
IJCSNS International Journal of Computer Science and Network Security, VOL.18 No.11, November 2018

60

Manuscript received November 5, 2018
Manuscript revised November 20, 2018

A Monte Carlo Iterative Optimization Algorithm for Integer
Linear Programming Problems

Takeshi Tengan†, Takeo Yoshida††, and Morikazu Nakamura††

†Faculty of International Studies, Meio University, Nago, Okinawa, 905-8585 Japan
††Faculty of Engineering, University of the Ryukyus, Nishihara, Okinawa, 903-0213 Japan

Summary
In this paper, we present a new optimization technique for integer
linear programming problems. The proposed method is a
metaheuristic algorithm and improves solutions by iterating the
problem reduction and solving the reduced problem. The
algorithm is a hybrid approach in which we use a Metropolis-
Hastings algorithm and an exact solver and has a good
characteristic such that the reduced problem at each iteration has
better or equal quality feasible solutions. The experimental
evaluation shows that our method can obtain a good quality of
solutions within reasonable execution time for hard problems
specified in MIPLIB2010.
Key words:
Integer Programming, Iterative Optimization, Problem Reduction,
Monte Carlo Method, Metaheuristics

1. Introduction

Combinatorial optimization problems have been widely
studied in computer sciences and operations researches for
theoretical and practical interests. Their importance
becomes larger and larger since our big data society
encourages us to use data generated in and collected from
various fields and combinatorial optimization is an essential
technique to extract valuable information from received
data [1]. For example, we can formulate many problems in
cyber-physical systems where we try to obtain useful
information from sensing data collected in physical systems.
Bioinformatics is also well-known application areas where
many problems correspond to combinatorial optimization
problems such as genome assembling, multiple alignments,
and motif identification in as optimization problems [2].
For NP-hard combinatorial optimization problems, there
exist two main approaches, the exact algorithm and the
approximation one. The exact algorithm, the branch and
bound algorithm, the branch and cut, find a global optimum
solution for a given instance [3]. Thanks to the drastic
improvement of searching algorithms for the integer linear
programming and computing platforms, we can solve
precisely many practical problems by using solvers such as
Gurobi optimizer [4] and CPLEX [5]. Therefore, the
mathematical programming approach has been practicable
for many application areas not only in engineering [6], [7],

[8], [9] but also in agriculture [10], [11], biology, even
sociology.
However, there are two major obstacles for many users to
receive benefits from the mathematical programming. One
is the difficulty of mathematical programming formulation;
users need to formulate problems as integer programming
problems, which requires in-depth knowledge on the related
mathematics and empirical skills to represent problems as a
class of the integer programming, hopefully, integer linear
programming. The other obstacle is high possibility of
unreasonable computation time, that is, its NP-hardness
should require long computation time beyond
extraordinarily our expectation.
For the former, some ideas to reduce the difficulty of the
mathematical formulation are proposed in [3]. We also
introduced a Petri net approach to generate mixed integer
linear programming problems [12]. For the latter, we need
to change from the exact solving to the approximation.
There are some approaches; the approximation algorithms
with provable solution quality for specific problems,
heuristic, and metaheuristic approaches are without
guaranteeing solution quality.
Exact algorithms and approximation algorithms have been
independently studied for a long time, however, recently a
combination of both approaches is studied since they can
complement each other. For example, to calculate good
incumbent solutions or efficient bounds [13]. In other
studies, exact algorithms are utilized to calculate the best
solution in large neighborhood structure [14] and to
enhance the decoding part, the branch & bound algorithm
is used in GAs [15], [16].
In our previous work [17], we proposed hybrid algorithms
that combine an exact algorithm and metaheuristic where
the exact algorithm is used for the solution evaluation in the
metaheuristics to realize robustness for the large-scale
combinatorial optimization. That is, our method can obtain
a good quality of solutions within a reasonable time for
almost all instances.
In this paper, we formulate our algorithm as an iterative
optimization method and perform an experimental
evaluation of our approach because we had shown just first
data of preliminary evaluation in [17] without solving hard
problems.

IJCSNS International Journal of Computer Science and Network Security, VOL.18 No.11, November 2018

61

Table 1: Constraint Types
 Type Mathematical Form
AGG Aggregation 𝑎𝑎𝑖𝑖𝑥𝑥𝑖𝑖 + 𝑎𝑎𝑘𝑘𝑥𝑥𝑘𝑘 = 𝑏𝑏, 𝑥𝑥𝑖𝑖 ∈ ℕ or ℝ, 𝑎𝑎𝑖𝑖 , 𝑎𝑎𝑘𝑘 , 𝑏𝑏 ∈ ℝ
VBD Variable Bound 𝑥𝑥𝑖𝑖 ≤ 𝑎𝑎𝑘𝑘𝑥𝑥𝑘𝑘 + 𝑏𝑏 or 𝑥𝑥𝑖𝑖 ≥ 𝑎𝑎𝑘𝑘𝑥𝑥𝑘𝑘 + 𝑏𝑏, 𝑥𝑥𝑖𝑖 , 𝑥𝑥𝑘𝑘 int. or cont. , 𝑎𝑎𝑘𝑘 , 𝑏𝑏 ∈ ℝ
PAR Set Partition ∑𝑥𝑥𝑖𝑖=1, 𝑥𝑥𝑖𝑖 ∈ {0,1}
PAC Set Packing ∑𝑥𝑥𝑖𝑖 ≤1, 𝑥𝑥𝑖𝑖 ∈ {0,1}
COV Set Cover ∑𝑥𝑥𝑖𝑖 ≥1, 𝑥𝑥𝑖𝑖 ∈ {0,1}
CAR Cardinality ∑𝑥𝑥𝑖𝑖=𝑏𝑏, 𝑥𝑥𝑖𝑖 ∈ {0,1}, 𝑏𝑏 ∈ ℤ
EQK Equality Knapsack ∑𝑎𝑎𝑖𝑖𝑥𝑥𝑖𝑖=𝑏𝑏, 𝑥𝑥𝑖𝑖 ∈ {0,1}, 𝑎𝑎, 𝑏𝑏 ∈ ℕ
BIN Bin Packing ∑𝑎𝑎𝑖𝑖𝑥𝑥𝑖𝑖 + 𝑎𝑎𝑘𝑘𝑥𝑥𝑘𝑘=𝑎𝑎𝑘𝑘, 𝑥𝑥𝑖𝑖 ∈ {0,1}, 𝑎𝑎𝑖𝑖 , 𝑎𝑎𝑘𝑘 ∈ ℕ
IVK Invariant Knapsack ∑𝑥𝑥𝑖𝑖 ≤ 𝑏𝑏, 𝑥𝑥𝑖𝑖 ∈ {0,1}, 𝑏𝑏 ∈ ℕ
KNA Knapsack ∑𝑎𝑎𝑖𝑖𝑥𝑥𝑖𝑖 ≤ 𝑏𝑏, 𝑥𝑥𝑖𝑖 ∈ {0,1}, 𝑎𝑎𝑖𝑖 , 𝑏𝑏 ∈ ℕ
IKN Integer Knapsack ∑𝑎𝑎𝑖𝑖𝑥𝑥𝑖𝑖 ≤ 𝑏𝑏, 𝑥𝑥𝑖𝑖 ∈ ℤ, 𝑎𝑎𝑖𝑖 , 𝑏𝑏 ∈ ℕ
M01 Mixed Binary ∑𝑎𝑎𝑖𝑖𝑥𝑥𝑖𝑖 + ∑𝑝𝑝𝑗𝑗𝑠𝑠𝑗𝑗 ≤ (or =) 𝑏𝑏, 𝑥𝑥𝑖𝑖 ∈ {0, 1}, 𝑠𝑠𝑗𝑗 cont. , 𝑎𝑎𝑖𝑖 , 𝑝𝑝𝑗𝑗 , 𝑏𝑏 ∈ ℝ

2. Integer Linear Programming Problem

Integer linear programming problems are a class of
mathematical programming problems in which some of all
the variables restricted to be integer and all the constraints
and the objective function should be denoted as linear
equations or inequations. An integer linear programming
problem in the canonical form is expressed as follows:

Objective:

max∑ 𝑐𝑐𝑖𝑖𝑥𝑥𝑖𝑖𝑁𝑁
𝑖𝑖=1 (1)

s.t.
∑ 𝑎𝑎𝑗𝑗,𝑖𝑖
𝑁𝑁
𝑖𝑖=1 𝑥𝑥𝑖𝑖 ≤ 𝑏𝑏𝑖𝑖 ,∀𝑗𝑗 ∈ {1, … ,𝑀𝑀} (2)

𝑥𝑥𝑖𝑖 ≥ 0,∀𝑖𝑖 ∈ {1, … ,𝑁𝑁} (3)
𝑥𝑥𝑖𝑖 ∈ ℕ (4)

The formulation includes two types of constraints;
Constraints (1) and (2) are called Integer Knapsack (IKN)
and Variable Bound (VBD), respectively.
Table 1 shows well-known constraint types [18]. We cannot
say easily which types of constraints make problem
instances difficult but they give us beneficial information.

3. Monte Carlo Iterative Optimization

This section proposes an iterative optimization algorithm
which enables us to obtain good heuristic solutions for
integer linear programming problems. Recent drastic
advancement of the mathematical programming research
partially overcomes the intractableness of NP-hard
problems, that is, current powerful solvers can solve integer
linear programming problems of practical sizes in
reasonable time. However, the exact algorithms cannot be a
universal approach which can treat any types of integer

linear programming problems. For problem instances with
a massive number of variables and/or complex solution
spaces, we cannot solve NP-hard problems in reasonable
time.
Our algorithm is inspired from the EM algorithm [19], the
Expectation-Maximum algorithm in statistics, in a sense
that the EM algorithm iteratively estimates parameters in
statistical models and maximizes the expected likelihood in
alternately performed E(Expectation)-step and
M(Maximization) step. Our algorithm is also an iterative
optimization in which it finds a set of variables to be
removed practically from the original problem,
R(Reduction)-step), and solves the reduced problem by
removing the set of variables at each iteration,
O(Optimization)-step.

3.1 Problem Reduction

We consider here the integer linear programming problem
shown in the previous section, where the variables are an
integer, and the types of constraints are only IKN and VBD
in Table 1. We can easily apply the discussion here to other
cases, binary variables, and different kinds of constraints.
The solution space of mathematical programming problems
widens with the number of variables. The computation time
for the optimization depends not only on the solution space
size but also a combination of constraints since the
combination of constraints determines the complexity of
the solution landscape. The computation time can be
extremely different when constraints are different even
though the number of variables is the same between two
problem instances. However, the number of variables is still
an essential factor to represent the hardness for exact
solving. Therefore, we use the number of variables to show
the ratio of the problem reduction.
In our algorithm, the problem reduction is performed by
fixing variables with values as new constraints. Let us
consider the following integer linear programming problem,

IJCSNS International Journal of Computer Science and Network Security, VOL.18 No.11, November 2018

62

where we just show the problem explained in Section 2 in a
matrix form.

 𝑓𝑓(𝑿𝑿):

max𝑪𝑪𝑿𝑿 (5)
𝑨𝑨𝑿𝑿 ≤ 𝑩𝑩 (6)
𝑋𝑋𝑖𝑖 ≥ 0,∀𝑖𝑖 ∈ {1, … ,𝑁𝑁} (7)
𝑋𝑋𝑖𝑖 ∈ ℕ,∀𝑖𝑖 ∈ {1, … ,𝑁𝑁} (8)

By introducing the constraints specified in 𝜃𝜃𝑋𝑋, we obtain a
reduced problem for 𝑓𝑓(𝑿𝑿) . Let us denote the reduced
problem by 𝑓𝑓(𝑋𝑋|𝜃𝜃𝑋𝑋).

 𝑓𝑓(𝑿𝑿|𝜃𝜃𝑋𝑋):

max𝑪𝑪𝑿𝑿 (9)
𝑨𝑨𝑿𝑿 ≤ 𝑩𝑩 (10)
𝑋𝑋𝑖𝑖 = 𝑥𝑥𝑖𝑖 ,∀(𝑋𝑋𝑖𝑖 = 𝑥𝑥𝑖𝑖) ∈ 𝜃𝜃𝑋𝑋 (11)
𝑋𝑋𝑖𝑖 ≥ 0,∀𝑖𝑖 ∈ {1, … ,𝑁𝑁} (12)
𝑋𝑋𝑖𝑖 ∈ ℕ,∀𝑖𝑖 ∈ {1, … ,𝑁𝑁} (13)

where 𝑥𝑥𝑖𝑖 is a feasible value for variable 𝑋𝑋𝑖𝑖. Note that the
number of variables in the reduced problem is, in practice,
|𝑿𝑿| − |𝜃𝜃𝑋𝑋|.

3.2 Reduction and Optimization Steps

We present a new iterative algorithm to solve heuristically
integer linear programming problems. As we explained
above, the algorithm is based on the EM algorithm, well-
known for maximum likelihood methods.
Our algorithm iteratively generate fixed variable sets,
𝜃𝜃𝑋𝑋

(0),𝜃𝜃𝑋𝑋
(1), … , 𝜃𝜃𝑋𝑋

(𝑘𝑘), and at each iteration solve the reduced
problem, 𝑓𝑓(𝑿𝑿|𝜃𝜃𝑋𝑋

(𝑖𝑖)), 𝑖𝑖 = 0, 1, … , 𝑘𝑘, where 𝜃𝜃𝑋𝑋
(𝑖𝑖) is

determined from a solution of problem 𝑓𝑓(𝑿𝑿|𝜃𝜃𝑋𝑋
(𝑖𝑖−1)), and

�𝜃𝜃𝑋𝑋
(𝑖𝑖)� < |𝑿𝑿|. The proposed algorithm is composed of two

steps:

R-Step: Reduce the size of the integer linear optimization
problem 𝑓𝑓(𝑿𝑿) by adding a constraint set 𝜃𝜃𝑋𝑋

(𝑖𝑖) and
generate the reduced problem 𝑓𝑓(𝑿𝑿|𝜃𝜃𝑋𝑋

(𝑖𝑖)).
O-Step: Solve the reduced problem 𝑓𝑓(𝑿𝑿|𝜃𝜃𝑋𝑋

(𝑖𝑖)) by some
optimization algorithm.

For O-Step, we can utilize any solver. In our
implementation, we used Gurobi Optimizer, one of the
well-known powerful commercial solvers. For the reduced
problem, we can obtain exact solutions.
In R-Step, we need to generate a reduced problem instance
by introducing a set of constraints. To ensure that the
reduced problem should have feasible solutions, we select
a set of constraints for the problem reduction from a feasible
solution.

Let 𝒙𝒙𝑜𝑜 = (𝑋𝑋1 = 𝑥𝑥1,𝑋𝑋2 = 𝑥𝑥2, … ,𝑋𝑋𝑛𝑛 = 𝑥𝑥𝑛𝑛) be a feasible
solution of 𝑓𝑓(𝑿𝑿) . We select some fixed number of
variables and their values from 𝒙𝒙𝑜𝑜 as a constraint set, for
example, 𝜃𝜃𝑋𝑋

(0) = {𝑋𝑋3 = 𝑥𝑥3,𝑋𝑋10 = 𝑥𝑥10, … }. Obviously,
𝑓𝑓(𝑿𝑿|𝜃𝜃𝑋𝑋

(0)) has a feasible solution. And then, we obtain
solution 𝒙𝒙(0) by solving 𝑓𝑓(𝑿𝑿|𝜃𝜃𝑋𝑋

(0)) and construct 𝜃𝜃𝑋𝑋
(1)

from 𝒙𝒙(0) by selecting some variables and their values.
This discussion can be extended to 𝜃𝜃𝑋𝑋

(𝑖𝑖), 𝑖𝑖 = 2, … , 𝑘𝑘.

Lemma 1: 𝑓𝑓(𝑿𝑿|𝜃𝜃𝑋𝑋

(𝑖𝑖)) , i=0, 1, 2, …, k, has a feasible
solution if 𝒙𝒙𝑜𝑜 is feasible.
Proof: We prove the lemma by induction. It is obvious that
𝑓𝑓(𝑿𝑿|𝜃𝜃𝑋𝑋

(0)) has a feasible solution when 𝒙𝒙𝑜𝑜 is feasible. We
suppose that 𝑓𝑓(𝑿𝑿|𝜃𝜃𝑋𝑋

(ℎ)) has a feasible solution when 𝒙𝒙𝑜𝑜
is feasible. Let us denote a solution of 𝑓𝑓(𝑿𝑿|𝜃𝜃𝑋𝑋

(ℎ)) by 𝒙𝒙(ℎ)
and select a set of variables and their values for the next
constraint set,
𝜃𝜃𝑋𝑋

(ℎ+1) = {𝑋𝑋𝑖𝑖 = 𝑥𝑥𝑖𝑖
(ℎ)�∃𝑖𝑖 ∈ {1, … ,𝑁𝑁}, |𝜃𝜃𝑋𝑋

(ℎ+1)� < |𝑿𝑿|}. (14)
It is also obvious that 𝑓𝑓(𝑿𝑿|𝜃𝜃𝑋𝑋

(ℎ+1)) has a feasible solution.
Q.E.D

The lemma gives us good property for our iterative
algorithm.

Theorem 1: The optimum value of 𝑓𝑓(𝑿𝑿|𝜃𝜃𝑋𝑋

(𝑖𝑖)) is a lower
bound for 𝑓𝑓(𝑿𝑿|𝜃𝜃𝑋𝑋

(𝑖𝑖+1)).
Proof: Let 𝒙𝒙(𝑖𝑖) be an optimal solution of
𝑓𝑓�𝑿𝑿�𝜃𝜃𝑋𝑋

(𝑖𝑖)� . 𝜃𝜃𝑋𝑋
(𝑖𝑖+1) is constructed by selecting some

elements in 𝒙𝒙(𝑖𝑖) . From Lemma 1, 𝑓𝑓(𝑿𝑿|𝜃𝜃𝑋𝑋
(𝑖𝑖+1)) has a

feasible solution and 𝒙𝒙(𝑖𝑖) is a known feasible solution.
Therefore, the optimal solution of 𝑓𝑓(𝑿𝑿|𝜃𝜃𝑋𝑋

(𝑖𝑖+1)) cannot be
worse than 𝒙𝒙(𝑖𝑖). Q.E.D

By Theorem 1, we confirm that the iteration of R-Step and
O-Step cannot make the solution quality worse. However,
from the practical point of view, the solution obtained by
solving 𝑓𝑓(𝑿𝑿|𝜃𝜃𝑋𝑋

(𝑖𝑖)) can be worse. The reason for the
contradiction is that the O-step cannot always obtain the
exact solution of the reduced problem 𝑓𝑓(𝑿𝑿|𝜃𝜃𝑋𝑋

(𝑖𝑖)) in a
reasonable time. This situation can be taken place in
practice, that is, the solver takes a longer time than a
prefixed TimeLimit. That is, the solution quality can be
worse when the solver finds just a local optimum. Our
approach can accept such worse solutions for making
diversity in the searching process. This idea is the essential
point in the Metropolis-Hastings algorithm or Simulated
Annealing.

IJCSNS International Journal of Computer Science and Network Security, VOL.18 No.11, November 2018

63

3.3 Monte Carlo Reduction & Optimization

Our iterative approach can improve the solution quality
since Theorem 1 ensures the monotonicity of solution
improvement theoretically, even though we sometimes find
worse solutions. We utilize the simplest and efficient way
to generate a next fixed variable set, say Monte Carlo
method. That is, we select randomly the next fixed variable
set only based on the current situation, where we control the
number of fixed variables.
We introduce a parameter Ratio to determine how many
variables are reduced in the R-step.

𝑅𝑅𝑎𝑎𝑅𝑅𝑖𝑖𝑅𝑅 = |𝜃𝜃𝑋𝑋|

|𝑋𝑋|
 (< 1.0) (15)

Therefore, we set a large value for Ratio when we want to
reduce the computation time of the exact algorithm since a
larger value of Ratio leads to smaller size of the solution
space. Note that the number of variables exponentially
widens the solution space. Another parameter SC is to
specify how many constraints are changed to select the next
fixed variables from the current one at each iteration. Larger
SC should be a long jump from the current solution, leading
to diversification for searching. On the other hand, smaller
SC can search more intensively high potential space.
Figure 1 shows a pseudo code of our algorithm,
MonteCarloR&O. Function InitialFeasibleSolution() finds
a feasible solution by using some algorithm. Note that the
feasible solution may be far from the optimal solution.
Function GenerateConstraintsFrom() determines the next
fixed variable set from the previous solution and parameters
Ratio and SC. Function Solve(𝑓𝑓(𝑿𝑿) , TimeLimit) should
return an optimal solution for 𝑓𝑓(𝑿𝑿). Note that the exact
optimizer may require an extremely long time to get the
exact solution even for reduced problems. To avoid such a
situation, we set TimeLimit for function Solve(). Therefore,
the function may return worse solutions than the previous
solution. In this case, we utilize the Metropolis-Hastings
algorithm to determine the acceptance of worse solutions at
Lines 8 to 18.

1: 𝒙𝒙𝑜𝑜 ← InitialFeasibleSolution()
2: 𝜃𝜃𝑋𝑋

(0) ←GenerateConstraintsFrom(𝒙𝒙𝑜𝑜, Ratio)
3: CurSolution, 𝒙𝒙(0) ← Solve(𝑓𝑓�𝑿𝑿�𝜃𝜃𝑋𝑋

(0)�,𝑇𝑇𝑖𝑖𝑇𝑇𝑇𝑇𝑇𝑇𝑖𝑖𝑇𝑇𝑖𝑖𝑅𝑅)
4: 𝑖𝑖 ← 1

 5: repeat
6: 𝜃𝜃𝑋𝑋

(𝑖𝑖) ←GenerateConstraintsFrom(𝒙𝒙(𝑖𝑖−1), Ratio, SC)
 7: NewSolution, 𝒙𝒙(𝑖𝑖) ← Solve(𝑓𝑓(𝑿𝑿|𝜃𝜃𝑋𝑋

(𝑖𝑖)),𝑇𝑇𝑖𝑖𝑇𝑇𝑇𝑇𝑇𝑇𝑖𝑖𝑇𝑇𝑖𝑖𝑅𝑅)
 8: ∆𝑆𝑆𝑅𝑅𝑆𝑆𝑆𝑆𝑅𝑅𝑖𝑖𝑅𝑅𝑆𝑆 ← (CurSolution – NewSolution)
 9: if ∆𝑆𝑆𝑅𝑅𝑆𝑆𝑆𝑆𝑅𝑅𝑖𝑖𝑅𝑅𝑆𝑆 < 0 then
10: CurSolution ← NewSolution
11: if BestSolution < NewSolution then
12: 𝒙𝒙𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 ← 𝒙𝒙(𝑖𝑖)
13: endif
14: 𝑖𝑖 ← i+1
15: else if RANDOM() < 𝑇𝑇−∆𝑏𝑏𝑜𝑜𝑠𝑠𝑠𝑠𝑏𝑏𝑖𝑖𝑜𝑜𝑛𝑛/𝑇𝑇 then
16: CurSolution ← NewSolution
17: 𝑖𝑖 ← i+1
18: endif
19: until Termination Condition holds

Fig. 1 Pseudo Code for MonteCarloR&O

4. Experimental Evaluation

We performed the experimental evaluation to show the
effectiveness of our algorithm. We selected integer linear
programming problems, characterized as Hard to solve,
provided in MIPLIB2010 [1]. The selected problems from
the library are shown in the first three rows in Table 2. The
last one, the multiple knapsack problem, was used in our
experiment to compare with traditional metaheuristics, SA
since we can easily apply SA to the problem because of its
simple constraints, but not other problems. In the
experiment, we generate instances of the multiple knapsack
problem randomly with varying problem size.
“Rows” and “Cols” denote the number of constraints and
variables, respectively. “Constraint Types” corresponds to
“Type” in Table 1. “Status” represents the difficulty of the
problem. “Hard” means that the problem is quite difficult to
solve.

Table 2: Test Problems in Experiments

Name Rows Cols Constraint
Types

Status in
MIPLIB2010

sct32 5,440 9,767 VBD, IVK,
KNA, M01 Hard

mkc 3,411 5,325 VBD, PAC,
IVK, M01 Hard

d10200 947 2,000 PAR, IVK,
KNA Hard

mkp Varied Varied PAC, KNA N/A

IJCSNS International Journal of Computer Science and Network Security, VOL.18 No.11, November 2018

64

4.1 Effects of Problem Reduction

To confirm the effect of the problem reduction shown in
Section 3.1, we investigated how the problem reduction
effects on the computation time and the solution quality for
three problem instances, sct32, mkc, and d10200. We
varied Ratio from 0.0 to 0.4 in the experiment.
Table 3 and 4 show effects of the problem reduction on
computation time and solution quality, respectively. In
Table 4, the solution quality SQ was calculated by the
following equation:

𝑆𝑆𝑆𝑆

=
|(𝐸𝐸𝑥𝑥𝑎𝑎𝑐𝑐𝑅𝑅 𝑆𝑆𝑅𝑅𝑆𝑆𝑆𝑆𝑅𝑅𝑖𝑖𝑅𝑅𝑆𝑆) − (𝑂𝑂𝑏𝑏𝑅𝑅𝑎𝑎𝑖𝑖𝑆𝑆𝑇𝑇𝑂𝑂 𝑆𝑆𝑅𝑅𝑆𝑆𝑆𝑆𝑅𝑅𝑖𝑖𝑅𝑅𝑆𝑆)|

|(𝐸𝐸𝑥𝑥𝑎𝑎𝑐𝑐𝑅𝑅 𝑆𝑆𝑅𝑅𝑆𝑆𝑆𝑆𝑅𝑅𝑖𝑖𝑅𝑅𝑆𝑆) − (𝐼𝐼𝑆𝑆𝑖𝑖𝑅𝑅𝑖𝑖𝑎𝑎𝑆𝑆 𝐹𝐹𝑇𝑇𝑎𝑎𝑠𝑠𝑖𝑖𝑏𝑏𝑆𝑆𝑇𝑇 𝑆𝑆𝑅𝑅𝑆𝑆𝑆𝑆𝑅𝑅𝑖𝑖𝑅𝑅𝑆𝑆)|

where (Initial Feasible Solution) means the solution
obtained firstly by Gurobi.
From the tables, we confirm that the execution time
depends on strongly the reduction ratio and the solution
quality is inversely proportional to the reduction ratio.

Table 3: Effects on Execution Time [s]
Ratio [%] sct32 mkc d10200

0 1,428,720 217,445 N/A
10 58,678 3,950 311,940
20 6,290 10 227,215
30 13 0 13,915
40 3 0 130

Table 4: Effects on Solution Quality SQ [%]
Ratio [%] sct32 mkc d10200

0 0 0 0
10 1.25 21.04 4.4
20 7.68 14.08 4.4
30 16.02 29.32 12.09
40 38.56 31.98 24.18

4.2 Performance Evaluation of MonteCalroR&O

To show the effectiveness of our algorithm, we evaluated
by solving hard problems provided in MIPLIB2010, sct32,
mkc, and d10200. In this experiment, we used parameter
Ratio = 0.2, 0.1, 0.05 for sct32, mkc, d10200, respectively.
These values are determined by considering the execution
time should be less than two hours.
Table 5 shows the results. The execution time of Gurobi for
mkc and d10200 was beyond 217,445 and 13,785,
respectively. For our MonteCalroR&O, we varied SC, the
number of swapped constraints, at each iteration from 1 to
30. SQ was calculated by the definition in Section 4.1.
From the results, our method can obtain good quality of
solutions within reasonable computation time for the hard
problems.

Table 5: Execution Time and Solution Quality for Hard Problems

Name
Gurobi MonteCalroR&O
Execution
Time [s]

Ratio
[%] SC Time

[s]
SQ
[%]

sct32 1,428,720 20

1 5,509 2.57
5 5,514 5.58

10 2,046 17.78
15 5,523 10.46
20 5,526 8.86
25 5,529 5.08
30 5,537 11.55

mkc >217,445 10

1 5,520 19.53
5 1,180 23.01

10 322 16.92
15 6,577 15.68
20 1,467 24.38
25 8,609 7.02
30 6,203 15.40

d10200 >13,785 5

1 977 7.69
5 983 4.40

10 990 5.49
15 996 6.59
20 1,004 8.79
25 1,010 7.69
30 1,015 2.20

We compared the solution quality with Simulated
Annealing (SA). Note that it is difficult for other
metaheuristics to search feasible solution spaces efficiently
for arbitrarily given integer programming problems with
many numbers and different kinds of constraints. Therefore,
we utilized here the multiple knapsack problem (mkp in
Table 2), a well-known and frequently-used benchmark
problem instance, since the problem instances include only
PAC and KNA constraints and they can be simply treated
in metaheuristics.
Problem instances for the multiple knapsack problem are
generated randomly with five knapsacks of different
capacities varying the number of items from 100 to 2,000.
For each instance, we solved once by Gurobi optimizer and
twenty times by SA and our proposed method.
Figure 2 shows the comparison results. The horizontal axis
represents the size of the multiple knapsack problem and
the vertical one the ratio between the obtained solutions
(each is the average of 20 runs) and the exact solutions.
Therefore, closer values to 1 correspond to better quality
solutions. We observed from the results that our proposed
method was able to very good solutions for enough large
problem instances, even though it is not better for small
instances.

IJCSNS International Journal of Computer Science and Network Security, VOL.18 No.11, November 2018

65

Fig. 2: Solution Quality Comparison between Gurobi, SA, and
MonteCarloR&O

4.3 Parameters’ Effects

As shown in Theorem 1, our method can improve solutions
iteratively, but it should depend on parameters Ratio and
SC. We investigated the effects of them on the
improvement processes of our method.
Figures 3-6 show the improvement curves of the solutions
with varying SC from 1 to 30 for Ratio 0.05, 0.1, 0.2, 0.3,
respectively. From the figures, we observe that the solution
curves are decreasing monotonously as Theorem 1 explains.
Smaller Ratio leads to higher quality of solutions. However,
we cannot always choose small Ratio because it requires
much more expensive computational costs. Therefore, for a
given Ratio, we need to choose carefully good SC, but it is
not so easy since it depends on problem instance.
We consider a strategy so that we use first relatively large
SC and gradually decreases it. Figure 7 depicts the
improvement curves when we change SC at each iteration.
Figure 7 shows also the SC pattern we used in the
experiment. The SC pattern “30, 5, 5, 1, 1, 1” leads to better
solution, compared to the other patterns and the static value
cases. It means that our iterative approach has a potential to
improve the performance by parameter control strategies.

Fig. 3 Solution Improvements for Ratio 0.05

Fig. 4 Solution Improvements for Ratio 0.1

Fig. 5 Solution Improvements for Ratio 0.2

Fig. 6 Solution Improvements for Ratio 0.3

Fig. 7 Solution Improvements by Dynamic SC for Ratio 0.05

IJCSNS International Journal of Computer Science and Network Security, VOL.18 No.11, November 2018

66

5. Concluding Remarks

In this paper, we presented a new optimization technique
for integer linear programming problems. The proposed
method, a metaheuristic algorithm, improves solutions by
iterating the problem reduction and the optimization on the
reduced problem. Our method has only two parameters,
Ratio to balance between solution quality and computation
time and SC between diversity and convergence.
The experimental evaluation showed that our method can
obtain good quality of solutions within reasonable
execution time for hard problems specified in MIPLIB2010.
As future works, we need to develop strategies for
dynamically changing parameters for the reduction size
Ratio and the length of move SC according to the problem
instance and a given upper limit of the computation time.
Another work is to parallelize the method for speedup.

References
[1] C. Dhaenens, L. Jourdan, Metaheuristics for Big Data,

Willey, 2016.
[2] P. A. Pevzner, Computational Molecular Biology, An

Algorithmic Approach, The MIT Press, Cambridge, 2000.
[3] H. Raul Williams, Model, Building in Mathematical

Programming, 5th Edition, Wiley, 2013.
[4] GUROBI Optimizer, http://www.gurobi.com/
[5] CPLEX Optimizer, http://www-01.ibm.com/software/

commerce/optimization/cplex-optimizer/
[6] Ahmet B. Keha, Ketan Khowala, John W. Fowler, “Mixed

integer programming formulations for single machine
scheduling problems,” Computers & Industrial Engineering,
Vol. 56, pp. 357-367, 2009.

[7] Jason Chao-Hsien Pana, Jen-Shiang Chenb, “Mixed binary
integer programming formulations for the reentrant job shop
scheduling problem,” Vol. 32, Issue 5, pp.1197-1212, 2005.

[8] Debora P. Ronconi, Ernesto G. Birgin, “Mixed-integer
programming models for flowshop scheduling problems
minimizing the total earliness and tardiness,” Just-in-Time
Systems, Springer Optimization and Its Applications, pp. 91-
105, 2012.

[9] Wen-Yang Ku, J. Christopher Beck, “Mixed integer
programming models for job shop scheduling: A
computational analysis,” Computers & Operations Research,
Vol. 73, pp.165-173, 2016.

[10] Senlin Guan, Morikazu Nakamura, Takeshi Shikanai, Takeo
Okazaki, “Hybrid Petri nets modeling for farm work flow,”
Computers and Electronics in Agriculture, Vol. 62, No. 2, pp.
149-158, 2008.

[11] Senlin Guan, Morikazu Nakamura, Takeshi Shikanai, Takeo
Okazaki, “Resource assignment and scheduling based on a
two-phase metaheuristic for cropping system,” Computers
and Electronics in Agriculture, Vol. 62, No. 2, pp. 181-190,
2009.

[12] Andrea Veronica Porco, Ryosuke Ushijima, Morikazu
Nakamura, “Automatic generation of mixed integer
programming for scheduling problems based on colored
timed Petri nets,” vol. E101.A, no. 2, pp.367-372, 2018.

[13] D. L. Woodruff, “A chunking based selection strategy for
integrating meta-heuristics with branch and bound,”
Metaheuristics: Advances and Trends in Local Search
Paradigms for Optimization, pp. 499-511. Kluwer Academic
Publishers, 1999.

[14] E. K. Burke, P. I. Cowling, and R. Keuthen, “Effective local
and guided variable neighborhood search methods for the
asymmetric travelling salesman problem,” Applications of
Evolutionary Computing: EvoWorkshops 2001, LNCS, vol.
2037, pp. 203-212. Springer, 2001.

[15] J. Puchinger, G. R. Raidl, and G. Koller, “Solving a real-
world glass cutting problem,” Evolutionary Computation in
Combinatorial Optimization, EvoCOP 2004, LNCS, vol.
3004, pp. 162-173. Springer, 2004.

[16] A. T. Staggemeier, A. R. Clark, U. Aickelin, and J. Smith, “A
hybrid genetic algorithm to solve a lot-sizing and scheduling
problem,” Proceedings of the 16th Triannual Conference of
the International Federation of Operational Research
Societies, Edinburgh, U.K., 2002

[17] K. Tamaki, T. Tengan, M. Nakamura, “Hybrid approaches
based on simulated annealing and an exact algorithm for
mixed integer programming problems,” Proceedings of The
Third International Conference on Networking and
Computing, IEEE Press, 2012.

[18] Thorsten Koch, Tobias Achterberg, at el, “MIPLIB 2010
Mixed Integer Programming Library version 5,''
Mathematical Programming Computation, vol. 3, no. 2,
pp.103-163, 2011.

[19] Dempster, A. P, “Maximum likelihood from incomplete data
via the EM algorithm," Journal of the Royal Statistical
Society Series B Methodological, Vol. 39, No.1, pp.1-38,
1977.

Takeshi Tengan received the B.E. and M.E
degrees in Electronics and Information
Engineering from University of the Ryukyus
in 1994 and 1996, respectively. He is
currently a senior associate professor in
Information Systems Major, Faculty of
International Studies, Meio University. His
research interests include optimization and
soft computing. He is a member of the

Japanese Society of Evolutionary Computation.

Takeo Yoshida received the B.E. and M.E.
degrees in electrical engineering from
Nagaoka University of Technology and the
D.E. degree in electrical engineering from
Tokyo Metropolitan University in 1991,
1993 and 1997, respectively. He is currently
an assistant professor in the Department of
Engineering, University of the Ryukyus. His
research interests include dependable

computing, VLSI design, and graph theory. He is a member of
IEEE and IPSJ.

IJCSNS International Journal of Computer Science and Network Security, VOL.18 No.11, November 2018

67

Morikazu Nakamura received the B.E. and
M.E degrees from University of the
Ryukyus in 1989 and 1991, respectively,
and D.E degree from Osaka University in
1996. He is currently a professor in Area of
Computer Science and Intelligent Systems,
Faculty of Engineering, University of the
Ryukyus. His research interests include
theory and applications on mathematical

systems. He is a member of IEEE.

