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Summary 
The paper presents a bond graph model-based approach to active 

fault tolerant control (FTC) that makes use of residuals of 

analytical redundancy relations (ARRs). It is shown that ARR 

residuals can be used for estimation of faults that can be isolated. 

Motivated by benefits of the Bond Graph (BG) tool as a useful 

method for multidisciplinary systems and which is characterized 

by structural, causal and behavioral properties, a new control 

accommodation of fault tolerant control enables to compensate the 

fault is designed. 

The proposed approach focus on a diagnosis using the ARRs and 

a fast estimation. In order to illustrate the effectiveness of the 

proposed approach, an hydraulic system with two tanks has been 

studied. 
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1. Introduction 

Engineering systems are becoming more and more complex 

such as aero engines, vehicle dynamics, manufacturing 

systems, chemical processes, electric machines and 

industrial electronic equipment and so forth, are safety-

critical systems. The maintenance of this kind of systems is 

expensive and difficult to perform. As a result, the Fault 

Detection and Isolation (FDI) procedures become then 

necessary and even obligatory in some situations to increase 

the productivity and the benefits [1], to improve operator 

safety and protect the environment. 

Furthermore, it is paramount to implement fault-tolerant 

control (FTC) for minimizing performance degradation and 

avoiding dangerous situations. 

The main objective of fault-tolerant control (FTC) is to 

ensure that the system operates with and without faults. 

FTC is carried out through fault accommodation and/or 

system reconfiguration. In fault accommodation, the 

objective is to control the system within actual constraints. 

It is largely applied when the fault can be isolated, estimated, 

and is not severe. It consists in maintaining the system 

running with the faulty components. System 

reconfiguration is generally applied when the fault cannot 

be estimated. In this instance, the system is reconfigured 

(e.g by changing the set point) to transit the system from 

one mode to another. 

Two types of FTC are known in the literature, passive 

approach (e.g. robust control) and active approach (e.g. 

adaptive control). The passive control treats the problem of 

robustness to faults using the similar tools as those used for 

robustness to uncertainties and disturbances [2]. In active 

FTC, faults have to be detected and diagnosed (in terms of 

location and parameters estimation) by FDI systems, then 

subsequently the controller is redesigned. A bibliographical 

review of active FTC can be established in [3]. A different 

active FTC approach that also used to avoid the  isolation 

and the estimation of faults has recently been announced in 

[4]. In AFTC, different fault tolerant design as the Pseudo 

Inverse Model (PIM), the Linear Quadratic (LQ) approach 

and the Linear Matrix Inequality (LMI) are presented in [5]. 

Furthermore, modelling is an important and difficult step 

because of the complexities of these systems. Bond graph 

(BG), is an effective tool for modeling, and it has been 

proven useful for fault detection and isolation (FDI) in 

dynamical systems [6].  The objective of using the BG tool 

that it’s enable to couple both structural diagnosis results 

with control analysis [7]. 

In this article, FDI procedures are based on Analytical 

Redundancy Relations (ARRs) [8][9] for which 

mathematical model is needed. 

The goal of this paper is to generate an active FTC problem 

using graphical approaches based on bond graph 

representation, that makes use of ARR residuals. The 

proposed approach is established using generation of ARR 

based on bond graph and which is used to detect and 

estimate failures. When the fault has been isolated and its 

size estimated, the fault can be accommodated by creating 

a new control into the faulty system. 

In the present work, a Pseudo Inverse Model law is 

presented to compensate failure effects [10][11]. This paper 
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presents a bond graph model-based approach to active FTC 

that makes use of ARRs residuals. 

The outline of this work is organized as follows: Section 2, 

introduces the concept of fault detection and isolation based 

on bond graph and the generation of ARR. Section 3, 

presents the proposed AFTC strategy based on ARR 

residuals to detect and estimate faults. Section 4, illustrates  

Two tanks example in order to show the effectiveness of our 

proposed approach. Simulation and fault scenarios are 

carried out to confirm the proposed methodology in section 

5. Finally, concluding remarks are presented. 

2. BG for Fault Detection and Isolation 

This section looks into fundamental elements of bond graph 

approach and how it can be used for FDI. 

2.1 Bond graph Modelling 

The Bond graph has been defined by Henry Paynter in 1961 

[12], subsequently developed by Karnopp in 1975 [13], 

Rosenberg in 1983[14] and then Breedveld in 1985 [15]. It 

is an excellent tool to model complexe and 

multidisciplinary systems.  

The bond graph modeling is based on the exchange of 

power in a system, which in normally the product of an 

effort variable and a flow variable. This exchange takes 

place in bonds represented by a simple line. 

The concept of power p(t) can be depicted as indicated in 

Eq. (1): 

 

( ) ( ). ( )p t e t f t     (1) 

 

Where e(t) and f(t) are the effort and the flow respectively. 

This equation illustrates the energy transfer in the system 

using power links. A link power is symbolized by a half-

arrow, whose orientation indicates the direction of power 

transfer. 

2.2 Analytical Redundancy Relations 

A primordial step in FDI is the evaluation of the time history 

of residuals serving as fault indicators. 

The Analytical Redundancy Relations (ARRs) are 

relationship between the only known variables only (i.e. 

inputs, sensors, parameters) [16]. Theses relations express 

the difference between information provided by the actual 

system and that delivered by its normal operation model.  

Analytical Redundancy Relations (ARRs) can be derived 

off-line from a BG of a physical model in a systematic 

manner and ARR residual, the general form of an ARR is 

given by 

 

( ) 0f k       (2) 

The number of redundancy relations derivable from any 

system model is equal to the number of sensors in the 

system. An ARR is then written as 

 

: ( , , ,S , , , ) 0e f e f e fARR f D D S MS MS    (3) 

 

Where 

 k is the set known variables(sources and measured 

values specified by detectors), 

 De, Df are effort and flow sensors, 

 Se, Sf are effort and flow sources, 

 MSe and MSf  are modulated effort and flow 

sources, 

 θ is represented a vector of all parameters. 

 

Residual symbolized by r is the numerical value of ARR 

(evaluation of ARR) that can be written as follow: 

 

  0r f k       (4) 

 

The numerical evaluation in real-time, can serve as fault 

indicators [17]. Obtaining ARRs in closed symbolic form is 

difficult because the elimination of unknouwn variables 

from the model is not a trial task. However, ARRs need 

always represent physical laws, it is not easy to write then 

down directly from the mathematical model of the system. 

The generation of analytical redundancy relations (ARRs) 

from a bond graph model is summarized a stepwise 

procedure in the following algorithm [18]: 

Step 1. The bond graph model is made in integral causality. 

Step 2. The unknown variables are eliminated by covering 

the causal paths from the bond graph elements to the 

detectors. 

Step 3. The ARRs of detector redundancy are written by 

expressing energetic evaluations on junctions 1 and 0. 

Step 4. The obtained ARRs at the previous step are 

composed of two parts: a nominal part r, which describes 

the residual, and an uncertain part called a, which represents 

the uncertainties. This uncertain is used to calculate the 

normal operating thresholds. 

3. Proposed Fault Tolerant Control Strategies 

The FTC strategy can be either system reconfiguration or 

fault accommodation, depending on the fault information. 

In this paper, we focus on the fault accommodation. 

3.1 Fault accommodation 

Fault accommodation is an active Fault Tolerant Control 

(FTC) technique that modify the controller law after a fault 

has occurred and relies on a faultless operation of the 

sensors and the actuators [19]. 
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Once the fault has been isolated and its size estimated, the 

fault can be accommodated by reconstructing a new control 

into the faulty system so that the fault is compensated and 

the system remaining faulty generates a desired output 

behavior. Moreover, ARRs set up for fault detection, 

isolation and fault estimation can also be used for fault 

accommodation [20]. 

The principal of our proposed approach presented the fault 

accommodation scheme in Fig.1 that shows the interplay of 

fault diagnosis and controller redesign. Before applying the 

FTC, a FDI procedure and fault estimation should be 

studied in the following section. 

 

 

Fig. 1  Fault accommodation for proposed approach 

The elaborated estimation approach is based on  analytical 

redundancy relations as it will be designed in the sequel. 

Considering the linear model (5): 

 

( ) ( ) ( ) ( )

( )

x Ax t Bu t Ef t d t

y Cx t

   




&
   (5) 

 

Where nx ¡  is the state vector, mu¡  represents the set of 

input variables, py¡  is the set of output variables and 
rf ¡  is the set of fault variables (actuator faults in our 

case), qd ¡  is the disturbance. *n nA¡ , *mnB¡ , *pnC ¡  

and *mnE¡  are known parameter matrices and supposed to 

be of full rank. The system  , ,C A E  defined in (5) is 

supposed to be controllable/observable and the state matrix 

A is invertible. 

3.2 Diagnosis part based on ARRs 

We are interested in this section, to the analysis and design 

problem of an active fault-tolerant controller, which 

includes a fault diagnosis (FDI) followed by a controller 

accommodation strategy. 

In our previous work [21], we have synthesized fault 

detection and isolation (FDI) for hybrid system, the latter is 

not evident because hybrid system consists both discrete 

mode change and continuous nonlinear behavior. 

In table 1, it is given the structural equations deduced from 

bond graph modelling of process (show Fig.2). For each 

mode, we have generated the ARRs for FDI by bond graph 

model. We combined the equations presented in table 1 to 

eliminate unknown variables. The known variables are 

available from sensors and actuators, so we generate the set 

of residuals in which the appeared variables are all known. 

Table 1: Structural equations for normal mode 
N Junction Structural equations 

1 Junction 01 
1 1

1 2 3 4 1

4 0c R

e e e e De

Msf f f f

   


   

 

2 Junction 1 
4 5 6

4 5 6 0

f f f

e e e

 


  
 

3 Junction 02 
6 7 2

6 7 0

e e De

f f

 


 
 

 

The first junction 01 equation as follows: 

 

1 1 4 0c RMsf f f f       (6) 

 

By replacing the flow f  by its expression generated from 

the BG after eliminating the unknown variables, the residual 

1 is obtained as follow: 

 

1 1 1 2
1 1

1 2

dDe De De De
ARR Msf C

dt R R


      (7) 

 

The equation (7) shows that the residual rl is sensitive to 

these elements (MSf, C1, De1, De2, R1 and R2). 

Consequently, when fault is occurred in each elements 

described above, the residual rl becomes different of zero. 

The second junction O2 gives us the following equation: 

 

6 7 0f f      (8) 

 

According to these equations, we can deduce the residual r2: 

 

1 2 2
2 2

2

De De dDe
ARR C

R dt


     (9) 

 

The equation (9) shows that the residual is sensitive to these 

elements (De1, De2, R2 and C2). 

3.3 Estimation of actuator fault 

The information which component parameter contributes to 

which ARR in some system mode can be described in a 

structural Fault Signature Matrix that is called FSM [22]. 
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Table 2: Structural fault signature matrix of the BG model 
Residuals ARR1 ARR2 

Msf 
(pump) 1 0 

R1 1 0 
R2 1 1 
R3 0 0 
R4 0 0 
C1 1 0 
C2 0 1 
De1 1 1 
De2 1 1 

 

As it shows in (Table 2) on the FSM, the components Msf, 

C1 and R1 have the same signature ”10”. The sensibility of 

the residuals to these faults is not the same, so these three 

faults can be isolated using the developed procedure of fault 

estimation and isolation. 

That is, the parametric fault cannot be isolated by inspecting 

the structural FSM. Considering an estimate of the actuator 

fault f(t). 

To achieve the fast fault estimation, this theorem proposed 

by [23] is given herein. 

 

Theorem 1: If there exist symmetric positive definite 

matrices *n nP¡ , r*rQ¡  and matrix *r pF¡  which check 

up the following conditions: 

 
1 0TA P PA PCR CP Q       (10) 

 
TE P FC      (11) 

 

then the fault estimation algorithm is presented by Eq. (12): 

 

ˆ( ) ( )f t Fr t      (12) 

 

The proof of Theorem 1 can be referred to [23]. Actuator 

fault estimate using the Theorem 1 can be written as 

 

ˆ ( ) ( )
ft

t
f t F r d       (13) 

 

Where 

 
1TF E PC     (14) 

 

Furthermore, we can confirm that fault estimation with the 

residual integration, obtained by Theorem 1 ameliorate 

considerably estimation fastness. 

3.4 FTC strategies 

Once a fault has been detected and its size estimated by the 

diagnosis unit, a controller reconfiguration is needed to 

guarantee some prescribed specifications. In [4], Allous and 

Zanzouri propose to use a Luenberger observer and to feed 

output residuals into an inverse system in order to avoid the 

isolation and the estimation of faults. In [24], Allous 

propose also a novel fault tolerant control design in the 

presence of multi-actuator and parameter faults using  the 

Lyapunov function and a linear matrix inequality approach. 

In [25], Najari and all have synthesized a graphical AFTC 

using a Proportional Integral (PI) controller and an additive 

control law which is a Pseudo Inverse Model (PIM) law that 

compensates failure effects. 

In our work, we have propose to compensate the fault so 

that the fault can be accommodated by designing a new 

input into the faulty system and the system remaining faulty 

makes a desired output behavior. 

To accomplish the fault accommodation law, we have 

synthesized a fault tolerant control which is based on a 

pseudo inverse control strategy [26]. 

The  tolerant control law can be exhibited as : 
 

( ) ( )FTC nom addu u t u t     (15) 

 

where ( )FTCu t  is the new redesigned control, ( )nomu t  is the 

created control law in nominal case to reaches system 

performances given in this case by the state feedback 

control and ( )addu t  is the additive law to be elaborated in 

faulty system to satisfy nominal performances. Such as, 

( )addu t  is computed like that additive fault effects can be 

corrected. Therefore, the following condition must be 

checked up : 

 

( ) ( ) 0addBu t Ef t      (16) 

 

Knowing that matrix B must be of full rank. Given the 

actuator fault estimation presented in the last section, this 

additive control law is given herein : 

 

ˆ( )addu B Ef t      (17) 

 

where B+ is the pseudo-inverse of the control matrix B 

calculated as following : 

 
1

B T TB B B


         (18) 

 

BT is the matrix transpose. 

The nominal control law can be written as follow : 

 

( ) ( )nomu t Kx t      (19) 

 

The feedback control gain K is calculated using the Linear 

Matrix Inequality (LMI) resolution. The gain matrix K is 

defined by Eq. (20): 
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1 'TK R B P     (20) 

where the matrix P is obtained by solving the following 

Riccati Eq. (21): 
 

1 0TA P PA Q PBR BP       (21) 

 

where 

 

0,P    0Q   and 0R   

 

Using the Schur Complement, we can symbolize this 

inequality by LMIs as follows: 

 

0
T T

T

A P PA Q PB

B P R

  
 

 
   (22) 

 

4. Application : Two tank system 

To validate the theoretical results and to show the controller 

efficiency of our proposed approach, an hydraulic system 

with two tanks is described in Fig.2. 

4.1 System description 

The two-tank system is adapted from [27]. The process is 

shown in Fig. 2. This system is composed of: 

 Two tanks T1 and T2 with the same section S are 

connected by pipes which can be controlled by 

different valves. 

 A pump P that delivers a liquid to tank T1. 

 Three switching valves V1, V2 and V3. 

 Two level sensors: one level sensor that measures 

h1 and the other level sensor measures h2, the liquid 

level in tank T2. 

 

 

Fig. 2  Two-tank system Scheme 

The first tank T1 is feeded by a controlled pump modeled as 

a source of a flow MSf : u to keep water level constant. Each 

tank has an hydraulic capacity 1
1

.

A
C

g



, 2
2

.

A
C

g



 

respectively, Al and A2 are the section of each tank, ρ is the 

density of water, g is the gravity. The two sensors are 

represented by De1: y1, De2: y2 (water level in each tank). 

The bond graph model of the system is given in Fig.3. 

The failure here is represented by an additive actuator fault. 

The state equation of the faulty bond graph model is written 

as Eq. (23). 

 

1 1 2

1 1 2 2 2

2 1 2

1 2 2 2

1 1

1

2 2

2

1 1 1 1

1 1

1
( )

1
( )

x x x u f
C R R C R

x x x
C R C R

y t x
C

y t x
C

  
       

 

  


 







&

&

  (23) 

 

The matrix gain K for the nominal control is obtained from 

the LMI resolution 

 

 0.3333 0K      (24) 

 

 

Fig. 3  Bond graph model of two-tank system 

5. Simulation results 

The simulations have been performed by the software 

Matlab and 20-sim. The numerical values of system 

parameters are shown in table 3. The control input (pump 

flow) is u(t)= 0.0045m3/s and initial conditions are equal to 

0. The considered actuator fault is represented by Fig.5, the 

fault start at (t=4s) with an amplitude of 0.001m3/s. 

Table 3: Numerical values of system parameters 

Parameters Description Values Units 

C1 Tank section C1 0.05 m4.s2/Kg 

C2 Tank section C2 0.06 m4.s2/Kg 

R1 Resistance 1 pa.s/m3 

R2 Resistance 1 pa.s/m3 

 

The normal evolutions of residuals are presented in Fig.4. 

Simulation time is fixed to 10s. From Fig.5, it can be seen 

that the residual signal response is different from zero when 

the fault occurred, therefore the actuator fault is detected 

V2 

V1 V3 

h1 h2 

T2 T1 
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and the residual rl is sensitive to the introduced fault. This 

is confirmed by the FSM presented in table 2. 

The real trajectory is very close to its estimate as seen in 

Fig.6 and this estimation allows a fastness of the actuator 

fault signal. 

 

 

Fig. 4  Residuals in normal operation 

A fault is simulated at the pump (modelled by MSf in BG). 

 

 

Fig. 5  Residual in failure mode (Pump failure) 

Fault detection and estimation are illustrated by figures 

Fig.5 and Fig.6. Simulation results of our system behavior 

without and with control loop are given by Fig.7. 

 

 

Fig.6  Fault signal and its estimate. 

The simulation in Fig.7 display that our proposed fault 

accommodation using the fast estimation is fast and 

improve the rapidity of the recovery fault. So we can deduce 

that the used ARRs an accurate to achieve a better 

accommodation. 

 

 

 

 

 

Fig.7  Output signal with and without compensation 

The active fault tolerant control evolution is shown by Fig.8. 
 

 

Fig.8  The Fault tolerant control FTCu  

6. Conclusion 

In this paper, an estimation of actuator fault and an Active 

Fault Tolerant Control system has been studied using the 

bond graph as a dynamic and efficient modelling tool. 

Thanks to its graphical, structural and causal properties, BG 

methodology can be used not only for dynamic modelling 

but also for Fault Detection and Isolation (FDI). From 

simulation results, we can see clearly that failure effects are 

compensated using both tolerant laws. Firstly, the additive 

control that compensate the fault presented by the pseudo 

inverse method. Secondly, a nominal state feedback control 

presented to reaches system performances. An 

implementation system is well justified by the simulation 

results was detected and fast estimated through an analytical 

redundancies relations (ARRs). 
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