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Summary 
In this paper, we present a new optimization technique for integer 
linear programming problems. The proposed method is a 
metaheuristic algorithm and improves solutions by iterating the 
problem reduction and solving the reduced problem. The 
algorithm is a hybrid approach in which we use a Metropolis-
Hastings algorithm and an exact solver and has a good 
characteristic such that the reduced problem at each iteration has 
better or equal quality feasible solutions. The experimental 
evaluation shows that our method can obtain a good quality of 
solutions within reasonable execution time for hard problems 
specified in MIPLIB2010. 
Key words: 
Integer Programming, Iterative Optimization, Problem Reduction, 
Monte Carlo Method, Metaheuristics  

1. Introduction 

Combinatorial optimization problems have been widely 
studied in computer sciences and operations researches for 
theoretical and practical interests. Their importance 
becomes larger and larger since our big data society 
encourages us to use data generated in and collected from 
various fields and combinatorial optimization is an essential 
technique to extract valuable information from received 
data [1]. For example, we can formulate many problems in 
cyber-physical systems where we try to obtain useful 
information from sensing data collected in physical systems. 
Bioinformatics is also well-known application areas where 
many problems correspond to combinatorial optimization 
problems such as genome assembling, multiple alignments, 
and motif identification in as optimization problems [2]. 
For NP-hard combinatorial optimization problems, there 
exist two main approaches, the exact algorithm and the 
approximation one. The exact algorithm, the branch and 
bound algorithm, the branch and cut, find a global optimum 
solution for a given instance [3]. Thanks to the drastic 
improvement of searching algorithms for the integer linear 
programming and computing platforms, we can solve 
precisely many practical problems by using solvers such as 
Gurobi optimizer [4] and CPLEX [5]. Therefore, the 
mathematical programming approach has been practicable 
for many application areas not only in engineering [6], [7], 

[8], [9] but also in agriculture [10], [11], biology, even 
sociology. 
However, there are two major obstacles for many users to 
receive benefits from the mathematical programming. One 
is the difficulty of mathematical programming formulation; 
users need to formulate problems as integer programming 
problems, which requires in-depth knowledge on the related 
mathematics and empirical skills to represent problems as a 
class of the integer programming, hopefully, integer linear 
programming. The other obstacle is high possibility of 
unreasonable computation time, that is, its NP-hardness 
should require long computation time beyond 
extraordinarily our expectation. 
For the former, some ideas to reduce the difficulty of the 
mathematical formulation are proposed in [3]. We also 
introduced a Petri net approach to generate mixed integer 
linear programming problems [12]. For the latter, we need 
to change from the exact solving to the approximation. 
There are some approaches; the approximation algorithms 
with provable solution quality for specific problems, 
heuristic, and metaheuristic approaches are without 
guaranteeing solution quality.  
Exact algorithms and approximation algorithms have been 
independently studied for a long time, however, recently a 
combination of both approaches is studied since they can 
complement each other. For example, to calculate good 
incumbent solutions or efficient bounds [13]. In other 
studies, exact algorithms are utilized to calculate the best 
solution in large neighborhood structure [14] and to 
enhance the decoding part, the branch & bound algorithm 
is used in GAs [15], [16].   
In our previous work [17], we proposed hybrid algorithms 
that combine an exact algorithm and metaheuristic where 
the exact algorithm is used for the solution evaluation in the 
metaheuristics to realize robustness for the large-scale 
combinatorial optimization. That is, our method can obtain 
a good quality of solutions within a reasonable time for 
almost all instances. 
In this paper, we formulate our algorithm as an iterative 
optimization method and perform an experimental 
evaluation of our approach because we had shown just first 
data of preliminary evaluation in [17] without solving hard 
problems. 
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Table 1: Constraint Types 
 Type Mathematical Form 
AGG Aggregation 𝑎𝑎𝑖𝑖𝑥𝑥𝑖𝑖 + 𝑎𝑎𝑘𝑘𝑥𝑥𝑘𝑘 = 𝑏𝑏, 𝑥𝑥𝑖𝑖 ∈ ℕ or ℝ, 𝑎𝑎𝑖𝑖 , 𝑎𝑎𝑘𝑘 , 𝑏𝑏 ∈ ℝ 
VBD Variable Bound 𝑥𝑥𝑖𝑖 ≤ 𝑎𝑎𝑘𝑘𝑥𝑥𝑘𝑘 + 𝑏𝑏 or 𝑥𝑥𝑖𝑖 ≥ 𝑎𝑎𝑘𝑘𝑥𝑥𝑘𝑘 + 𝑏𝑏, 𝑥𝑥𝑖𝑖 , 𝑥𝑥𝑘𝑘  int. or cont. , 𝑎𝑎𝑘𝑘 , 𝑏𝑏 ∈ ℝ 
PAR Set Partition ∑𝑥𝑥𝑖𝑖=1, 𝑥𝑥𝑖𝑖 ∈ {0,1} 
PAC Set Packing ∑𝑥𝑥𝑖𝑖 ≤1, 𝑥𝑥𝑖𝑖 ∈ {0,1} 
COV Set Cover ∑𝑥𝑥𝑖𝑖 ≥1, 𝑥𝑥𝑖𝑖 ∈ {0,1} 
CAR Cardinality ∑𝑥𝑥𝑖𝑖=𝑏𝑏, 𝑥𝑥𝑖𝑖 ∈ {0,1}, 𝑏𝑏 ∈ ℤ 
EQK Equality Knapsack ∑𝑎𝑎𝑖𝑖𝑥𝑥𝑖𝑖=𝑏𝑏, 𝑥𝑥𝑖𝑖 ∈ {0,1}, 𝑎𝑎, 𝑏𝑏 ∈ ℕ 
BIN Bin Packing ∑𝑎𝑎𝑖𝑖𝑥𝑥𝑖𝑖 + 𝑎𝑎𝑘𝑘𝑥𝑥𝑘𝑘=𝑎𝑎𝑘𝑘, 𝑥𝑥𝑖𝑖 ∈ {0,1}, 𝑎𝑎𝑖𝑖 , 𝑎𝑎𝑘𝑘 ∈ ℕ 
IVK Invariant Knapsack ∑𝑥𝑥𝑖𝑖 ≤ 𝑏𝑏, 𝑥𝑥𝑖𝑖 ∈ {0,1}, 𝑏𝑏 ∈ ℕ 
KNA Knapsack ∑𝑎𝑎𝑖𝑖𝑥𝑥𝑖𝑖 ≤ 𝑏𝑏, 𝑥𝑥𝑖𝑖 ∈ {0,1}, 𝑎𝑎𝑖𝑖 , 𝑏𝑏 ∈ ℕ 
IKN Integer Knapsack ∑𝑎𝑎𝑖𝑖𝑥𝑥𝑖𝑖 ≤ 𝑏𝑏, 𝑥𝑥𝑖𝑖 ∈ ℤ, 𝑎𝑎𝑖𝑖 , 𝑏𝑏 ∈ ℕ 
M01 Mixed Binary ∑𝑎𝑎𝑖𝑖𝑥𝑥𝑖𝑖 + ∑𝑝𝑝𝑗𝑗𝑠𝑠𝑗𝑗 ≤ (or =) 𝑏𝑏, 𝑥𝑥𝑖𝑖 ∈ {0, 1}, 𝑠𝑠𝑗𝑗  cont. , 𝑎𝑎𝑖𝑖 , 𝑝𝑝𝑗𝑗 , 𝑏𝑏 ∈ ℝ 

2. Integer Linear Programming Problem  

Integer linear programming problems are a class of 
mathematical programming problems in which some of all 
the variables restricted to be integer and all the constraints 
and the objective function should be denoted as linear 
equations or inequations. An integer linear programming 
problem in the canonical form is expressed as follows: 
 
Objective: 

max∑ 𝑐𝑐𝑖𝑖𝑥𝑥𝑖𝑖𝑁𝑁
𝑖𝑖=1     (1) 

s.t. 
∑ 𝑎𝑎𝑗𝑗,𝑖𝑖
𝑁𝑁
𝑖𝑖=1 𝑥𝑥𝑖𝑖 ≤ 𝑏𝑏𝑖𝑖 ,∀𝑗𝑗 ∈ {1, … ,𝑀𝑀}  (2) 

𝑥𝑥𝑖𝑖 ≥ 0,∀𝑖𝑖 ∈ {1, … ,𝑁𝑁}   (3) 
𝑥𝑥𝑖𝑖 ∈ ℕ     (4) 

 
The formulation includes two types of constraints; 
Constraints (1) and (2) are called Integer Knapsack (IKN) 
and Variable Bound (VBD), respectively.  
Table 1 shows well-known constraint types [18]. We cannot 
say easily which types of constraints make problem 
instances difficult but they give us beneficial information.  

3. Monte Carlo Iterative Optimization 

This section proposes an iterative optimization algorithm 
which enables us to obtain good heuristic solutions for 
integer linear programming problems. Recent drastic 
advancement of the mathematical programming research 
partially overcomes the intractableness of NP-hard 
problems, that is, current powerful solvers can solve integer 
linear programming problems of practical sizes in 
reasonable time. However, the exact algorithms cannot be a 
universal approach which can treat any types of integer  

linear programming problems. For problem instances with 
a massive number of variables and/or complex solution 
spaces, we cannot solve NP-hard problems in reasonable 
time. 
Our algorithm is inspired from the EM algorithm [19], the 
Expectation-Maximum algorithm in statistics, in a sense 
that the EM algorithm iteratively estimates parameters in 
statistical models and maximizes the expected likelihood in 
alternately performed E(Expectation)-step and 
M(Maximization) step. Our algorithm is also an iterative 
optimization in which it finds a set of variables to be 
removed practically from the original problem, 
R(Reduction)-step), and solves the reduced problem by 
removing the set of variables at each iteration, 
O(Optimization)-step. 

3.1 Problem Reduction 

We consider here the integer linear programming problem 
shown in the previous section, where the variables are an 
integer, and the types of constraints are only IKN and VBD 
in Table 1. We can easily apply the discussion here to other 
cases, binary variables, and different kinds of constraints. 
The solution space of mathematical programming problems 
widens with the number of variables. The computation time 
for the optimization depends not only on the solution space 
size but also a combination of constraints since the 
combination of constraints determines the complexity of 
the solution landscape. The computation time can be 
extremely different when constraints are different even 
though the number of variables is the same between two 
problem instances. However, the number of variables is still 
an essential factor to represent the hardness for exact 
solving. Therefore, we use the number of variables to show 
the ratio of the problem reduction. 
In our algorithm, the problem reduction is performed by 
fixing variables with values as new constraints. Let us 
consider the following integer linear programming problem, 
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where we just show the problem explained in Section 2 in a 
matrix form. 
 
 𝑓𝑓(𝑿𝑿): 

max𝑪𝑪𝑿𝑿     (5) 
𝑨𝑨𝑿𝑿 ≤ 𝑩𝑩     (6) 
𝑋𝑋𝑖𝑖 ≥ 0,∀𝑖𝑖 ∈ {1, … ,𝑁𝑁}   (7) 
𝑋𝑋𝑖𝑖 ∈ ℕ,∀𝑖𝑖 ∈ {1, … ,𝑁𝑁}   (8) 

 
By introducing the constraints specified in 𝜃𝜃𝑋𝑋, we obtain a 
reduced problem for 𝑓𝑓(𝑿𝑿) . Let us denote the reduced 
problem by 𝑓𝑓(𝑋𝑋|𝜃𝜃𝑋𝑋). 
 
 𝑓𝑓(𝑿𝑿|𝜃𝜃𝑋𝑋): 

max𝑪𝑪𝑿𝑿     (9) 
𝑨𝑨𝑿𝑿 ≤ 𝑩𝑩     (10) 
𝑋𝑋𝑖𝑖 = 𝑥𝑥𝑖𝑖 ,∀(𝑋𝑋𝑖𝑖 = 𝑥𝑥𝑖𝑖) ∈ 𝜃𝜃𝑋𝑋   (11) 
𝑋𝑋𝑖𝑖 ≥ 0,∀𝑖𝑖 ∈ {1, … ,𝑁𝑁}   (12) 
𝑋𝑋𝑖𝑖 ∈ ℕ,∀𝑖𝑖 ∈ {1, … ,𝑁𝑁}   (13) 

 
where 𝑥𝑥𝑖𝑖 is a feasible value for variable 𝑋𝑋𝑖𝑖. Note that the 
number of variables in the reduced problem is, in practice, 
|𝑿𝑿| − |𝜃𝜃𝑋𝑋|. 

3.2 Reduction and Optimization Steps 

We present a new iterative algorithm to solve heuristically 
integer linear programming problems. As we explained 
above, the algorithm is based on the EM algorithm, well-
known for maximum likelihood methods. 
Our algorithm iteratively generate fixed variable sets, 
𝜃𝜃𝑋𝑋

(0),𝜃𝜃𝑋𝑋
(1), … , 𝜃𝜃𝑋𝑋

(𝑘𝑘), and at each iteration solve the reduced 
problem, 𝑓𝑓(𝑿𝑿|𝜃𝜃𝑋𝑋

(𝑖𝑖)),  𝑖𝑖 = 0, 1, … , 𝑘𝑘, where 𝜃𝜃𝑋𝑋
(𝑖𝑖) is 

determined from a solution of problem 𝑓𝑓(𝑿𝑿|𝜃𝜃𝑋𝑋
(𝑖𝑖−1)), and 

�𝜃𝜃𝑋𝑋
(𝑖𝑖)� < |𝑿𝑿|. The proposed algorithm is composed of two 

steps: 
 
R-Step: Reduce the size of the integer linear optimization 
problem 𝑓𝑓(𝑿𝑿)  by adding a constraint set 𝜃𝜃𝑋𝑋

(𝑖𝑖)  and 
generate the reduced problem 𝑓𝑓(𝑿𝑿|𝜃𝜃𝑋𝑋

(𝑖𝑖)). 
O-Step: Solve the reduced problem 𝑓𝑓(𝑿𝑿|𝜃𝜃𝑋𝑋

(𝑖𝑖))  by some 
optimization algorithm. 
 
For O-Step, we can utilize any solver. In our 
implementation, we used Gurobi Optimizer, one of the 
well-known powerful commercial solvers. For the reduced 
problem, we can obtain exact solutions. 
In R-Step, we need to generate a reduced problem instance 
by introducing a set of constraints. To ensure that the 
reduced problem should have feasible solutions, we select 
a set of constraints for the problem reduction from a feasible 
solution. 

Let 𝒙𝒙𝑜𝑜 = (𝑋𝑋1 = 𝑥𝑥1,𝑋𝑋2 = 𝑥𝑥2, … ,𝑋𝑋𝑛𝑛 = 𝑥𝑥𝑛𝑛)  be a feasible 
solution of 𝑓𝑓(𝑿𝑿) . We select some fixed number of 
variables and their values from 𝒙𝒙𝑜𝑜 as a constraint set, for 
example, 𝜃𝜃𝑋𝑋

(0) = {𝑋𝑋3 = 𝑥𝑥3,𝑋𝑋10 = 𝑥𝑥10, … }.  Obviously, 
𝑓𝑓(𝑿𝑿|𝜃𝜃𝑋𝑋

(0))  has a feasible solution. And then, we obtain 
solution 𝒙𝒙(0)  by solving 𝑓𝑓(𝑿𝑿|𝜃𝜃𝑋𝑋

(0))  and construct 𝜃𝜃𝑋𝑋
(1) 

from 𝒙𝒙(0)  by selecting some variables and their values. 
This discussion can be extended to 𝜃𝜃𝑋𝑋

(𝑖𝑖), 𝑖𝑖 = 2, … , 𝑘𝑘. 
 
Lemma 1: 𝑓𝑓(𝑿𝑿|𝜃𝜃𝑋𝑋

(𝑖𝑖)) , i=0, 1, 2, …, k, has a feasible 
solution if 𝒙𝒙𝑜𝑜 is feasible. 
Proof: We prove the lemma by induction. It is obvious that 
𝑓𝑓(𝑿𝑿|𝜃𝜃𝑋𝑋

(0)) has a feasible solution when 𝒙𝒙𝑜𝑜 is feasible. We 
suppose that 𝑓𝑓(𝑿𝑿|𝜃𝜃𝑋𝑋

(ℎ)) has a feasible solution when 𝒙𝒙𝑜𝑜 
is feasible. Let us denote a solution of 𝑓𝑓(𝑿𝑿|𝜃𝜃𝑋𝑋

(ℎ)) by 𝒙𝒙(ℎ) 
and select a set of variables and their values for the next 
constraint set,  
𝜃𝜃𝑋𝑋

(ℎ+1) = {𝑋𝑋𝑖𝑖 = 𝑥𝑥𝑖𝑖
(ℎ)�∃𝑖𝑖 ∈ {1, … ,𝑁𝑁}, |𝜃𝜃𝑋𝑋

(ℎ+1)� < |𝑿𝑿|}. (14) 
It is also obvious that 𝑓𝑓(𝑿𝑿|𝜃𝜃𝑋𝑋

(ℎ+1)) has a feasible solution. 
Q.E.D 

 
The lemma gives us good property for our iterative 
algorithm. 
 
Theorem 1: The optimum value of 𝑓𝑓(𝑿𝑿|𝜃𝜃𝑋𝑋

(𝑖𝑖))  is a lower 
bound for 𝑓𝑓(𝑿𝑿|𝜃𝜃𝑋𝑋

(𝑖𝑖+1)). 
Proof: Let 𝒙𝒙(𝑖𝑖)  be an optimal solution of 
𝑓𝑓�𝑿𝑿�𝜃𝜃𝑋𝑋

(𝑖𝑖)� .  𝜃𝜃𝑋𝑋
(𝑖𝑖+1)  is constructed by selecting some 

elements in 𝒙𝒙(𝑖𝑖) . From Lemma 1, 𝑓𝑓(𝑿𝑿|𝜃𝜃𝑋𝑋
(𝑖𝑖+1))  has a 

feasible solution and 𝒙𝒙(𝑖𝑖)  is a known feasible solution. 
Therefore, the optimal solution of 𝑓𝑓(𝑿𝑿|𝜃𝜃𝑋𝑋

(𝑖𝑖+1)) cannot be 
worse than 𝒙𝒙(𝑖𝑖).     Q.E.D 
 
By Theorem 1, we confirm that the iteration of R-Step and 
O-Step cannot make the solution quality worse. However, 
from the practical point of view, the solution obtained by 
solving 𝑓𝑓(𝑿𝑿|𝜃𝜃𝑋𝑋

(𝑖𝑖))  can be worse. The reason for the 
contradiction is that the O-step cannot always obtain the 
exact solution of the reduced problem 𝑓𝑓(𝑿𝑿|𝜃𝜃𝑋𝑋

(𝑖𝑖))  in a 
reasonable time. This situation can be taken place in 
practice, that is, the solver takes a longer time than a 
prefixed TimeLimit. That is, the solution quality can be 
worse when the solver finds just a local optimum. Our 
approach can accept such worse solutions for making 
diversity in the searching process. This idea is the essential 
point in the Metropolis-Hastings algorithm or Simulated 
Annealing. 



IJCSNS International Journal of Computer Science and Network Security, VOL.18 No.11, November 2018 

 

63 

 

3.3 Monte Carlo Reduction & Optimization 

Our iterative approach can improve the solution quality 
since Theorem 1 ensures the monotonicity of solution 
improvement theoretically, even though we sometimes find 
worse solutions. We utilize the simplest and efficient way 
to generate a next fixed variable set, say Monte Carlo 
method. That is, we select randomly the next fixed variable 
set only based on the current situation, where we control the 
number of fixed variables. 
We introduce a parameter Ratio to determine how many 
variables are reduced in the R-step. 
 
𝑅𝑅𝑎𝑎𝑅𝑅𝑖𝑖𝑅𝑅 = |𝜃𝜃𝑋𝑋|

|𝑋𝑋|
 (< 1.0)   (15) 

 
Therefore, we set a large value for Ratio when we want to 
reduce the computation time of the exact algorithm since a 
larger value of Ratio leads to smaller size of the solution 
space. Note that the number of variables exponentially 
widens the solution space. Another parameter SC is to 
specify how many constraints are changed to select the next 
fixed variables from the current one at each iteration. Larger 
SC should be a long jump from the current solution, leading 
to diversification for searching. On the other hand, smaller 
SC can search more intensively high potential space. 
Figure 1 shows a pseudo code of our algorithm, 
MonteCarloR&O. Function InitialFeasibleSolution() finds 
a feasible solution by using some algorithm. Note that the 
feasible solution may be far from the optimal solution. 
Function GenerateConstraintsFrom() determines the next 
fixed variable set from the previous solution and parameters 
Ratio and SC. Function Solve(𝑓𝑓(𝑿𝑿) , TimeLimit) should 
return an optimal solution for 𝑓𝑓(𝑿𝑿). Note that the exact 
optimizer may require an extremely long time to get the 
exact solution even for reduced problems. To avoid such a 
situation, we set TimeLimit for function Solve(). Therefore, 
the function may return worse solutions than the previous 
solution. In this case, we utilize the Metropolis-Hastings 
algorithm to determine the acceptance of worse solutions at 
Lines 8 to 18. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

1: 𝒙𝒙𝑜𝑜 ← InitialFeasibleSolution() 
2: 𝜃𝜃𝑋𝑋

(0) ←GenerateConstraintsFrom(𝒙𝒙𝑜𝑜, Ratio) 
3: CurSolution, 𝒙𝒙(0) ← Solve(𝑓𝑓�𝑿𝑿�𝜃𝜃𝑋𝑋

(0)�,𝑇𝑇𝑖𝑖𝑇𝑇𝑇𝑇𝑇𝑇𝑖𝑖𝑇𝑇𝑖𝑖𝑅𝑅) 
4: 𝑖𝑖 ← 1 

 5: repeat 
6:  𝜃𝜃𝑋𝑋

(𝑖𝑖) ←GenerateConstraintsFrom(𝒙𝒙(𝑖𝑖−1), Ratio, SC) 
 7:  NewSolution, 𝒙𝒙(𝑖𝑖) ← Solve(𝑓𝑓(𝑿𝑿|𝜃𝜃𝑋𝑋

(𝑖𝑖)),𝑇𝑇𝑖𝑖𝑇𝑇𝑇𝑇𝑇𝑇𝑖𝑖𝑇𝑇𝑖𝑖𝑅𝑅) 
 8:  ∆𝑆𝑆𝑅𝑅𝑆𝑆𝑆𝑆𝑅𝑅𝑖𝑖𝑅𝑅𝑆𝑆 ← (CurSolution – NewSolution) 
 9:  if ∆𝑆𝑆𝑅𝑅𝑆𝑆𝑆𝑆𝑅𝑅𝑖𝑖𝑅𝑅𝑆𝑆 < 0 then 
10:    CurSolution ← NewSolution 
11:    if BestSolution < NewSolution then 
12:      𝒙𝒙𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 ← 𝒙𝒙(𝑖𝑖) 
13:    endif 
14:    𝑖𝑖 ← i+1 
15:  else if RANDOM() < 𝑇𝑇−∆𝑏𝑏𝑜𝑜𝑠𝑠𝑠𝑠𝑏𝑏𝑖𝑖𝑜𝑜𝑛𝑛/𝑇𝑇 then 
16:     CurSolution ← NewSolution 
17:     𝑖𝑖 ← i+1 
18:  endif 
19: until Termination Condition holds 

Fig. 1  Pseudo Code for MonteCarloR&O 

4. Experimental Evaluation 

We performed the experimental evaluation to show the 
effectiveness of our algorithm. We selected integer linear 
programming problems, characterized as Hard to solve, 
provided in MIPLIB2010 [1]. The selected problems from 
the library are shown in the first three rows in Table 2. The 
last one, the multiple knapsack problem, was used in our 
experiment to compare with traditional metaheuristics, SA 
since we can easily apply SA to the problem because of its 
simple constraints, but not other problems. In the 
experiment, we generate instances of the multiple knapsack 
problem randomly with varying problem size. 
“Rows” and “Cols” denote the number of constraints and 
variables, respectively. “Constraint Types” corresponds to 
“Type” in Table 1. “Status” represents the difficulty of the 
problem. “Hard” means that the problem is quite difficult to 
solve.  

Table 2: Test Problems in Experiments  

Name Rows Cols Constraint 
Types 

Status in 
MIPLIB2010 

sct32 5,440 9,767 VBD, IVK, 
KNA, M01 Hard 

mkc 3,411 5,325 VBD, PAC, 
IVK, M01 Hard 

d10200 947 2,000 PAR, IVK, 
KNA Hard 

mkp Varied Varied PAC, KNA N/A 
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4.1 Effects of Problem Reduction 

To confirm the effect of the problem reduction shown in 
Section 3.1, we investigated how the problem reduction 
effects on the computation time and the solution quality for 
three problem instances, sct32, mkc, and d10200. We 
varied Ratio from 0.0 to 0.4 in the experiment. 
Table 3 and 4 show effects of the problem reduction on 
computation time and solution quality, respectively. In 
Table 4, the solution quality SQ was calculated by the 
following equation: 
 
𝑆𝑆𝑆𝑆

=
|(𝐸𝐸𝑥𝑥𝑎𝑎𝑐𝑐𝑅𝑅 𝑆𝑆𝑅𝑅𝑆𝑆𝑆𝑆𝑅𝑅𝑖𝑖𝑅𝑅𝑆𝑆) − (𝑂𝑂𝑏𝑏𝑅𝑅𝑎𝑎𝑖𝑖𝑆𝑆𝑇𝑇𝑂𝑂 𝑆𝑆𝑅𝑅𝑆𝑆𝑆𝑆𝑅𝑅𝑖𝑖𝑅𝑅𝑆𝑆)|

|(𝐸𝐸𝑥𝑥𝑎𝑎𝑐𝑐𝑅𝑅 𝑆𝑆𝑅𝑅𝑆𝑆𝑆𝑆𝑅𝑅𝑖𝑖𝑅𝑅𝑆𝑆) − (𝐼𝐼𝑆𝑆𝑖𝑖𝑅𝑅𝑖𝑖𝑎𝑎𝑆𝑆 𝐹𝐹𝑇𝑇𝑎𝑎𝑠𝑠𝑖𝑖𝑏𝑏𝑆𝑆𝑇𝑇 𝑆𝑆𝑅𝑅𝑆𝑆𝑆𝑆𝑅𝑅𝑖𝑖𝑅𝑅𝑆𝑆)|
 

 
where (Initial Feasible Solution) means the solution 
obtained firstly by Gurobi. 
From the tables, we confirm that the execution time 
depends on strongly the reduction ratio and the solution 
quality is inversely proportional to the reduction ratio. 

Table 3: Effects on Execution Time [s] 
Ratio [%] sct32 mkc d10200 

0 1,428,720 217,445 N/A 
10 58,678 3,950 311,940 
20 6,290 10 227,215 
30 13 0 13,915 
40 3 0 130 

 

Table 4: Effects on Solution Quality SQ [%] 
Ratio [%] sct32 mkc d10200 

0 0 0 0 
10 1.25 21.04 4.4 
20 7.68 14.08 4.4 
30 16.02 29.32 12.09 
40 38.56 31.98 24.18 

 

4.2 Performance Evaluation of MonteCalroR&O 

To show the effectiveness of our algorithm, we evaluated 
by solving hard problems provided in MIPLIB2010, sct32, 
mkc, and d10200. In this experiment, we used parameter 
Ratio = 0.2, 0.1, 0.05 for sct32, mkc, d10200, respectively. 
These values are determined by considering the execution 
time should be less than two hours.  
Table 5 shows the results. The execution time of Gurobi for 
mkc and d10200 was beyond 217,445 and 13,785, 
respectively. For our MonteCalroR&O, we varied SC, the 
number of swapped constraints, at each iteration from 1 to 
30. SQ was calculated by the definition in Section 4.1. 
From the results, our method can obtain good quality of 
solutions within reasonable computation time for the hard 
problems. 

Table 5: Execution Time and Solution Quality for Hard Problems 

Name 
Gurobi MonteCalroR&O 
Execution 
Time [s] 

Ratio 
[%] SC Time 

[s] 
SQ 
[%] 

sct32 1,428,720 20 

1 5,509 2.57 
5 5,514 5.58 

10 2,046 17.78 
15 5,523 10.46 
20 5,526 8.86 
25 5,529 5.08 
30 5,537 11.55 

mkc >217,445 10 

1 5,520 19.53 
5 1,180 23.01 

10 322 16.92 
15 6,577 15.68 
20 1,467 24.38 
25 8,609 7.02 
30 6,203 15.40 

d10200 >13,785 5 

1 977 7.69 
5 983 4.40 

10 990 5.49 
15 996 6.59 
20 1,004 8.79 
25 1,010 7.69 
30 1,015 2.20 

 

 
We compared the solution quality with Simulated 
Annealing (SA). Note that it is difficult for other 
metaheuristics to search feasible solution spaces efficiently 
for arbitrarily given integer programming problems with 
many numbers and different kinds of constraints. Therefore, 
we utilized here the multiple knapsack problem (mkp in 
Table 2), a well-known and frequently-used benchmark 
problem instance, since the problem instances include only 
PAC and KNA constraints and they can be simply treated 
in metaheuristics.  
Problem instances for the multiple knapsack problem are 
generated randomly with five knapsacks of different 
capacities varying the number of items from 100 to 2,000. 
For each instance, we solved once by Gurobi optimizer and 
twenty times by SA and our proposed method. 
Figure 2 shows the comparison results. The horizontal axis 
represents the size of the multiple knapsack problem and 
the vertical one the ratio between the obtained solutions 
(each is the average of 20 runs) and the exact solutions. 
Therefore, closer values to 1 correspond to better quality 
solutions. We observed from the results that our proposed 
method was able to very good solutions for enough large 
problem instances, even though it is not better for small 
instances. 
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Fig. 2: Solution Quality Comparison between Gurobi, SA, and 
MonteCarloR&O 

4.3 Parameters’ Effects 

As shown in Theorem 1, our method can improve solutions 
iteratively, but it should depend on parameters Ratio and 
SC. We investigated the effects of them on the 
improvement processes of our method. 
Figures 3-6 show the improvement curves of the solutions 
with varying SC from 1 to 30 for Ratio 0.05, 0.1, 0.2, 0.3, 
respectively. From the figures, we observe that the solution 
curves are decreasing monotonously as Theorem 1 explains. 
Smaller Ratio leads to higher quality of solutions. However, 
we cannot always choose small Ratio because it requires 
much more expensive computational costs. Therefore, for a 
given Ratio, we need to choose carefully good SC, but it is 
not so easy since it depends on problem instance.  
We consider a strategy so that we use first relatively large 
SC and gradually decreases it. Figure 7 depicts the 
improvement curves when we change SC at each iteration. 
Figure 7 shows also the SC pattern we used in the 
experiment. The SC pattern “30, 5, 5, 1, 1, 1” leads to better 
solution, compared to the other patterns and the static value 
cases. It means that our iterative approach has a potential to 
improve the performance by parameter control strategies. 
 

 

Fig. 3  Solution Improvements for Ratio 0.05 

 

Fig. 4  Solution Improvements for Ratio 0.1 

 

Fig. 5  Solution Improvements for Ratio 0.2 

 

Fig. 6  Solution Improvements for Ratio 0.3 

 

Fig. 7  Solution Improvements by Dynamic SC for Ratio 0.05 
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5. Concluding Remarks 

In this paper, we presented a new optimization technique 
for integer linear programming problems. The proposed 
method, a metaheuristic algorithm, improves solutions by 
iterating the problem reduction and the optimization on the 
reduced problem. Our method has only two parameters, 
Ratio to balance between solution quality and computation 
time and SC between diversity and convergence.  
The experimental evaluation showed that our method can 
obtain good quality of solutions within reasonable 
execution time for hard problems specified in MIPLIB2010. 
As future works, we need to develop strategies for 
dynamically changing parameters for the reduction size 
Ratio and the length of move SC according to the problem 
instance and a given upper limit of the computation time. 
Another work is to parallelize the method for speedup.  
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