
IJCSNS International Journal of Computer Science and Network Security, VOL.18 No.11, November 2018

136

Manuscript received November 5, 2018
Manuscript revised November 20, 2018

DTMNP: Developing A Turing Machine Against for NP issues

Muhammad Aamir Panwar1, Sijjad Ali khuhro2, Tehseen Mazhar3, Salahuddin Saddar4, Zulfiqar Ali5

1School of Electronic Engineering Beijing University of Posts and Telecommunications, Beijing, China
2School of Computer Science and Technology University of Science and Technology of China, Hefei, Anhui, China.

3Department of Computer Science Virtual University of Pakistan.
4Department of Software Engineering Mehran University of Engineering and Technology, Jamshoro, Pakistan

5Dawood University of Engineering and Technology, Karachi, Pakistan

Abstract
A basic question that is unsolved in theoretical issues of computer
science is NP problems. These problems are interlinked with P
issues. In our paper we search for developing a Turing machine
that can execute an algorithm for these deep complex issues.
Although it is a bit hardware related solutions .our paper we focus
on developing an analogy that can describe non-deterministic
solutions. An aim to discuss possibilities of analogical
transformation for a complex, powerful machine with solid state
properties.
Keywords:
NP; Graph Representation; Nodes; a Box model.

1. Introduction

A problem in literature is TSP to understand NP issues
better [1] [3]. It is a good initiative to describe applications
of the automaton. Now we will discuss a variant of TSP[2].
Actually, when a sale man goes to various cities in the
different sequence, we find that the cost of computation
changes from city to city with the passage of time and
adopted travel route. The ease of transposition we need to
pay various amounts. It is possible that the higher authority
of the transportation facility may vary their service plan. Let
a TSP be expressed by a graph. Moreover, the prices are
changing with time. If a sale man wants to move from the

city 𝑎𝑎 to the city b within 𝑡𝑡 time span than after 𝑡𝑡 period
the varying cost of the edge would be constant. Its mean
decision is on how to move from 𝑎𝑎 to 𝑏𝑏. And the sales man
would take decision resulting the routing path would be
ultimate an solution at last.

Fig.1 An invariant of TSP graph representation.

2. Graph-based representation of tsp

TSP is an example of NP issue that is taken as a problem to
describe its corresponding Turing machine. If we represent
a TSP using graph. Nodes are represented in tree format and
leaves increase in exponential order. If every path is
checked than complexity is also in exponential order. An
interesting case about tree base representation is that if we
merge leaf node and reverse the graph, it shows the same
resulting tree.

Fig. 2 Graph-Based Representation of TSP decision levels.

IJCSNS International Journal of Computer Science and Network Security, VOL.18 No.11, November 2018 137

Fig. 3 Complexity increases as the leaves increases in exponential order
Graph return to the starting point after reversing at 𝑘𝑘

Fig. 4 every level decision depends upon its previous level decision

3. proposed scheme

Let kd describes the decision at level 𝑘𝑘 than optimum
decision should cost minimum. Every level depends upon
its next level decision. As decisions are taken at every level
to decide rote to take. Therefore every decision is dependent

on xt decisions. For example 1d depends upon

2 2 1, ... nd d d − .

1 2D D←

2 1,n nD D− −

D Depend on 2 3 1, ... nD D D −

3 2 3{ , }n n nD D D− − −←

If for same decision and choice level remain sthe ame.

Fig. 5 Decision levels are infinite, interlinked with each other; flexibly
they can be taken in bottom up or top down orders.

This shows that decision in reverse order can also be
described, using same physically space and time complexity.
It is not possible that this solution will be valid for every
situation. The decision about every level in some specific
algorithm can be ordered or in order.

Fig. 6 Level of decision set, interlinked with each other, either in the top
to bottom fashion, or bottom up. Every situation can be shown in either
top down or bottom up. Both these two need a bit change it until level.

IJCSNS International Journal of Computer Science and Network Security, VOL.18 No.11, November 2018 138

A. Box model representation

Another representation for TSP can be box model
representation. The box model is a simple box structure
placed in a container. Container represents the level and box
represent node at that level. For example level one is
represented at outermost box and box at level two contains

a box of level three. This represents that k level boxes
have random cost to open them concerning them. If

1k n= − we cannot get any box. The smallest box
represents the minimal cost. The level of this model start

from level 1 up to level 2n − .every inner level box shows

the total cost of outer level, for example box at level 2n −
shows the cost of level n and level 1n − .the decision at
level is equal to decision at any level in time t. This show
that we cannot take any decision in time t-1.therefore

optimal solution cannot be taken before time 1t − .

Fig. 7 showing cost through boxes, equivalent computer memory
representation using arrays, * box showing decisions array, cost array.

4. issues and challenges

There can be many algorithms to solve that problem. Our
issue is to find an algorithm that takes optimal
discussion .Algorithm decision is optimal if its cost is
similar at every level. Cost is one if algorithm ignores are
does not check decision at that level. Box model represent
a leaf node as small container with two empty boxes.
Opening this boxes cost vary randomly along with time.
Algorithm should choice minimum cost and should be able
to compare costs of opening boxes.
This kind of Turing machine is not possible. Therefore a
Turing machine should be checked all costs. This is same
as checking all paths in tree. Mathematically it is caller
permutation .If we check all possible path it shows

algorithm is growing expentionaly. This problem shows

output of expression if 1M and 2M are unknown.

Fig. 8 Equivalent memory architecture to handle non-determinism.

5. proposed architecture of tm

Consider a memory with 1 2, km m m together physical

memory addresses 1 2, ... kp p p as its property. This
property can be state machine. This property generates
single stimuli depending on data. Along with change in
magnitude is current position of a memory cell stimuli is
strength or weakened. Magnitude of stimuli causes’
memory to find that memory location that is generated it.

Fig.9 data uploading to 1M , memory machine, during this phase, M

hold address of 1M .

IJCSNS International Journal of Computer Science and Network Security, VOL.18 No.11, November 2018 139

Fig. 10 M restores memory address of address that generates larger
signal, containing larger data value.

A. Sorting in non-determinism

A non-deterministic data array can be sorted automatically
following liquid analogy for computing machines [4]. We
can take an example. Consider number of cups having water
placed at a burner. Assume each cup is receiving equal heat.

Boils Law Says: pv nrt= . This shows that p is

proportional to
i
v if other are constant. Therefore non-

deterministic cups order can be sorting by getting a cup
number and then removing that cup from list and adding to
new list. We can sort these cups using their volume, because
volume is relationally proportional to pressure. Similarly
non deterministic data array can be sorted using one
property at least given if that property is relationally
proportional to the given data array. [5]

Fig.11 An example of non-uniform non deterministic ordering.

B. A Congitive machine

A powerful cognitive machine can be visioned using solid
state memory and performing following algorithm listed
below.
1: Load data in memory randomly
2: place each value in any cell…
3: Activate physical layer
4: Send a sequential response to cup.
5: Let the CPU ACK it and listed it in cache.
6: Physical layer generated next sequence after receiving
ACK
7: Physical layer send null at the end
8: CPU performed sorting and placing data in cache until it
receive null.
9: Deactivate physical layer at null.

Fig. 12 machine architecture to support proposed algorithm.

6. conclusion

This paper try’s to find a base for a powerful memory model
reducing computational overhead to solve non deterministic
issues. A high level abstraction to hardware level
implemented is discussed to cope-up with non-determinism.
Quantum and cognitive computing is based on new
technology finding on new ways of developing computing
devices. Solid state can be made powerful if they can
transform parallelism naturally. This can we can solve non
deterministing issue as an inherent property of solid state
devices for upcoming quantum computing and neon
technology.

Acknowledgment

This research work has been carried out in state key
laboratory intelligent communication, Navigation and
micro-Nano system, Beijing University of posts and
communications. The research work is financial supported
by national high technology 863 program of china
(No.2015AA124103) and national key R&D program no
2016YFB05502001.The authors are thankful to the

IJCSNS International Journal of Computer Science and Network Security, VOL.18 No.11, November 2018 140

financial support and acknowledgment guidance and
support provided by state key laboratory intelligent
communication, Navigation and Micro-Nano System,
BUPT.

References
[1] Applegate, D. L., Bixby, R. M., Chvátal, V., & Cook, W. J. The

Traveling Salesman Problem (2006). ISBN 0-691-12993-2.
[2] Gutin, G., & Punnen, A. P. (Eds.). (2006). The traveling salesman

problem and its variations (Vol. 12). Springer Science & Business
Media.

[3] Fortnow, L. (2009). The status of the P versus NP
problem. Communications of the ACM, 52(9), 78-86.

[4] Natschläger, T., Maass, W., & Markram, H. (2002). The" liquid
computer": A novel strategy for real-time computing on time
series. Special issue on Foundations of Information Processing of
TELEMATIK, 8(LNMC-ARTICLE-2002-005),39-43.

[5] van Leeuwen, Jan, and Jiri Wiedermann. "Question-answering and
cognitive automata with background intelligence." Technical Report
Series UU-CS-2016-007 (2016).

