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Abstract 
This paper presents a hybrid genetic algorithm to solve the 
minimum latency problem (MLP). The problem is a variation of 
the well-known travelling salesman problem (TSP) in which sum 
of arrival times at the nodes is minimized. The problem arises in 
many real-life applications such as logistics for relief supply, 
scheduling and data retrieval in computer networks. The 
computational results on TSPLIB instances show the efficiency 
of our proposed algorithm. Finally, a comparative study is carried 
out against an existing state-of-art algorithm to establish the 
goodness of our algorithm. The study shows the effectiveness of 
our proposed hybrid algorithm. 
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1. Introduction 

The minimum latency problem (MLP) was introduced in 
1967 [1] that can be defined as follows. Let G = (V, A) be 
a complete directed graph, where V = {1, 2, …, n} is the 
set of nodes in the network (graph) and A = {(i, j): i, j ϵ V, 
i≠j} is the set of arcs with corresponding travel time t(i, j). 
Node 1represents the depot while other nodes represent 
customers. The problem seeks a Hamiltonian circuit that 
minimizes , l(i) represents the latency of a node i 
ϵ V, that is, the total time to visit i. Two versions of the 
problem are considered in the literature – one finding a 
Hamiltonian path starting from the depot node and another 
finding a Hamiltonian circuit starting from and ending at 
the depot node. We consider the later one that the circuit 
must start and end at the depot. 
The problem is a variation of the well-known traveling 
salesman problem (TSP), is also known as delivery man 
problem [2], cumulative TSP [3] and school bus driver 
problem [4], traveling repairman problem [5] in which a 
repairman is supposed to visit the nodes of a network in a 
way to minimize the overall waiting times of the customers 
located in the nodes. The problem has many real-life 
applications - one of them is a home delivery of pizzas [2]. 
In this application, several delivery orders are clustered, 
and someone hopes to minimize the delivery time. Other 
applications include in the computer networks where 
someone hopes to find information stored somewhere in 
the networks [6], single-machine scheduling problem with 

sequence-dependent processing times that aims to 
minimize the total flow time of the tasks [1]. 
Despite the clear similarities to the usual TSP, the MLP 
seems to be much less researched [7]. The differences 
between these problems is that in the MLP the objective is 
to minimize the total latency time of all the customers, 
while in the usual TSP the objective is to minimize the 
total travel time of a single salesman. The MLP is more 
complex because it includes complex objective instead of a 
single travel time objective, as in the original TSP. The 
problem was proved to be NP-hard for general metric 
spaces [8]. For the weighted graph G with six nodes, 
represented by time matrix Tin Table 1, the optimal 
solution for the TSP is 81 =(9+10+17+21+12+12) with 
optimal tour {1→5→6→3→4→2→1}, whereas the MLP 
solution is 259 = (9 + (9+10) + (9+10+12) + 
(9+10+12+19) + (9+10+12+19+17) + 
(9+10+12+19+17+16)) = (9*6 + 10*5 + 12*4 + 19*3 + 
17*2 + 16*1) with optimal tour {1→5→4→2→3→6→1}. 

Table 1: Time matrix T 
 1 2 3 4 5 6 

1 9999 12 39 42 9 16 
2 12 9999 19 12 32 15 
3 39 19 9999 21 45 17 
4 42 12 21 9999 10 16 
5 9 32 45 10 9999 10 
6 16 15 17 16 10 9999 

 
Various exact and heuristic algorithms are found to solve 
this problem. Since, the problem is NP-hard, it is very 
difficult to solve optimally, and in fact, to date no optimal 
algorithm has been found that can solve the problem in 
polynomial time. So, heuristic algorithms have been used 
to solve the problem. Out of heuristics, genetic algorithms 
(GAs) are successfully implemented to such kind of 
combinatorial optimization problems [9]. 
We are going to use GA for obtaining heuristically optimal 
solution to the problem. Selection, crossover and mutation 
are three basic operators in GA, of which crossover is the 
most important operator. So, numerous crossover operators 
have been developed for solving various optimization 
problems.  In this paper, we use the sequential constructive 
crossover (SCX) [10] operator for the problem. Then a GA 
based on SCX is developed for solving the problem, which 
is then compared with GA using generalized n-point 
crossover (GNX) for some benchmark instances reported 
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in TSPLIB website. Experimental results show that SCX 
operator is better than GNX. Then our GA is hybridized by 
incorporating with a local search and an immigration 
algorithm to enhance the solution quality, and finally a 
comparative study is carried out of our hybrid algorithm 
against a state-of-art heuristic algorithm [11]. 
This paper is organized as follows: Section 2 presents a 
literature review, while Section 3 describes our proposed 
hybrid genetic algorithm for the MLP. Computational 
results are presented in Section 4. Finally, Section 5 
presents discussion and concluding remarks. 

2. Literature review 

Various exact and heuristic algorithms are developed to 
solve the MLP in the literature. Still, exact algorithms are 
very limited to small sized problem instances, while few 
competent heuristic algorithms are developed. 
Lucena [12] developed an exact enumerative algorithm 
that depends on a non-linear integer formulation where 
lower bounds are calculated using a Lagrangian relaxation. 
Bianco [3] developed two exact algorithms which 
incorporate lower bounds using a Lagrangian relaxation. 
Fischetti et al. [2] developed an enumerative algorithm that 
uses lower bounds using a linear integer programming 
formulation. Méndez-Díaz et al. [13] proposed Mixed 
Integer Programming (MIP) formulations that also 
introduced various valid inequalities which are evaluated 
using a branch-and-cut algorithm. Bigras et al. [14] 
proposed some integer programming formulations along 
with a branch-and-bound algorithm. Ezzine et al. [15] 
developed two integer programming formulations for the 
problem. Abeledo et al. [16-17] proposed branch-cut-and-
price algorithm, which solves the problem instances of size 
up to 107. 
The first approximation algorithm was proposed by Blum 
et al. [18] with an approximation factor of 144. Chaudhuri 
et al. [4] proposed an approximation algorithm with the 
smallest approximation factor of 3.59 for general metric 
spaces. Archer and Blasiak [19] proposed an algorithm 
that obtained the smallest approximation factor of 3.03 for 
an edge-weighted tree. 
Very few metaheuristic algorithms are available in the 
literature for the MLP. Dewilde et al. [20] developed a 
tabu search (TS) for the MLP with profits. Ngueveu et al. 
[21] developed a memetic algorithm that produces high 
quality solutions on the some MLP benchmark instances. 
Salehipour et al. [11] developed a heuristic algorithm 
based on greedy randomized adaptive search procedure 
(GRASP) along with variable neighborhood descent 
(VND) and variable neighborhood search (VNS) 
procedures and reported the computational results on some 
benchmark instances. 

3. Our proposed hybrid genetic algorithm 

In GAs, first solutions are encoded as feasible 
chromosomes (or individuals) such that the genetic 
operators result in feasible chromosomes. A simple GA 
begins by generating set of chromosomes (initial 
population), and then goes through some genetic operators 
to create new, and possibly, better populations as following 
generations. 
We consider the order representation for a chromosome 
that lists the label of nodes. Assume a solution v = (v1, v2, 
…, vn) with v1 being the first and last node in the solution. 
The total latency for this solution can be calculated as 
follows, which is our objective function that aims to be 
minimized. 

 
 
Note that nodes vn+1≡v1 and t(vi, vi+1) is the travel time 
between nodes vi and vi+1. With respect to the time matrix 
in Table 1, value of the tour a tour 
{1→5→4→2→3→6→1}, represented as (1, 5, 4, 2, 3, 6), 
is 259.The fitness function is the inverse of the objective 
function for our problem. We first generate randomly an 
initial population of defined population size, apply 
stochastic remainder selection [22] and then apply 
following methods for our hybrid GA. 

3.1 Sequential constructive crossover operator 

Crossover is the most important operator in GAs in which 
one (or two) offspring chromosome(s) is (are) produced by 
applying to pair of selected parent chromosomes. There are 
several crossover operators for the TSP which also can be 
applied to the MLP. However, we are going to use the 
sequential constructive crossover [10] (SCX) which has 
been successfully applied to usual TSP and its some 
variations [23-26]. Efficiency of the SCX will be 
compared with generalized n-point crossover (GNX). Our 
SCX operator for the MLP is as follows: 
Step 1: Start from 'node 1’ (i.e., current node p =1). 
Step 2: Sequentially search both the parent chromosomes 

and consider the first ‘legitimate node' appeared 
after 'node p’ in each parent. If no 'legitimate 
node' after 'node p’ is present in any of the 
parent, search sequentially from the beginning of 
the chromosome and consider the first 'legitimate 
node', and go to Step 3. 

Step 3: Suppose the 'node α' and the 'node β' are found in 
1st and 2nd parent respectively, then for selecting 
the next node go to Step 4. 

Step 4: If t(p, α)<t(p, β), then select 'node α', otherwise, 
'node β' as the next node and concatenate it to 
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the partially constructed offspring chromosome. 
If the offspring is a complete chromosome, then 
stop, otherwise, rename the present node as 'node 
p' and go to Step 2. 

 
Let a pair of selected parent chromosomes be P: (1, 5, 3, 6, 
4, 2) and Q: (1, 6, 2, 4, 3, 5) with values 431 and 381 
respectively using Table 1. Using the SCX we get 
offspring chromosome, O, as (1, 5, 6, 2, 4, 3) with value 
263 = (6*6 + 10*5 + 15*4 + 12*3 + 21*2 + 39*1), which 
is less than both parents. 

3.2 Adaptive Mutation Operator 

Mutation is an operator that randomly changes some genes 
in the chromosomes. We consider adaptive mutation [27] 
with mutation probability (Pm) where data from all 
chromosomes in the current population is collected to 
detect a pattern among them. If the mutation takes place, 
then chromosomes that do not resemble the pattern will be 
muted. This operator is proposed for the quadratic 
assignment problem and found very good results. The 
algorithm for our problem can be described as follows: 
Step 1: Consider all chromosomes in the current 

population. 
Step 2: Create a one-dimensional array of size n (size of 

the problem), suppose, A, by storing a location 
(gene) that appears minimum number of times in 
the current position of all chromosomes. 

Step 3: If mutation is allowed, select randomly two genes 
such that they are not same in the corresponding 
positions of the array, A, and swap them. 

 
Generally, the mutation probability is set very low, 
whereas the crossover probability is set very high. A 
simple GA repeatedly applies (possibly) three operators, 
namely, selection, crossover and mutation, till either the 
population converges or till reaches the maximum number 
of generations (iterations). A simple GA which 
incorporates local search is called hybrid GA (HGA). We 
are considering following local search method for our 
HGA. 

3.3 Local search 

We consider a local search method which is a combined 
mutation operation [23] that combines three mutation 
operators – insertion, inversion and reciprocal exchange, 
with cent percentage of probabilities. Suppose P[1], P[2], 
…, P[n] be a chromosome, then the local search algorithm 
is as follows: 
Step 1: For i: = 1 to n-2 do the following steps. 
Step 2: For j: = i+1 to n-1 do the following steps. 

Step 3: If inserting node P[i] after node P[j] reduces the 
present tour value, then insert the node P[i] after 
the node P[j]. In any case go to step 4. 

Step 4: If inverting substring between the nodes P[i] and 
P[j] reduces the present tour value, then invert 
the substring. In any case go to step 5. 

Step 5: If swapping the nodes P[i] and P[j] reduces the 
present tour value, then swap them. 

3.4 Immigration 

To improve competency of GAs, the population must be 
diversified. For this purpose, an immigration method is 
implemented, where some new chromosomes are inserted 
to the population after some generations. In this work, 20% 
of the population is replaced in random places using 
sequential constructive sampling [23-25] for next 
generation. 
Our hybrid genetic algorithm (HGA) may be summarized 
as in Figure 1. The next section presents computational 
experience for our HGA for the MLP and shows efficiency 
of the algorithm as against two existing heuristic 
algorithms on TSPLIB instances [28]. 

3.5 Lower bound 

To measure the quality of the solution, Salehipour et al. 
[11] used a lower bound for the problem which is a variant 
of the minimum spanning tree (MST). It is computed by 
sorting the edges of the MST of the graph in order of 
increasing weight and multiplying each edge with a factor 
like the edges of the MLP solution. Since our problem is to 
find a circuit rather than a path, hence we consider the last 
edge twice; by that number of edges will be n, as many 
number of nodes in the network. Then the smallest edge is 
multiplied by n, the second-smallest by n − 1, so on and 
the largest edge is multiplied with a factor 1. For finding 
MST we use the well-known Kruskal’s algorithm. Using 
the Table 1, MST will be having the edges bearing their 
weights in ascending order as 9, 10, 10, 12, 17. For our 
problem, 17 will be considered twice. So, the lower bound 
is 
LB = 9*6 + 10*5 + 10*4 + 12*3 + 17*2 + 17*1 = 231. 

4. Computational results 

For comparing the effectiveness of the crossover operators, 
simple GAs using GNX (GA-GNX) and SCX (GA-SCX) 
have been encoded in Visual C++ and run on a Laptop 
with Intel(R) Core(TM) i3-3217 with CPU @ 1.80GHz 
and 4.00GB RAM under MS Windows 7. In the 
experiments, some benchmark instances from TSPLIB 
were used. The experiments were performed twenty times 
for each instance. Population size, crossover probability, 
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mutation probability, and termination criterion are the 
parameters of GAs. We set 1.0 (i.e., 100%) as crossover 
probability to have a clear picture of crossover operators, 

0.02 (i.e., 2%) as mutation probability, 50 as population 
size, and 20000 generations for simple GAs and 500 for 
HGA as a termination criterion. 

 

Fig. 1  Flow-chart of our hybrid genetic algorithm. 

Table 2 shows comparative study of the simple GAs using 
two crossover operators (i.e., GA-GNX and GA-SCX) for 
the twelve asymmetric TSPLIB instances from ftv33 to 
ftv70. The solution quality is measured by the percentage 
of gap (%) of the obtained solution (SOL) to the lower 
bound (LB), which is computed by the formula: Gap (%) = 
100*(SOL-LB)/SOL. So, we report gap (%) of best 
solution and average solution to the LB of 20 runs. In 
terms of solution quality, GA-SCX outperforms GA-GNX.  
This can be seen clearly in the Figure 2. 

Table 2: Summary of the results by the crossover operators for some 
asymmetric benchmark TSPLIB instances 

Instance LB 
GA-GNX GA-SCX 

Best Sol 
Gap (%) 

Avg Sol 
Gap (%)  

Best Sol 
Gap (%) 

Avg Sol 
Gap (%) 

ftv33 11922 49.62 53.32  39.87 41.63 
ftv35 13679 49.45 51.03  40.03 42.43 
ftv38 15891 47.14 51.67  39.42 40.27 
p43 2402 79.92 80.58  79.03 79.03 

ftv44 19336 45.76 53.42  41.46 42.51 
ftv47 20813 53.51 56.20  44.83 45.81 
ry48p 228801 35.15 37.74  25.85 27.29 
ft53 63112 65.70 69.41  60.41 62.30 

ftv55 23282 56.46 58.67  41.79 42.77 
ftv64 29825 59.48 61.99  43.06 44.96 
ft70 1007952 27.16 27.91  22.08 22.97 

ftv70 35036 59.63 61.86  44.12 45.11 
Average  52.42 55.32  43.50 44.76 

 

 
Fig. 2  Percentage of solution gap by the GA using two crossover 

operators for some benchmark instances 

The solution quality of our proposed GA (i.e., GA-SCX) is 
enhanced by hybridizing with a local search and an 
immigration method. Table 3 shows the result of our HGA 
on the above problem instances. Since, to our knowledge, 
no any literature provides solution for the above instances, 
hence we cannot judge the quality of the obtained solutions. 
However, in terms of the percentage of average gap to the 
lower bound, it is seen that HGA could find very good 
solutions, if not optimal, to the tested asymmetric problem 
instances. 
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Table 3. Summary of the results by our HGA for some asymmetric 
instances 

Instance LB BestSol Gap (%) AvgSol Gap (%) 
ftv33 11922 19387 38.51 19387.00 38.51 
ftv35 13679 22811 40.03 22811.00 40.03 
ftv38 15891 25498 37.68 25498.00 37.68 
p43 2402 11452 79.03 11452.00 79.03 

ftv44 19336 32039 39.65 32691.30 41.68 
ftv47 20813 35984 42.16 36013.76 42.24 
ry48p 228801 299144 23.51 299323.60 23.57 
ft53 63112 152818 58.70 156599.20 61.18 

ftv55 23282 37673 38.20 38735.95 41.02 
ftv64 29825 50001 40.35 51536.85 43.42 
ft70 1007952 1277970 21.13 1294149.60 22.39 

ftv70 35036 60741 42.32 62131.60 44.61 
ftv170 151597 220749 31.33 221386.12 31.61 

Average   40.97  42.08 

Table 4. Comparative study between GRASP+ [11] and our HGA 
Instance GRASP+  HGA 

BestSol  BestSol AverageSol 
st70 19553  19215 19323.15 
rat99 56994  54984 56234.20 

kroD100 976830  949594 969899.50 
lin105 585823  585823 591853.15 
pr107 1983475  1980767 1982084.55 
rat195 213371  210191 214022.15 
pr226 7226554  7100308 7198027.00 
lin318 5876537  5560679 5798076.85 
pr439 18567170  17688561 18700275.15 

 
HGA is then compared with an existing state-of-art 
heuristics found in the literature, namely, 
GRASP+VNS/VND [11] (GRASP+) for some symmetric 
TSPLIB instances. Table 4 reports best solution obtained 
using GRASP+ and the best solution and average solution 
on 20 runs by our HGA. In terms of solution quality, it is 
found that best solutions obtained by our HGA are better 
than GRASP+ for eight instances. For the instance lin105, 
both algorithms obtained same solution. Overall our HGA 
is found to be better than GRASP+. 

5. Conclusion and discussion 

In this study, a hybrid genetic algorithm is developed to 
solve minimum latency problem. For that we used the 
sequential constructive crossover (SCX) to propose a 
simple genetic algorithm (GA) for solving the problem 
(MLP). We presented a comparative study between SCX 
and generalized n-point crossover (GNX) for some 
benchmark TSPLIB instances. In terms of quality of the 
solution, SCX is found to be far better than the GNX. Then 
a hybrid GA (HGA) is developed by incorporating a local 
search and an immigration method to our simple GA. Then 
our proposed HGA was used to compare its performance 
with those of GRASP +VNS/VND [11] algorithm as an 
existing state-of-art heuristic found in the literature. The 
computational results reveal that our HGA is found to be 
better than GRASP +VNS/VND for the tested instances. 
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