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Summary 
A diagnosis by functional observers based on bond graph 
approach is proposed in this paper. Taking into account its 
structural and causal properties, the bond graph model is used for 
modeling, residual generation and simulation purposes. The 
paper also highlights and clarifies the need for the optimization 
method as LMI (Linear Matrix Inequality), to outline the stability 
performances. Simulation results on the stringing machine are 
provided to show the dynamic behavior of system variables and 
to evaluate the performance of the observer for diagnosis tasks. 
Key words: 
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1. Introduction 

The observer design problem has received extensive 
research attention, since the first original work appeared 
with [1]-[2]. The basic idea behind the observer problem is 
to estimate the state of the system using the input and 
output data. During the last decades, important results have 
been extended to directly estimate a given linear function 
of the state vector, without having to estimate all the 
individual states. We talk about the functional observers. 
Following the pioneering work of [1]-[2], alternative 
procedures for solving a general vector state function 
problem for multiple-output systems are presented in the 
work of [3].The authors in [4] designed minimum-order 
functional observers, for time-delay systems with interval 
time-varying state delays. 
An interesting algorithm for the design of functional 
observer, benefit from the lower Hessenberg form of the 
observable pair introduced by [5], which considers a 
particular unresolved aspect functional observer design. 
The solving of the constrained Sylvester equation helps [6] 
to design minimal multi-functional observers.  In the 
presence of the unknown  inputs, [7] constructed a 
functional observer by geometric methods. This observer 
kind played an important role in studying the functional 
observability or detectability as shown in [8] study. Also, 
the functional observer contributed in the observer-based 
feedback controller implementation [9], state estimation 
[10] and fault detection and isolation purposes [11]. 

 Despite all the contributions related to the linear 
functional observers yet to date, the diagnosis by 
functional observer using graphical approach as bond 
graph tool has not been reported. So our contribution is to 
extend the graphical functional observer design for 
modelling, residual generation and diagnosis tasks. 
The diagnosis of dynamical systems has been the subject 
of several research works in the recent years. Using the 
bond graph approach, for modelling uncertainties 
parameters, [12] proposed the LFT form (Linear Fractional 
Transformation). The integration of the LFT form and the 
bicausality concept helps [13] to generate the equation of 
the fault estimation. [14] used the multiple observers 
scheme for fault detection and isolation. 
The aim of this paper is to present the methodology of 
bond graph model to design the functional observer. It also 
aims to explore the multiple observer schemes for fault 
detection and isolation. We finished our work with the 
validation of the simulation results applied on the stringing 
machine. 

2. Methodology of Bond Graph Approach 

The modeling using bond graph tool relies on the power 
transfer between the different subsystems. This transfer 
based on the generalized variables effort symbolized as e  
and flux symbolized as f . The product of which 
constitutes the power. The energy exchange between two 
elements is presented by a half link indicate the direction 
of the transfer.     
To construct a bond graph model, we add dissipative 
elements such as the element )(R , for thermal transfer or 
hydraulic resistance, the element )(C  for fluid 
compressibility or storage of masses and volumes, and the 
element )(I for all phenomena of inertia. 
In this paper, the bond graph approach is used for 
modeling, estimation, diagnosis and simulation of 
dynamical systems. 
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3. Functional Observer Design by Bond 
Graph Approach 

Consider the linear time-invariant system described by 
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Where Rnx∈  and Rpy∈ are the state vector, the output 

vector of the system, Rmu∈ is the input vector of the 

system and RrW ∈ is the vector to be estimated, 

where nr ≤ . A , B , C  and K are known as constant 
matrices of appropriate dimensions.  
We assume that the pair ),( CA is observable, 

prankC = and rrankK = .  So, the matrices A , B , C  
are partitioned as follows: 
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The aim of the functional observer is to estimate directly 
the control law )( KxW =  without estimating all its states,  
 Let us propose that ( )0IC = and ( )KK baK = . So we 

obtain yxa =  and )(
1

yWb KKx ab −=
−

.    
After some algebraic manipulations, the linear functional 
observer has the following form 
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With Rpy∈ , Rmu∈ , RrW ∈ is the vector to be 

estimated, where nr ≤ . AA abbb LE −= , 
LLLLD AAAA bbaaabba +−−= , BB ab LH _= , K bP = , 

LF KK ba += . AAA baabaa ,,
and Abb are the 

sub-matrices of the state matrix. L is the observer gain,  
p and q are the energetic variables of bond graph 

modeling.  
The dynamic of the estimation error is defined as  
 

TxzKxWe −=−=     (4) 
 

Assumptions: 

Ŵ  in (3) is an asymptotic estimate of W for any x0 , 
Ŵ 0 and any u , if and only if the following assumptions are 
satisfied:  
 

1. E  is a Hurwitz matrix, i. e., has all its eigenvalues 
in the left-hand side of the complex plane. 

2. DCETTA =−  

3. KFCPT =+     (5) 

4. TBH =   
 
Where T is a constant matrix, as 0)(lim =−

∞→
Txzt . 

Then the estimation error dynamics are written as: 

Eee =      (6) 
 
Using the bond graph tool, the steps of designing a 
functional observer are formulated as follows [15]: 
 
Step 1: Checking of the existence of the redundant outputs 
The property of existence of redundant outputs, 

summarized in the bond-graph rank ( [ ]Crankbg − ) which 
can confirm the rank of the model’s matrices. Indeed, the 

[ ]Crankbg −  is equal to the number of detectors in a model 
that can be dualized without creating causality conflicts. So, 
the [ ]Crankbg −  will be equal to the number of non-
redundant outputs; [ ] pCrankbg =− . 
Step 2: Investigating the structural observability of the 
system bond graph model 
To design the observers, we have to check the 
observability of the system. According to [16]’s theorem, a 
bond graph model is structurally observable if and only if 
the below conditions are satisfied: 
When we put the bond graph model of the system with 
preferred integral causality, there is a causal path linking 

the sensors for each dynamic element I or C . 
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When the bond graph model of the system is affected with 

derivative causality, all the elements I and C have 
derivative causalities and the sensors are dualized. 

Step 3: Selection of xa   
From the bond graph point of view, the non-estimable 
variables in bond graph model are the state variables 
associated to the dynamical elements which are connected 
directly to the detectors by a causal path or through the R  
element. 

Step 4: Change of xa  causality 
We change the causality of the dynamical elements 

associate with xa which is made from the initial bond 
graph model into a derivative causality, as shown in Fig. 1. 
 

 

Fig.1  Derivative causality of the elements associated with xa  

Step 5: Injection of the term Fy  
As in the case of the full order observer design, we 

consider the term Fy  as an error signal which comes from 
an extra junction on the effort or flow source bond via an 
active bond, and injected it on the dynamical elements 
associated to the state variable, which has a linear function 
with the control variable by the modulated source, as 
shown in Fig. 2. 
 

 

Fig. 2  
Fy

 injection to: (a)  I  element, (b)  C  element 

Step 6: Sum of the term P  
In the observer bond graph model, the term P  is added 
with a modulated source. Indeed, it’s the flow when the 

control variable is associated to the C  element (and it’s 

the effort when the control variable is associated to the I  
element), as shown in Fig. 3. 
 

 

Fig. 3  Addition of the term P  in the observer bond graph model: (a)  

I  element, (b)  C  element 

3.1 Functional Observer Gain Computing 

Thereafter, we compute the observer gain via bond graph 
method. Indeed, the observer gain L  can be computed 
using two different methods. The first consists in the 
traditional methods using the state equations calculation 
from the system bond graph model. The second is based on 
the formal calculation of the characteristic polynomial 

)()( sAAP
abbb

L− respectively. It uses the causal 
manipulations and structural properties on the bond graph 
model without any calculations using [17]’s theorem cited 
below : 
 The value of each coefficient of the characteristic 
polynomial 
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equal to the constant term (without the Laplace operator) 

of the total gain of the families of causal cycles of order i  
in the bond graph model. The gain of each family of causal 
cycles must be multiplied by )1(− d

 if the family consists of 
d  disjoined causal cycles. 
Thus, the causal analysis to calculate the observer gains is 
made only with the family of causal cycles in the 
observer’s bond graph. 
We compute now the state feedback gain with LMI (Linear 
Matrix Inequality) method [18]. 
The closed-loop system of (1) is quadratically stable, if 
and only if the following LMI are feasible: 
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Where P  is a symmetric, positive and defined matrix, and 
α is the decay rate.  
The controller design is the result of the following LMI 

problem, where Q is a symmetric, positive and defined 
matrix 
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The resulting controller feedback gain is given by:  

YPK −=      (10) 
 

Where Y  and P are the solutions, such that LMI problem 
given by (8) is feasible. 

4. Diagnosis by Functional Observer Using 
Bond Graph Approach 

4.1 Principle of Diagnosis by Functional Observer  

The structure of functional observer by bond graph model 
is presented in Fig.4. 
 

 

Fig. 4  Structure of functional observer bond graph model  

The diagnosis consists on analysing the residual output 
estimation r  and their sensitivity to the faults. The 
residual equation has the following form: 

WWr ˆ−=     (11) 

4.2 Strategies of Fault Isolation by Functional 
Observer Design 

The multiple observer set based on analytical models 
proposed in the literature for FDI are: Dedicated observer 

scheme (DOS): the i
th

observer is driven by the i
th

output 
and all inputs. Other outputs are considered unknown [19]. 

Generalized observer scheme (GOS): the i
th

observer is 

driven by all outputs and all inputs except the i
th

output 
[20].   
We have extended this scheme to the FDI purpose of 
dynamic systems modeled by bond graph approach. A 
bank of BG_DOS and BG_GOS structures for FDI sensor 
are depicted in Fig.5. 
 

 

  (a)                                                              (b) 
Fig. 5  Bond graph bank observer structure: (a) BG-DOS Structure, (b) 

BG-GOS Structure 
 

The residuals deduced from the observer bank are grouped 
in the FDI table. Its rows and columns correspond to faults 
and residuals. The table is filled with binary values (fault 
signature). When we found zero (0), we deduce that the 
residual is robust to the fault, while when we found one (1), 
we prove that the residual is sensitive. 

5. Application 

5.1 Bond Graph Model of Stringing Machine 

We consider the circuit diagram of the stringing machine 
and its bond graph model given in Fig. 6. We detect faults 

at the sensors De3  and  Df 4 . 
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(a) 

 

(b) 

Fig. 6  (a) A stringing machine, (b) bond graph model of stringing 
machine 

From the Fig. 6b, we can detail the bond graph model of 
the system. In fact, the DC motor is used to associate the 
physical phenomenon or components considered by the 

induced current I m , and by the mechanic part which 
depends on the rotation speed of its axe. Whether,  U m  is 
the induced tension,  Rm  is the resistance, Lm  is the 
inductance, R1  is the resistive viscous friction, and J m  is 
the moment of the rotor inertia and the shaft of inertial type. 
The gyrator element has as r1  constant, and transforms the 
electromotive force into rotation speed of the reducer tree. 
The compressibility of the tree is presented by C1  element. 
The third block transforms the rotation movement into 
translation movement via winding up the rope which is 
presented as the transformer element witch has as r2  

constant. The mass of the chain is given by m  and the 
frictions at the gable are negligible. We consider that the 

tree is of elastic type (whether KK
KC

cr

r

+
=

12   ( K r  is the 

spring stiffness and K c  is the rope stiffness), the loss 
resistance is given by R2 ). The mass of the trolley is 
negligible.  
From Fig. 6b, we can deduce the gear motor equations:  

 UUUU em RL mm
−−=

   (12) 

IRU mmRm
=

 

∫= dtLL Up
mm  

ωme rU 1=
 

IrU mem
1=

 

CFUF mReJ mm
−−=

1    (13) 

ωmRF R 1
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∫= dtJJ Fp
mm  

ωωω 2−= mr  
 
The gable + chain equations:  

CrF rpig 21=
    (14) 

Vrr 121=ω  

FFF mopigch −=
 

∫= dtFp chm  
 
And the spring + trolley + rope equations: 

VVV K T
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    (15) 
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The state equation is: 
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The Table 1 shows the parameters values of the stringing 
machine . 

Table 1: Parameters values 
Symbol Designation Nominal values 

Rm
 Rotor resistance Ω1.1  

Lm
 Rotor inductance mH1   

J m
 Moment of geared 

motor mKg 2.05.0  

R1
 Coefficient of viscous 

Srad
mN

//
.28.0

 

r1
 Coefficient of torque 

A
mN

/
.0386.0   

r2
 Reduction ratio AmN /.01.0

 
m  Chain mass Kg3.0  

K r
 Spring stiffness mmN /4  

K c
 Rope stiffness mmN /7.32  

C1
 Coefficient of 

compressibility 10 4−  

C2
 Coefficient of 

compressibility 00028.0  

R2
 Loss resistance 

Srad
mN

//
.1000  

 

5.2 Diagnosis by Functional Observer using Bond 
Graph Approach 

Before starting the design of the graphical functional 
observer as mentioned above the following steps must be 
validated: 
 
Step 1: Investigating the presence of redundant outputs:  
In the bond graph model of Fig 6b, the detectors can be 
dualized without creating any causality 
conflict ; ( ) 4_ =Crankbg  .Thus, the measurements in the 
Df 1 , Df 2 De3  and  Df 4 sensors are non-redundant 
outputs.  
 
Step 2: Checking the model’s structural observability:  
The derivative bond graph model is presented in Fig 7 

 

 

Fig. 7  Bond graph model in derivative causality 

It’s clear that, on the bond graph model in derivative 
causality, all the dynamic components admit a derivative 
causality and there is no causality conflict. Thus, the model 
of the stringing machine is structurally observable. 
Let us now design a functional observer to estimate, the 
string tension racket response. 
 
Step 3: Selection of xa  

xa is made directly from the bond graph model of the 
system; there is a causal path (or through the R element) 
between the detectors and all the dynamical elements. Thus,  

( )pqppx mCJ mLm
T

a 1
=

. 
Step 4: Change of xa causality 

The change of xa causality is made directly from the 
bond graph model, as shown in Fig. 8. 
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Fig. 8  Change of the dynamical elements associated with xa  causality 

The injection of Fy is made as it is shown in Fig 9 
 

 

Fig. 9  Injection of the term
Fy

in the model of the observer 

Step 6: Sum of the term P  
We add the term P , the observer bond graph model is 
designed as it’s shown in Fig 10. 
 

 

Fig. 10  Bond graph model of the functional observer 

5.3 Functional Observer Gain Computing 

Applying [17]’s theorem in the observer model (Fig. 10), 
we found one first order causal cycle. Then, selecting α 1as 
the desired coefficient of the characteristic polynomial: 

α 1)( )( +=
−

ssAAP
abLbb     (17) 

The calculus of L is directly derived from α 1 because
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The functional observer gain is  

( )048.1000104 −=L  
Applying [18]’s theorem, in the system (1) and observer 
structure (2), leads to the following gains matrix

   

( )0000915.310 5 −= −K  with 104=α  (20) 
 
We have simulated the system with 20Sim. The Fig.11 
shows the real and estimated state evolution. 
 

0 1 2 3 4 5 6 7 8 9 10
time {s}

-0.04

-0.03

-0.02

-0.01
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estimated

 

Fig. 11 State variables evolutions 

5.4 Residual Generation in normal operation 

From the bond graph model of Fig.10, we can deduce the 
residual r . 

eer 1̂614 −=
    (21) 
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And 
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ˆ +++++++= (23) 
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The Fig.12 shows that the residual converges to zero. 
 

0 1 2 3 4 5 6 7 8 9 10
time {s}

-0.02

-0.01

0

0.01
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Fig. 12  Residual evolution in normal operation 

5.5 Residual Generation with Sensors Faults 

The sensors  De3 and Df 4  are affected by faults F S1  

(from s1  to s2 ) with amplitude equal to 02.0 .and F S 2  

(from s7 to s8 ) with amplitude equal to 01.0 . 
So, the residuals are  

 eFer S ˆ9191 )( −+=    (24) 
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                                              dtt
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d FyCCe S∫ 



 += 131

1
9 )(1    (25)

 

 
And 
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With  
                                                   dtt

dt
dm

m Fyf S∫ 



 += 2412

)(1

   (28) 
 
And 

[ ]dt
m Kf b∫=
1ˆ

12      (29) 
 
The equations show that the residual are sensitive to sensor 
fault. The Fig. 13 confirms that the residual  is sensitive to 

the sensor fault F S . 

0 1 2 3 4 5 6 7 8 9 10
time {s}
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0.02 r1
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time {s}
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-0.01

0
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0.02 r2

 

Fig. 13 Residual evolution with sensors faults 

5.6 Robust Sensor Fault Isolation  

We apply the BG-DOS and BG-GOS struture on the bond 
graph model. The residual  is sensitive to the sensor fault. 
The residual evolution is given by Fig.14. So, the deduced 
binary signatures can perfectly isolate the fault (see the 
table below) 
 

0 1 2 3 4 5 6 7 8 9 10
time {s}
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0.02 r1
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(a) DOS                                         (b) GOS 

Fig. 14  Residuals 
r11 and r2    
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Table 2: Binary Signature 

 De3  Df 4
 

r11
 1 0 

r2
 0 1 

BG-DOS 

 De3  Df 4
 

r11
 0 1 

r2
 1 0 

BG-GOS 

6. Conclusion 

This paper has proposed a diagnosis by functional observer 
based on bond graph approach. The interest of this paper is 
the manipulation of only one representation, the bond 
graph for modelling and observer designs to generate the 
residuals. The simulation results on the stringing machine 
show a good accuracy of the proposed observer, in spite of 
some limitations such as the necessary time for estimation 
and stabilization. At the last particular attention will be 
paid to the study of the fault tolerant control based on bond 
graph functional observer in future research works. 
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