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Abstract 
The concept of self-propelled particles is used to study the 
collective motion of different organisms such as flocking of birds, 
swimming of schools of fish or migrating of bacteria. The 
collective motion of self-propelled particles is investigated in the 
presence of obstacles and without obstacles. A comparison of the 
effects of interaction radius, speed and noise on the collective 
motion of self-propelled particles is conducted. It is found that in 
the presence of obstacles, mean square displacement of the 
particles shows large fluctuation, whereas without obstacles 
fluctuation is less. It is also shown that in the presence of the 
obstacles, an optimal noise, which maximizes the collective 
motion of the particles, exists 
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1. Introduction 

Movements in dynamic and complex environments are an 
integral part of the daily life activities; this includes 
walking in crowded spaces, playing sports, etc. Many of 
these tasks that humans perform in such environments 
involve interactions with stationary or moving obstacles. In 
this context, it is important to note that there is always a 
need to coordinate the information with other individuals 
to deal with the obstacles [1]. There are other examples 
also exist where living things deal with the obstacles such 
as flocks of birds facing obstacles while moving 
collectively.  Understanding the detection and avoidance 
from the obstacles when there is noise in the system is of 
extreme importance. Many studies have addressed the 
interaction of individuals with obstacles from different 
perspectives. For example, in computer science field 
several studies have been carried out where robots interact 
with obstacles [2-4]. There are limited studies done to 
investigate the dynamics of natural systems which deal 
with the obstacles. Dynamics of the particles in the 
presence of the obstacles is often observed. Complex 
collective behaviour is exhibited by the bacteria in the 
presence of the obstacles. For example, collective 
behaviour of bacteria was found in the heterogeneous 
medium such as highly complex tissues in gastrointestinal 
tract or soil. 

Large groups of animals moves very long distances and 
they cross rivers and forest [5]. Inspite of these facts, there 
has been limited research done on the effect of 
heterogeneous media on the collective behaviour of self-
propelled particles [6]. Avoidance behaviour of the 
particle from the obstacle was simulated by the croft et al 
[7]. In this work measurement of effect was carried out 
when a single particle collided with the static obstacles. It 
was found that there are higher chances of collision of 
social interactions with the obstacles. This is due to the 
huge supposition and the occurrence of large parameter 
values. Moreover, the creation of motion due to the social 
interaction produces key effects on the metrics used to 
inform management and policy decisions.Mecholsky et al 
[8] worked on a continuous model in which flocks of birds 
were considered. Study was done on the linearized 
interaction of the flocks with an obstacle. Behaviour of the 
flocks was shown by the density disturbance when there 
was a interaction with the obstacles. The disturbance was 
similar to the Mach cones where order was demonstrated 
by the anistropic spread of waves of flocking. Chepizkho 
et al [9] focused on the dynamics of the self-propelled 
particles in the heterogeneous medium. In their model 
obstacles were randomly distributed in two dimensional 
spaces.  In this model, particle showed avoidance from the 
obstacle, and the particle’s avoiding behaviour was 
expressed by the turning speed γ . The mean square 
displacement of the SPPs produced two regimes as a 
function of obstacle density oρ  and the particle’s turning 
speed γ . It was found that, in first regime small value of  
γ  produces diffusive movement of particle and 
determined by diffusive coefficient which demonstrated a 
least at an intermediate obstacle density oρ . In second 
regime, it was found that for large obstacle densities and 
for higher values of γ , spontaneous trapping of the SPPs 
occurred. In their model it was also shown that the 
presence of fixed and moving obstacles can change the 
dynamics of the collective behaviour of the particles. 
Moreover, optimal noise amplitude took place which 
maximised the collective motion. This kind of optimality 
does not appear in the homogeneous medium. Due to the 
smaller obstacle densities, order parameter showed a single 
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critical point, under this point the model showed long 
range order akin to the homogeneous medium. In the case 
of large obstacle densities two critical points appeared and 
made the motion disordered at both smaller and larger 
noise amplitudes. Furthermore, there was the existence of 
quasi long range order in between these critical points [5]. 
In this research work, computer simulation is done for the 
self-propelled particles in homogeneous media and in 
heterogeneous media. Here the term heterogeneous applies 
when the collective motion of the particles is investigated 
in the presence of the obstacles whereas the term 
homogeneous is consideredWhen collective behaviour of 
the particles is studied without obstacles. We compare the 
effects of the interaction radius, speed and noise on the 
collective motion of self-propelled particles with and 
without obstacles. It is found that, in the existence of the 
obstacles, mean square displacement of the particles 
exhibit huge fluctuations in the system, whereas without 
obstacle density this displacement of the SPPs shows very 
less fluctuating behaviour. It is also observed that in the 
existence of the obstacles, optimal noise exists which 
maximises the collective motion of the particles. Optimal 
noise that increases the collective motion is helpful in 
developing and understanding migration and navigation 
strategies in moveable or non-moveable heterogeneous 
media, which help to understand evolution and adaptation 
of stochastic components in natural systems which show 
collective motion. 

2. Methodology 

A two dimensional continuum time model is introduced for 

bN self-propelled Particles (SPPs). The model 
demonstrates the effects of various parameters on the 
collective behaviour of the SPPs. Motion of the particles is 
restricted to the two dimensional box of size L  having 
periodic boundary conditions. Particles interact with each 
other according to the same rule as in Vicsek et al [10] 
where particle follows the average direction of the 
neighbours within the radius r .Spatial heterogeneity is 
given by the presence of the oN  fixed obstacles. The new 
element in the equation of motion of self-propelled 
particles is introduced by the obstacle avoidance 
interaction as it is given in Ref. [5]. Obstacles are 
randomly distributed in the system. Noise parameter is also 
introduced in the system, which is randomly given and has 
values between [ ]ππ ,− . At the initial time-step each 
particle has a random position and a random direction. 
Particles update their positions as follows: 

,)()()( ttttt iii ∆+=∆+ vxx   (1) 

and direction of the particle is given by the following 
equation: 

θηθθ ∆++=∆+ )()()( iri httt x
  

(2) 

In equation 1, ix  represents the position of ith particle, 
)(tiv is the velocity of the particle with absolute 

velocity ov . t∆ is the time interval that particles take to 
move from one point to another. 
In equation 2, iθ  represents the direction of the particle 

and θ∆ is the random fluctuation in the system, which is 
created by noiseand has value in the range of [ ]ππ ,− .η  

is the noise amplitude. 
r

t)(θ  represents the average 
direction of the particles which is within the interaction 
radius r , where r  is the radius of interaction between the 
self-propelled particles.

 r
t)(θ is given in the following 

equation: 
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Equation 3 has been taken from [10].The function )( ih x  

in equation 2 defines the interaction of particle with 

obstacles. Through this function particles avoid the 

obstacles that are located in its neighborhood: 
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The equation 4 is taken from [5]. Through this equation 
obstacle is introduced. Here ix is the position of ith particle, 

and ky is the position of kth obstacle. oR is known as the 
interaction radius between particle and obstacle. 

)( ion x represents the number of the obstacles located at 

the distance less than oR from ix . In the above equation 

two conditions are given. Firstly, if )( ion x is greater than 

zero, )( ih x will show interaction with obstacles, secondly, 

if )( ion x is equal to zero, )( ih x will be zero. In equation 

4, the term oki R<− || yx , means that if the distance 
between the obstacle and particle is less than the 
interaction radius oR , then the summation of sine 
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( )( )∑ − iik θα ,sin  will take place. Number of sine 
values that will be summed, depends on the number of 
obstacles )( ion x that are located in the interaction radius 

range of the particle ix . The term ik ,α shows the angle in 

polar coordinates of the vector ki yx − . Also the 

parameter oγ which is for interaction purpose, known as 
the particle’s turning speed when it interacts with obstacle. 

2.1 Order parameter 

The order parameter, ,w is used to characterize the 
macroscopic collective movement of the particles [5]. 
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Here demonstrates temporal average. Equation 5 is a 
unitary complex number. There appear two possibilities, 
value of the order parameter can be either near to zero or 
near to 1. If the value is near to zero, we interpret it as the 
disordered motion. If the value is near to 1, we say 
collective motion is in state of order. This is the tool by 
which we scale the collective motion of SPP. The equation 
(5) is also termed as the average normalised velocity. The 
obstacle density oρ can be interpreted by using the 
following equation: 

,/ 2LNoo =ρ     (6) 

here oN is the number of obstacles, and L is the box 
length. The description of the parameters that were used in 
the model is given in the Table 1. 

Table 1: Parameters used in the simulation. 
Symbol Description 

L  Length of box 

bN  Number of particles  

oN  Number of obstacles 

t  Time step 
η  Noise amplitude 

oR  Interaction radius between the particle and the 
obstacles 

r  Interaction radius between the particles 

ov  Absolute velocity 

oγ  Particle’s turning speed when it interact with obstacle 

t∆  Time interval 
w  Collective motion parameter 

3. Results and Discussion 

Simulation was performed in a square box of length L. We 

first considered the case in which noise was, 01.0=η .At 
initial time steps particles moved randomly with constant 
speed. After that each particle adopted an average 
direction of the particles which were in its neighborhood. 
Particles interacted with the obstacles and they turned 
away from the obstacles when they came closer to obstacle. 
There was no any repulsion force given to the particles. 
They showed alignment when they were close to each 
other.  It was observed that at lower noise particles make 
groups. There was strong coordination in the particles as 
shown in the Figure 1. Strong coordination means particles 
had higher interaction with each other. Phase exhibited by 
the system is known as the clustered phase. At the same 
noise value, clustered phase was also observed in other 
work [5]. If we compare the order parameter in our model 
and in Ref [5] we found that our model exhibits more 
collective motion. 
 

 

Fig. 1  Collective motion of the particles in groups. Box 

length 100=L , noise amplitude ,01.0=η  

time ,10000=t  particles ,10000=bN  obstacles  

26,oN = interaction radius ,1=r avoidance 

radius ,1=oR speed ,1=ov  particle’s turning 

speed 1=oγ , time interval 1.0=∆t . The crops of areas 
“a”and “b” are shown in the Figure 2. 
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Fig. 2  Close-up from areas “a”and “b” in the Figure 1. 

In the Figure 1 green circles show obstacles, whereas red 
arrows represent particles.  Collective motion exhibited by 
the particles was calculated to be 0.65. This figure shows 
the result of the movement of the particles at 10000th time 
step. In the system dense clusters were formed. We can see 
that when particles moved closer to the obstacles they tried 
to avoid from the obstacle. At initial time steps particles 
had random motion, after some time-steps they started 
developing coordination with each other. When particles 
collide or near to the obstacles they scatter and their 
collective motion is disturbed. After the scattering they 
again tried to move together. Interaction between the 
particles followed the rule of interaction as shown in the 
Vicsek model [10] where velocities of the particles were 
summed when they were in the interaction radius. 
 
 
 
 

 

Fig. 3  Increasing noise from 0.01 to 0.3.L=100, t =10000, Nb =10000, 
N0 = 26, r =1, R0,  = v0=1, 1 0 1, . .o tγ = ∆ =  

The Figure 3 demonstrates the effect of noise when it was 
increased from 0.01 to 0.3. It was observed that there 
appears a slight randomness in the orientation.  It can be 
clearly seen that particles formed some smaller clusters 
which were the result of the increase in the noise. Here 
each cluster has different direction and the collective 
motion of the particles is decreased, which shows that 
there is an effect of the noise on the system. This can be 
easily seen by comparing the Figures 1 and 3. It was 
obtained that the value of order parameter wasw=0.65 for 

01.0=η  while it wasw=0.22 for 3.0=η . 
 

 

Fig. 4  Segregation of the particles.  L=100, t =10000, Nb =10000, N0 = 
26, r =1, R0,  = v0=1, 1 0 1 0 6, . , .o tγ η= ∆ = =   

By increasing the noise to 0.6, system showed that 
particles scatter at larger scale (see Figure 4). There was 
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more cluster formation. By applying higher noise the 
system exhibited an interesting behaviour as the collective 
motion reachedto w = 0.77, which was higher than the 
result of the previous two noise values. This higher value is 
attributed to the random distribution of the obstacles.  This 
is contradictory to the fact when particles move in the 
homogeneous medium where increasing  noise results inthe 
decline of the  collective motion of the particles [6]. It is in 
good agreement with the results obtained in Ref. [5]. 

3.1 Effect of parameters 

The model that has been introduced in this work has some 
parameters which are described in the Table 1. In this 
study we have investigated the effect of three parameters 
on the collective motion of the self-propelled particles. 
These three parameters are the interaction radius r , speed 
of the particles ov and noiseη . Table 2 shows the values of 
the parameters that were used in the simulation. 

Table 2: Parameters values used in the calculation 
Parameter Value 

L  40 

bN  1000 

oN  20 

t  2000 
η  0  

oR  1 

r  1 

ov  1 

oγ  10 

t∆  0.1 

3.1.1 Effect of the Interaction radius 

The interaction radius is the distance at which particles 
contact with each other. Each particle in the system had the 
same interaction radius. The larger value of the interaction 
radius encouraged the collective motion in the system. In 
Figure 5 the collective motion as a function of interaction 
radius is plotted for the system where obstacle density was 

0=oρ  (circles)and 0125.0=oρ  (triangles). 

 

Fig. 5  Collective motion as a function of the interaction radius r. 

The interaction radiuswas varied from 0 to 10 with an 
interval of 0.5. It was observed that particles show higher 
coordination with each other when radius increases. This 
coordination among particles made the system 
stable.For 0=oρ , it can be clearly seen that at the value 

of r  equal to zero, the system is completely in disordered 
state, there was no emergence of the collective motion of 
the particles in the system. Increasing the radius of the 
particles makes the system more stable, because particles 
move collectively with proper coordination without any 
hindrance.From 2=r , order parameter had gained a very 
consistent value which was equal to 0.99. This value was 
the evidence of the stable system.  When there was a 
presence of obstacles in the system, at ,0125.0=oρ the 
collective motion was smaller than the previous case 
of 0=oρ . Despite of the obstacle’s existence, particles 
showed collective motion andit never went to zero. 
Fluctuation of the collective motion as a function of 
interaction radius was due to the number of the particles 
used in the calculation was not so large. We believe that if 
we increase the number of particles in the system, 
fluctuation will occur at smaller scale. 

3.1.2 Effect of the speed 

In the model each particle carried a constant speed. Speed 
parameter has a significant effect on the collective 
behaviour of the particles. At zero speed, particles come 
into the static positon and there is no any movement in the 
system. The Figure 6 demonstrates the collective motion as 
a function of speed for obstacle density 0=oρ  (circles) 

and ,0125.0=oρ  (triangles). 
 



IJCSNS International Journal of Computer Science and Network Security, VOL.18 No.11, November 2018 114 

 

Figure 6:Collective motion as a function of the speed for obstacle density, 

for 0=oρ and 0125.0=oρ  (20 obstacles). 

In the Figure 6, for 0=oρ  (circles) line demonstrates the 
results for zero obstacle density. Particles moved faster 
when higher value of speed parameter was provided. At 
initial values of ov , system showed some fluctuations, 

from 3=ov collective motion had consistent value which 
remained near to 1. It can be clearly seen that by increasing 
the speed parameter the system showed long range order, 
particles gained more coordination quickly, as a result the 
system became stable.  There was no any hindrance in the 
movement of the particles because there was no any 
obstacle present in the system. In the absence of noise and 
obstacles, particles moved freely and they show ordered 
phase. In the case of order parameter,w, 
showed a non-monotonic behaviour because there 
appeared large fluctuations in the system. This happened 
because obstacles were randomly distributed in the system. 
Collective motion of the self-propelled particles was 
hugely distributed and the system was completely in a 
disordered state. 

3.1.3 Effect of noise 

Noise effect wasinvestigated for both homogeneous and 
heterogeneous systems. Order parameter, w is plotted 
against noise values in the homogeneous medium where 
obstacle density is 0=oρ  and in heterogeneous medium 

where obstacle density is 0125.0=oρ . Noise value was 

chosen from the range [ ]ππ ,− , by using uniform 
probability distribution. 
 

 

 

Figure 7:Collective motion as a function of the noise for two values of 

obstacle density,
 

0=oρ and 0125.0=oρ . 

The Figure 7 demonstrates the effect of the noise on the 
collective motion of the self-propelled particels.Noise 
amplitude had been varied from the 0 to 1 with an interval 
length of 0.04. In the first case where 0=oρ  (circles line) 
we see there appears huge randomness in the system. Order 
parameter reached to zero when higher value of noise was 
appiled. From the above result we see that at lower nosie 
values, system is in a state of order because collective 
motion has value near to 1. When the noise was increased, 
the system started to showthe disordered phase.This  can 
be clearly seen that when the noise is from 0.48 to 1,  
system showed collective motion approaches to zero. 
In the case of 0125.0=oρ  (triangle line), it can be 
clearly seen that at the noise value 0.16, order parameter 
wreached to the maximum. At the starting value of the 
noise such as 0=η   collective motion had smaller value 
than at 16.0=η . Due to the random distribution of the 
obstacles, there existed an optimal noise which maximised 
the collective motion of the self-propelled particles. Such 
type of behaviour does not exist in the homogeneous 
medium. It was also observed that with the increase of the 
noise, there was decrease in order parameter. System was 
completely in the state of disorder when noise is larger 
than 0.4. 

4. Conclusions 

Collective behaviour of self-propelled particles was 
investigated for both heterogeneous and homogeneous 
medium. We investigated the effects of the interaction 
radius, speed and noise on the collective motion of the 
self-propelled particles. It was shown that in the 
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homogeneous medium the order parameter gains larger 
values when the interaction radius and speed are increased, 
whereas in the case of noise we found that noise has 
caused fluctuations in the order parameter. In the case of 
heterogeneous medium large fluctuations take place when 
the interaction radius of the particles is small.By 
increasingthe interaction radius the fluctuation is getting 
smaller. Furthermore, in heterogeneous medium, the 
variation of noisecausesthe collective motion to behave in 
a non-monotonic manner. This is because of the randomly 
distribution of the obstacles in the system. It is observed 
that the collective motion is always less in the case of the 
presence of obstacles. It is also observed that there exists 
an optimal noise which maximises the collective motion of 
the self-propelled particles. At noise =0.16, the order 
parameter has reached its maximum value.  

Acknowledgement 

Authors would like to thanks the Department of 
Mathematics, Shah Abdul Latif University, Khairpur, 
Pakistan and School of Physical Sciences and Computing, 
University of Central Lancashire, Preston, United 
Kingdom for providing the opportunity to carry out this 
research work and computing facility. 
 
References 
[1]  B. R. Fajen, "Guiding locomotion in complex, dynamic 

environments," Front. Behav. Neurosci., vol. 7, pp. 85, 2013. 
[2] T. Frank, T. Gifford and S. Chiangga, "Minimalistic model 

for navigation of mobile robots around obstacles based on 
complex-number calculus and inspired by human navigation 
behavior," Math. Comput. Simul.,vol. 97, pp. 108-122, 
2014. 

[3] C. Kuo, H. Chou, S. Chi and Y. Lien, “Vision-based 
obstacle navigation with autonomous humanoid robots for 
structured competition problems” "International Journal of 
Humanoid Robotics, vol. 10, 2013. 

[4] G. Csaba and Z. Vamossy, "Fuzzy based obstacle avoidance 
for mobil robots with kinect sensor," in Logistics and 
Industrial Informatics (LINDI), 2012 4th IEEE International 
Symposium on, 2012, pp. 135-144. 

[5] O. Chepizhko, E. G. Altmann and F. Peruani, "Optimal 
noise maximizes collective motion in heterogeneous 
media," Phys. Rev. Lett., vol. 110, pp. 238101, 2013. 

[6] T. Vicsek and A. Zafeiris, "Collective motion," Physics 
Reports, vol. 517, pp. 71-140, 2012. 

[7] S. Croft, R. Budgey, J. W. Pitchford and A. J. Wood, "The 
influence of group size and social interactions on collision 
risk with obstacles," Ecological Complexity, vol. 16, pp. 77-
82, 2013. 

[8] N. A. Mecholsky, E. Ott and T. M. Antonsen Jr, "Obstacle 
and predator avoidance in a model for flocking," Physica 
D, vol. 239, pp. 988-996, 2010. 

[9] O. Chepizhko and F. Peruani, "Diffusion, subdiffusion, and 
trapping of active particles in heterogeneous media," Phys. 
Rev. Lett., vol. 111, pp. 160604, 2013. 

[10] T. Vicsek, A. Czirók, E. Ben-Jacob, I. Cohen and O. 
Shochet, "Novel type of phase transition in a system of self-
driven particles," Phys. Rev. Lett., vol. 75, pp. 1226, 1995. 

 
ISRAR AHMED 
PhD Applied Mathematics  
University of Central Lancashire, Preston, 
United Kingdom 
Research interest  
Numerical solutions of PDE's 
Mathematical Modelling  of soft and active 
matters, Number Theory and Geometry 
Computational Mathematics  

Current position.  
Assistant Professor Department of Mathematics Shah Abdul 
Latif University Khairpur 
 

Inayatullah Soomro 
PhD Applied Mathematics  
University of Central Lancashire, Preston, 
United Kingdom 
Research interest  
Numerical solutions of PDE's 
Mathematical Modelling  
Computational Mathematics  
Current position.  

Assistant Professor Department of Mathematics Shah Abdul 
Latif University Khairpur 
 

SYED BAQER SHAH 
PhD Applied Mathematics  
Shah Abdul Latif University Khairpur  
Research interest  
Numerical solutions of PDE's 
Mathematical Modelling  
Computational Fluid  
Current Position 
Associate Professor, 

Department of Mathematics 
Shah Abdul Latif University Khairpur 
 

HISAMUDDIN SHAIKH 
PhD Applied Mathematics  
Shah Abdul Latif University Khairpur  
Research interest  
Numerical solutions of PDE's 
Mathematical Modelling  
Computational Fluid  
Current Position 
Associate Professor, 

Chairman, Department of Mathematics 
Shah Abdul Latif University Khairpur 


