𝒬 → Ψ(𝒳)  is tee location invariant, it 
associates a predicate to eace location. 

•  𝑑𝑦𝑛  : 𝒬 × 𝒳 → ℝ , is a frnction describin  tee 
evolrtion of variables. heis evolrtion is rsralls of 

tee form 𝑙, 𝑥̇ = 𝑘, 𝑘 ∈ ℝ  or simpls 𝑥̇ = 𝑘  in tee 
location 𝑙 . 𝒳̇(𝑙)  denotes tee evolrtion of all 
variables in tee location 𝑙. 

•  𝑔𝑢𝑎𝑟𝑑  : 𝒯 → Ψ(𝒳)  is tee  rard frnction. It 
associates a predicate, 𝐶𝑒 to eace transition, 𝑒. hee 
 rard, 𝐶𝑒 seorld eqrals trre to allow tee execrtion 
of tee transition 𝑒. 

• 𝑎𝑠𝑠𝑖𝑔𝑛, is tee initialization frnction. It associates a 
relation ,𝑎𝑠𝑠𝑖𝑔𝑛𝑒 to eace transition 𝑒 definin  tee 

clocks to be reset. 

• 𝑙0 ∈ 𝒬, is tee initial location.   
∎  hee semantic of   constant slope rectan rlar 

esbrid artomata (CSRH ) is  iven bs tee 

followin  definition. 

2.2 Semantic of CSRHA 

In this section,  we focus on the semantic of a CSRHA in 

term of timed transition system, followed by the definition 

of run. 

Definition 2. The semantic of a CSRHA 𝒜 = (𝒳, 𝒬, 𝒯 ∪ 

{𝑒0}, 𝑖𝑛𝑣, 𝑑𝑦𝑛, 𝑔𝑢𝑎𝑟𝑑, 𝑎𝑠𝑠𝑖𝑔𝑛, 𝑙0)  is defined by a timed 

transition system 𝑆𝒜 = (𝑄, 𝑞0, →) with 

• 𝑄 = 𝒬 × ℝ𝑛 wite 𝑛 = |𝒳|. 
• 𝑞0 = (𝑙0, 𝑖𝑛𝑖𝑡) is tee initial state. 
• →∈ (𝑄 × (𝒯 ∪ ℝ+) × 𝑄) is defined bs : 

∘ (𝑙, 𝑣)𝑎
→
(𝑙′, 𝑣′)(𝐣𝐮𝐦𝐩 𝐭𝐫𝐚𝐧𝐬𝐢𝐭𝐢𝐨𝐧) 𝑖𝑓 ∃  𝑒 =

(𝑙, 𝑙′) ∈ 𝒜  𝑠. 𝑡.  (

𝑎 = 𝑒
𝑔𝑢𝑎𝑟𝑑(𝑒)(𝑣) = 𝑡𝑟𝑢𝑒

𝑣′ = 𝑎𝑠𝑠𝑖𝑔𝑛𝑒(𝑣)

𝑖𝑛𝑣(𝑙′)(𝑣′) = 𝑡𝑟𝑢𝑒

 

  

∘ (𝑙, 𝑣)𝜀(𝑡)
→
(𝑙′, 𝑣′)(𝐟𝐥𝐨𝐰 𝐭𝐫𝐚𝐧𝐬𝐢𝐭𝐢𝐨𝐧) 𝑖𝑓 (

𝑙 = 𝑙′
𝑣′ = 𝑣 + 𝑡 ∗ 𝒳̇(𝑙)

𝑖𝑛𝑣(𝑙′)(𝑣′) = 𝑡𝑟𝑢𝑒
 

 

  rrn of CSRH  𝒜  is a pate in 𝑆𝒜   started from 𝑞0 . 
[[𝒜]]  denotes tee set of all rrns of 𝒜 . ee note 

(𝑙, 𝑣)𝜀(𝑡)
→
(𝑙′, 𝑣′)𝑎

→
(𝑙′′, 𝑣′′)  is eqrivalent to 

(𝑙, 𝑣) →𝑎
𝜀(𝑡)

(𝑙′′, 𝑣′′) .   state (𝑙𝑖 , 𝑣𝑖)  is considered 
as reaceable, if 

∃(𝑙0, 𝑣0) →𝑎0
𝜀(𝑡0) (𝑙1, 𝑣1) →𝑎1

𝜀(𝑡1) (𝑙2, 𝑣2) →𝑎2
𝜀(𝑡2) 

… →𝑎𝑖
𝜀(𝑡𝑖) (𝑙𝑖 , 𝑣𝑖) weere (𝑙0, 𝑣0) = 𝑞0.  

  rrn (𝑙0, 𝑣0) →𝑎0
𝜀(𝑡0) (𝑙1, 𝑣1) →𝑎1

𝜀(𝑡1) (𝑙2, 𝑣2) →𝑎2
𝜀(𝑡2) 

… →𝑎𝑖
𝜀(𝑡𝑖) (𝑙𝑖 , 𝑣𝑖)…  startin  from 𝑞0 = (𝑙0, 𝑣0)  is a  

timed trace, denoted as 𝑤 = (𝑎0 = 𝑒0, 𝛿0) →
(𝑎1, 𝛿1) → (𝑎2, 𝛿2) → ⋯ (𝑎2, 𝛿2)…  , weere 𝑤 is a 
seqrence of pairs (𝑎𝑖 , 𝛿𝑖) , wite 𝑎𝑖 ∈ 𝒯 ∪ {𝑒0}  a 
transition, and 𝛿𝑖+1 ∈ ℛ+ is tee delas between tee 
two srccessive events 𝑎𝑖 and 𝑎𝑖+1, weere : 𝛿0 = 0, 
and ∀𝑖 ≥ 1,    𝛿𝑖 = 𝜀(𝑡𝑖) − 𝜀(𝑡𝑖−1). 
 

3. Minimization of linear constraints 

The state space in each location of an RHA is typically 

described by a polyhedron. In many cases, this space results 

of a computation made to fulfill a control, diagnose or 

general safety properties. Since these properties are often 
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ensured by automated mechanism and algorithms, a hidden 

redundancy of inequalities is possible. A direct result is that 

the characterization   of the reachable space becomes more 

difficult. It is more adequate to describe the polyhedron in 

a minimalistic way. Consider as example the following 

inequality system. 

 

 

Fig. 1  Constraints representation 

Figure 1 illustrates these constraints. The line segment a is 

the boundary of the first inequality: −𝑥 + 𝑦 ≤ 0. We note 

in the same way the other constraints. It is clear from the 

graphical representation of the polyhedron that the last 

inequality (−3/4𝑥 + 𝑦 ≤ 2) , whose boundary is 

represented by the line labeled e, has no influence on the 

representation of the polyhedron, and can be reduced by the 

system of inequalities. We try to check if the last inequality 

is useless/ redundant by a maximization problem. If we 

consider the following linear program: 

 

𝑓∗ = 𝑚𝑎𝑥𝑖𝑚𝑖𝑧𝑒 (−
3

4
x + y) 

𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜

(

 
 

−1 1
−1/4 −1
3/2 −1
1 1

)

 
 
. (

𝑥
𝑦 ) ≤

(

 
 

0
−3/4
4
6

)

 
 

 

𝑎𝑛𝑑 − 3/4𝑥 + 𝑦 ≤ 𝟑  

 

Equivalent to 

  

𝑓∗ = 𝑚𝑎𝑥𝑖𝑚𝑖𝑧𝑒 (−
3

4
x + y) 

𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜

(

 
 
 

−1 1
−1/4 −1
3/2 −1
1 1
−3/4 1

)

 
 
 
. (

𝑥
𝑦 ) ≤

(

 
 
 

0
−3/4
4
6
𝟑

)

 
 
 

 

 

If the inequality (−3/4𝑥 + 𝑦 ≤ 2)  participates in the 

delimitation of the polyhedron space, then the maximization 

program will have a solution between 2 in the strict sense 

and 3. This comes from the fact that we relaxed the constant 

2 of the constraint (−3/4𝑥 + 𝑦 ≤ 2)  by another strictly 

higher constant. In the case of this example, there will 

always be a solution of less than two. 

In the following, we express a generalization that allows to 

check whether an inequality is redundant. 

Let 𝐴. 𝑋 ≤   𝑏  and 𝑠𝑇𝑥 ≤ 𝑡  be the system with m + 1 

inequalities of d variables (𝑥1, 𝑥2, … , 𝑥𝑑)
𝑇. We want to test 

whether the system of the first m inequalities 𝐴. 𝑋 ≤   𝑏 

contains the last inequality 𝑠𝑇𝑥 ≤ 𝑡. In the latter case the 

inequality 𝑠𝑇𝑥 ≤ 𝑡  is considered redundant and can be 

removed from the system. A formulation of a linear 

program to verify this redundancy is as follows. 

 

𝑓∗ = 𝑚𝑎𝑥𝑖𝑚𝑖𝑧𝑒 𝑠𝑇𝑥  
𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜  𝐴. 𝑋 ≤  𝑏  
𝑎𝑛𝑑 𝑠𝑇  𝑥 ≤ 𝒕 + 𝟏 

 

Theorem 1. Consider 𝑋 = (𝑥1, 𝑥2, … , 𝑥𝑑)
𝑇  and the 

following 𝑚 + 1 inequality n system 

𝐴. 𝑋 ≤   𝑏 

and 𝑠𝑇𝑥 ≤ 𝑡 
The inequality 𝑠𝑇𝑥 ≤ 𝑡 is considered non-redundant if for 

any non-negative constant 𝑐, the solution of the following 

maximization program  

𝑓∗ = 𝑚𝑎𝑥𝑖𝑚𝑖𝑧𝑒 𝑠𝑇𝑥  
𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜  

              𝐴. 𝑋 ≤  𝑏  
                  𝑠𝑇  𝑥 ≤ 𝑡 + 𝒄 

is bounded by  𝑡 < 𝑥 ≤ 𝑡 + 𝑐 
 

If the solution is greater than 𝑡 , this means that the 

inequality 𝑠𝑇𝑥 ≤ 𝑡  is defining an effective edge of the 

polyhedron, so that adjusting the bound 𝑡  will affect the 

form of the polyhedron. In another hand, if the solution is 

always less that or equal to 𝑡, this means that this edge is out 

of the polyhedron and it has no effect on the space definition. 

Thus, the inequality 𝑠𝑇𝑥 ≤ 𝑡 is redondant iff the optimal 

value of 𝑓∗  is less than or equal to 𝑡  and then can be 
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removed. We should repeat this linear program for all the 

other inequalities in order to check any possible redundancy. 

 

 

Fig. 2  CSRHA example 

Figure 2 presents a simple CSRHA model where the 

location invariant in defined by a set of inequalities. In a 

quest of minimization we apply the maximization program 

mentioned in this section to each of the present inequalities. 

This results that the inequality −3/4 𝑥 + 𝑦 ≤ 𝟐  is 

redundant. The minimized version of this CSRHA is 

presented in Figure 3. Generally speaking, all computation 

actions on the minimized CSRHA will be less complex to 

perform. 

 

 

Fig. 3  Minimized CSRHA  

4. Conclusion 

The objective of this work is to reduce the number of 

constraints on a subclass of rectangular hybrid automata by 

some linear program technics. This will result in a more 

concise automaton where each constraint (on transition 

guards as well as location invariant) that remains is an 

effective constraint. Thus, the obtaining automata after 

applying our algorithm is minimal in term of constraints.  

This technic is applicable on automata whose constraints 

are linear. Thus, the conjunction of these constraints results 

in a polyhedron. The CSRHA is a subclass of Hybrid 

automata that satisfy the linearity restriction and capable to 

describe a large category of real time systems as well as 

embedded systems. 

In the future we aim to generalize this method to a more 

general format. 
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