
IJCSNS International Journal of Computer Science and Network Security, VOL.18 No.10, October 2018

59

Manuscript received October 5, 2018

Manuscript revised October 20, 2018

Evaluation of SQL benchmark for distributed in-memory

Database Management Systems

Oleg Borisenko† and David Badalyan††

Ivannikov Institute for System Programming of the RAS, Moscow, Russia

Summary
Requirements for modern DBMS in terms of speed are growing

every day. As an alternative to traditional relational DBMS

distributed, in-memory DBMS are proposed. In this paper, we

investigate capabilities of Apache Ignite and VoltDB from the

point of view of relational operations and compare them to

PostgreSQL using our implementation of TPC-H like workload.

Key words:
Apache Ignite, VoltDB, PostgreSQL, In-memory Computing,

distributed systems.

1. Introduction

Today, most applications have to handle large amounts of

data. Architects of complex systems face a problem of

choosing a DBMS corresponding to reliability, scalability

and usability requirements. Traditionally used RDBMS

have several advantages, such as integrity control, data

consistency, matureness. However, the centralized data

placement and classic disk storage limit performance

scalability to vertical scalability model (extending single-

node performance) or some kind of sharding which may not

be applicable for particular application.

As an alternative to relational DBMS, in-memory

technology was introduced in the last decade. DBMS of this

class store the entire database in RAM, thereby increasing

bandwidth for data access and decreasing latency. Also,

these systems are often have distributed nature, which

allows to scale systems horizontally across multiple nodes.

This paper is focused on comparison of in-memory Apache

Ignite and VoltDB to PostgreSQL in terms of SQL

operations. Using the TPC-H benchmark approach,

described in detail in [1] [2] we implement our own

workload similar to TPC-H. The following problems are

investigated:

 DBMS performance comparison;

 correctness of the benchmark query results in the

distributed operation mode;

 performance impact of increasing the number of

nodes in a cluster.

Results are compared to the same tests performed against

PostgreSQL DBMS.

2. Overview

This chapter discusses the features of Apache Ignite and

VoltDB. Both DBMS support data replication in distributed

mode. However, the paper will consider only the case of

data distribution without replication.

2.1 Apache Ignite

Apache Ignite is a distributed in-memory DBMS [3] [4]

written in the Java programming language. It is a caching

and data processing platform designed for managing large

amounts of data using large number of compute nodes.

Despite original key-value nature of the system, the

developers declare ACID compliance and full support for

the SQL:1999 standard.

H2 Database is used as a subsystem to process SQL queries.

After initial query processing it generates local data

retrieval requests on the nodes containing the necessary data,

and a global data collection request. To eliminate a

possibility of results loss, Apache Ignite implements a

special mode in which local query execution is

accompanied by polling other cluster nodes for the presence

of necessary data.

Apache Ignite has two cluster modes: atomic and

transactional. In atomic mode, Apache Ignite is an AP

system, in transactional mode - CP in terms of CAP theorem

(P - Partition tolerance, C - Consistency, A - Availability

[5]). In this paper, Apache Ignite is evaluated in

transactional mode exclusively.

2.2 VoltDB

VoltDB is a distributed relational in-memory DBMS [6] [7]

representing the newSQL DBMS class. In non-replicated

mode of operation, VoltDB distributes the data using hashes

of the selected table column values; the hashes are used to

determine which node should get the data.

VoltDB is also declared to be ACID compliant and supports

SQL queries. An interface is provided for stored procedures

written in the Java programming language for SQL queries

execution [8]. All declared procedures are stored on each

IJCSNS International Journal of Computer Science and Network Security, VOL.18 No.10, October 2018 60

cluster node and it’s one of the reasons for system

performance gain.

3. Benchmark and raw results

Testing was performed on cluster configurations of 1, 2, 4,

and 8 computing nodes with 1, 10, 50, and 100 GB as data

payload. Each node in the cluster is a virtual machine with

92GB of RAM, 3 processor cores at 2.1 GHz (Intel Xeon

Gold 6152) running under Xen hypervisor and each virtual

machine has dedicated physical server-class SSDs.

Benchmark consists of 22 queries comprising a TPC-H like

workload. Legend:

 Each cell contains query execution time in seconds.

 Q1-Q22 are ids of the queries in terms of TPC-H

description.

 “Err” means that an error occurred in DMBS

engine during the test.

 T — test was running too long.

 TF — test failed with database creation error due

to memory insufficiency.

You can see the results in tables 1, 2, 3, 4 (Appendix A).

4. Errors and restrictions discovered

4.1 Apache Ignite

 Requests Q8 and Q19, when the polling mode of

other nodes of the cluster is turned on for the

presence of data necessary for the correct

execution of the request, end with errors

 Q8: java.sql.SQLException: General
error:

"java.lang.ArrayIndexOutOfBoundsEx

ception" [50000-195]

 Q19: java.sql.SQLException:
javax.cache.CacheException: Failed

distributed join query: join

condition does not [joinedCache =

SQL_PUBLIC_PART, plan = ... (query

code)

 Results of queries Q2, 4, 16, 17, 18, 20, 21, 22 are

incorrect in distributed mode with replication

disabled. These requests process only the local

data of each node, aggregating the results, despite

the activation of a mode that prevents such

behavior. This happens due to the presence of

subqueries in the WHERE query section. This

problem is mentioned in the official Apache Ignite

documentation [9].

 Q11, 13, 15 requests contain operations not

supported by Apache Ignite

 The interval data type, as well as SQL operations

CREATE TYPE and CREATE VIEW are not

supported in Apache Ignite

4.2 VoltDB

 During the execution of the queries Q2, 3, 4, 5, 7,

8, 9, 10, 12, 14, 16, 17, 18, 19, 20, 21, 22 in

distributed mode with replication disabled VoltDB

scheduler returns the following errors:

 Q2, 4, 7, 8, 9, 16, 17, 18, 20, 21, 22:

java.sql.SQLException: General Provider

Error (GRACEFUL_FAILURE): Unexpected

Ad Hoc Planning Error:

java.lang.RuntimeException: Error Compiling

query:

org.voltdb.planner.PlanningErrorException:

Subquery expressions referencing only

replicated tables.

 Q3, 5, 10, 12, 14, 19: java.sql.SQLException:

General Provider Error

(GRACEFUL_FAILURE): “Unexpected Ad

Hoc Planning Error:

java.lang.RuntimeException: Error compiling

query:

org.voltdb.planner.PlanningErrorException:

This query is not plannable. Planner cannot

guarantee that it’s a single partition.

 Q11, Q15 queries contain operations that are not

supported by VoltDB.

 The char data type as well as the SQL operations

CREATE TYPE and CREATE VIEW are not

supported by VoltDB.

5. Results analysis

The test results show that Apache Ignite's performance

increases with the number of nodes in the cluster. Also,

analyzing the results obtained, it is possible to identify two

patterns in temporal results changes effected by the scaling

up of the system:

 The query execution time always reduces as the

number of computing nodes increases. Examples

of such queries are: Q1, 4, 5, 6, 12, 14, 21

 The query execution time increases after scaling

up from one computing node to two and decreases

with further scaling of the system. Examples of

such queries: Q2, 3, 7, 9, 10, 16, 17

Based on the results, it can be seen that VoltDB

performance stops growing after a certain number of nodes

in the cluster, despite further scalability.

The results show that when you run queries on a single node,

VoltDB is ahead of Apache Ignite in almost all queries

except Q7, 8, 9, 17. At the same time, VoltDB succeeds to

complete only Q1 and Q6 queries in distributed mode.

IJCSNS International Journal of Computer Science and Network Security, VOL.18 No.10, October 2018 61

These requests in VoltDB also work faster than Apache

Ignite at the same cluster and data configuration. It is also

worth noting that in VoltDB there was no more performance

gain after the number of cluster nodes increased from four

to eight. In the case of Apache Ignite, there are noticeably

fewer errors when scaling a cluster, and an increase in

performance is linear to the cluster node count.

Comparing the Apache Ignite to PostgreSQL, we can say

that performance gain becomes visible only for large

amounts of data in several requests. Query time Q2, Q4,

Q17 and Q21 turned out to be 1.78, 6.35, 1.41, 2.68 times

less than similar results in PostgreSQL, respectively, during

launches per 100 GB of data, with the number of Apache

Ignite cluster nodes equal to eight. These requests also

showed the best time relative to PostgreSQL, with a similar

Apache Ignite cluster configuration, during launches of 50

GB of data, but this gain was not as significant as in the case

of 100 GB of data. The remaining requests were either

significantly slower than PostgreSQL, or there was a slight

increase in various variations of the Apache Ignite cluster

configuration.

Even though VoltDB was faster than Apache Ignite in most

cases, it still has results inferior to PostgreSQL on data

volumes of 1 and 10 GB with a single VoltDB node. An

exception is Q18 query, the execution time of which turned

out to be 3.74 times less than the same time in PostgreSQL

with a data volume of 10 GB. Considering large amounts of

data and distributed mode of VoltDB cluster, we come to

the conclusion that comparison is possible only in queries

Q1 and Q6. These requests are faster than PostgreSQL in all

cases.

6. Conclusion

In this paper, we investigated Apache Ignite and VoltDB in-

memory DBMS using TPC-H like benchmark guidelines.

The sources for benchmark process are available at

https://github.com/ispras/Apache-Ignite-and-Voltdb-

TPCH-Implementation.

Despite better results of VoltDB relative to Apache Ignite

in most requests and faster execution of some requests on

large amounts of data compared to PostgreSQL, VoltDB

does not support the execution of most types of queries in

distributed mode. Performance of VoltDB does not scale

linearly with cluster growth.

Compared to this, Apache Ignite showed a linear increase

in performance with an increase in the number of computing

nodes, a noticeably smaller number of errors, and better

performance relative to PostgreSQL in some queries on

large amounts of data.

Both systems do not meet SQL:1999 standard.

Acknowledgments

This work is funded by the Minobrnauki Russia (grant id

RFMEFI60417X0199, grant number 14.604.21.0199).

References
[1] Meikel Poess and Chris Floyd. New TPC Benchmarks for

Decision Support and Web Commerce. SIGMOD Rec. 29, 4,

pp. 64-71, DOI=http://dx.doi.org/10.1145/369275.369291

[2] TPC-H, an ad-hoc, decision support benchmark. URL:

http://www.tpc.org/tpch/ (date of the application: 12.08.2018)

[3] Official Apache Ignite documentation. URL:

https://apacheignite-sql.readme.io/docs (date of the

application: 12.08.2018)

[4] Zheludkov, Michael, and Timur Isachenko. High

Performance in-memory computing with Apache Ignite. Lulu.

com, 2017.

[5] Simon, Salomé. "Brewer’s CAP theorem." CS341

Distributed Information Systems, University of Basel

(HS2012) (2000).

[6] VoltDB official website. URL: https://www.voltdb.com/

(date of the application: 12.08.2018)

[7] Stonebraker and Weisberg. "The VoltDB Main Memory

DBMS." IEEE Data Eng. Bull. 36.2 (2013): 21-27.

[8] Buckle S. Introduction to VoltDB. URL:

https://www.ibm.com/developerworks/library/os-voltdb/

(date of the application: 12.08.2018)

[9] Official Apache Ignite documentation. URL:

https://apacheignite-sql.readme.io/docs/how-ignite-sql-

works#section-known-limitations (date of the application:

12.08.2018)

Oleg Borisenko was born in Russia in 1988. Received the

specialist degree at Moscow State University, Faculty of

Computational Mathematics and Cybernetics in 2011. Works at

Ivannikov Institute for System Programming of the Russian

Academy of Sciences. Zones of interest: cloud infrastructure

problems, distributed systems.

David Badalyan was born in Yerevan, Armenia in 1998. He is

a student at the Bauman Moscow State University (BMSTU),

Computer Science and Control Systems department. Works at

Ivannikov Institute for System Programming of the Russian

Academy of Sciences. Zones of interest: parallel computations,

distributed systems

https://github.com/ispras/Apache-Ignite-and-Voltdb-TPCH-Implementation
https://github.com/ispras/Apache-Ignite-and-Voltdb-TPCH-Implementation
http://www.tpc.org/tpch/
https://apacheignite-sql.readme.io/docs
https://www.voltdb.com/
https://www.ibm.com/developerworks/library/os-voltdb/
https://apacheignite-sql.readme.io/docs/how-ignite-sql-works#section-known-limitations
https://apacheignite-sql.readme.io/docs/how-ignite-sql-works#section-known-limitations

IJCSNS International Journal of Computer Science and Network Security, VOL.18 No.10, October 2018 62

Appendix A.

Table 1. 1GB dataset

1GB
PostgreSQL Ignite/nodes VoltDB/nodes

no index indexed 1 2 4 8 1 2 4 8
Q1 3.63 3.33 20.33 10.24 5.37 3.012 7 3.2 1.9 1.95
Q2 1.4 0.78 2.58 4.36 2.18 0.82 0.4 Err Err Err
Q3 1.1 0.9 4.85 19.24 7.84 4 2.19 Err Err Err
Q4 0.37 0.38 2.64 1.29 0.6 0.37 1.69 Err Err Err
Q5 0.79 0.68 1923.6 37.94 14.7 7.79 2.27 Err Err Err
Q6 0.54 0.51 9.44 4.28 2 1.21 0.84 0.39 0.24 0.23
Q7 1.32 0.8 28.4 39.36 16.14 8.6 738.16 Err Err Err
Q8 1.27 0.32 12 Err Err Err 39.9 Err Err Err
Q9 4.73 1.52 32.94 63.7 26.33 15.22 52.76 Err Err Err

Q10 0.85 0.83 3.69 11.29 4.88 2.7 1.75 Err Err Err
Q12 0.77 0.79 9.18 5.12 2.62 1.42 0.68 Err Err Err
Q14 0.86 2.6 10.43 6 2.85 1.63 0.51 Err Err Err
Q16 1.8 1.7 649.55 1347.77 347.3 142.83 1.14 Err Err Err
Q17 T 6 0.3 26.9 10.37 5.16 5.66 Err Err Err
Q18 14.5 14.49 T T T T 2.77 Err Err Err
Q19 0.76 0.07 T Err Err Err T Err Err Err
Q20 T 0.31 T T T 3355.51 1.19 Err Err Err
Q21 2.46 2.17 105 50.4 20.42 8.78 7.2 Err Err Err
Q22 1.72 0.14 T 123.33 32.03 12.66 T Err Err Err

Table 2. 10GB dataset

10GB
PostgreSQL Ignite/nodes VoltDB/nodes

no index indexed 1 2 4 8 1 2 4 8
Q1 32.4 32.6 208.2 103.18 51.66 30.09 69.55 31.51 18.3 18.59
Q2 14 8.13 28.08 40 16.2 9.48 4.3 Err Err Err
Q3 30.7 31.14 51.37 200.3 80.06 41.57 21.75 Err Err Err
Q4 5 4.8 24.53 11.84 5.85 3.15 16.5 Err Err Err
Q5 8.5 7.3 T T T 75 26.46 Err Err Err
Q6 4.6 4.5 91.33 44.6 22.22 12.75 8.42 3.84 2.18 2.24
Q7 18.5 17.2 287.31 408.34 164.42 83.97 T Err Err Err
Q8 28.9 3.36 132.45 Err Err Err 659.67 Err Err Err
Q9 51.2 19.3 362.53 642.15 268.59 146.53 T Err Err Err

Q10 10.2 10.2 32.5 121.22 55.93 33.22 18.33 Err Err Err
Q12 6.5 6.75 100.85 51.34 26.35 14.96 6.84 Err Err Err
Q14 7.75 52.9 110.43 57.49 29.57 16.52 5.41 Err Err Err
Q16 16.6 17.6 T T T T 18.4 Err Err Err
Q17 T 3.2 2.45 298.02 111.16 53.31 96.52 Err Err Err
Q18 102 103.6 T T T T 27.21 Err Err Err
Q19 6.5 0.69 T Err Err Err T Err Err Err
Q20 T 13 T T T T 12.24 Err Err Err
Q21 123.7 26.7 1070.4 501.85 208.8 97.14 70.28 Err Err Err
Q22 19 1.6 T T T T T Err Err Err

IJCSNS International Journal of Computer Science and Network Security, VOL.18 No.10, October 2018 63

Table 3. 50GB dataset

50GB
PostgreSQL Ignite/nodes VoltDb/nodes

no index indexed 4 8 4 8
Q1 147.09 161.88 266.9 153.81 94 95.33
Q2 75.25 62.08 80.76 38.8 Err Err
Q3 165.76 169.23 421.65 209.73 Err Err
Q4 20.34 23.43 28.6 17.4 Err Err
Q5 186.49 189.07 T T Err Err
Q6 20.81 20.94 117.08 66.45 11.02 11.2
Q7 183.82 177.61 848.52 410.18 Err Err
Q8 152.56 40.69 Err Err Err Err
Q9 377.57 232.37 1445.82 743.32 Err Err

Q10 102.79 120.41 289.39 277.55 Err Err
Q12 34.57 36.26 135.54 78.33 Err Err
Q14 35.91 35.47 150.81 88.05 Err Err
Q16 85.78 99.67 T T Err Err
Q17 T 305.62 578.7 266.64 Err Err
Q18 652.59 498.06 T T Err Err
Q19 31.22 11.43 Err Err Err Err
Q20 T 255.11 T T Err Err
Q21 875.19 839.08 1062.8 477.02 Err Err
Q22 93.37 10.68 T T Err Err

Table 4. 100GB dataset

100GB
PostgreSQL Ignite/nodes VoltDB/nodes

no index indexed 8 8
Q1 307.8 364.05 304.4 TF
Q2 T 155.05 86.84 TF
Q3 376.5 398.78 452.8 TF
Q4 243.43 224.3 35.3 TF
Q5 441.6 482.4 T TF
Q6 148.3 146.18 134.23 TF
Q7 434 439.46 822.75 TF
Q8 318.8 340.89 Error TF
Q9 763.15 1652.3 1527.94 TF
Q10 250.3 289.01 723.08 TF
Q12 154.55 187.84 155.55 TF
Q14 170.2 184.95 176.24 TF
Q16 174.7 177.66 T TF
Q17 T 751.65 537.2 TF
Q18 1422.7 1420.15 T TF
Q19 148.9 59.11 Error TF
Q20 T 2560.5 T TF
Q21 2700.21 2608.82 971.49 TF
Q22 194.9 62.23 T TF

