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Summary 
Convolutional neural networks (CNN) provide an interesting 
model to automatically identify patterns on signals. This study 
presents the end-to-end deep learning derived from time-
frequency representations of EMG signals to identify physical 
activity. End-to-end learning of CNN allows the network to 
automatically learn features from time-frequency representations, 
without requiring the design of hand-crafted expert features. This 
type of learning eliminates the requirement for complex multi-step 
machine learning processing methods. The purpose of this article 
is to present the framework of the end-to-end learning used to 
classify physical activity on EMG signals into normal and 
aggressive classes. This paper proposes the novel approach of 
using the time-frequency representations produced from EMG 
signals as the inputs of the CNN to identify activity patterns. The 
importance of selecting the optimal time-frequency analysis 
method to represent EMG data is investigated. Three 
convolutional neural networks were evaluated for two time-
frequency representations: the spectrogram and the scalogram. 
From the analysis, it can be proven that EMG signal representation 
affects the performance of CNNs. Using the scalogram images to 
train CNNs echived higher accuracy compared to the spectrogram 
images. Simple CNN obtained the highest classification accuracy 
with 94.61%. 
Key words: 
Convolutional neural networks, AlexNet, pre-trained , scalogram, 
spectrogram. 

1. Introduction 

Deep learning is a branch of the artificial neural network.  
Deep learning has a unique hierarchical structure and the 
ability to extract high-level features. Deep learning 
networks have been used widely in a number of applications, 
such as medical [1], [2], industry [3], [4] and financial [5] 
applications. They have demonstrated their ability to deal 
with a variety of data types, medical image diagnoses [6], 
[7], biomedical signal  classifications [1], [8], speech [9], 
[10] and fault diagnoses [3]. The extensive research and 
application of deep learning has motivated future research 
to consider deep learning as the first choice for machine 
learning tools. Despite their different applications, most of 
the studies have shown that deep learning significantly 
outperforms traditional machine learning [2], [6], [7]. 
Furthermore, the most important advantage of using deep 
learning is the ability to extract the optimal features of each 
data set automatically, without the need for an expert 

domain. Therefore, most of the research conducted has 
employed deep learning networks for end-to-end learning 
wherein multi-step machine learning (e.g., feature 
extraction and selection) will be directly implemented by 
deep learning. There is no need for feature engineering. 
In the traditional machine learning tools, classification 
accuracy depends on the optimal data representation or 
features extracted [11], [12]. Feature engineering is the 
procedure of extracting, combining and employing features 
based on human ingenuity and expert knowledge to attain 
at more representative ones [1], [2], [6]. The investigation 
and discovery of the optimal features set for particular 
signals is a more complex task and time-consuming. 
Therefore, researchers have expended great effort in 
designing automatic machine learning tools that are able to 
overcome feature engineering issues. The deep learning 
network has been considered in a number of applications as 
a form of end-to-end learning wherein feature extraction, 
pre-processing and classification are conducted directly 
using the deep learning network. Deep learning applications 
automatically learn discriminant features from images. In 
this paper, an end-to-end learning approach will be 
employed to classify activity patterns from EMG signals via 
time-frequency images. 
Electromyography (EMG) was used in this study in order to 
train CNNs to distinguish activity patterns. In previous 
studies, EMG signals have been used to record the electrical 
activity of muscle cells and for identifying actions [13], 
disease detection [14], [15], and emotion detection [16]. 
The literature on EMG-based activity recognition mainly 
expands on feature engineering, with the aim of identifying 
pattern EMG signals in a discriminative manner [11], [14], 
[15]. In this study, the EMG signals denote aggressive or 
normal activity. 
Two linear time-frequency transformations are utilized on 
EMG signals as image inputs to the CNN architecture: the 
short-time Fourier transform (STFT) spectrogram and the 
wavelet transform (WT) scalogram. These types of images 
are another form of raw signal feature representation. The 
main contribution of this study is to examine the 
performance of different CNN architectures with time-
frequency representation to classify physical activity 
patterns on EMG signals. Two types of time-frequency 
representation were selected according to [17]. They were 
able to provide appropriate outputs for the discovery of 
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complex and high-dimensional representations [17]. They 
were also able to capture the unknown and hidden features 
embedded in signals. A number of experiments will be 
conducted in order to find the optimal configuration 
structure for deep learning. Each experiment will be 
evaluated by computing several performance measurements. 
The rest of the paper is organized as follows. The remainder 
of Section 2 will give a brief introduction of the related 
work. Section 3 presents the end-to-end learning 
methodology for EMG signal classification. In Section 4, 
the methodology is applied to four experiments and the 
experimental results are discussed. Section 5 addresses 
these discussions. Section 6 concludes the paper. 

2. Related Work 

Since deep learning deals efficiently with images, scientists 
have resorted to transforming signals into visual 
representations based on time-frequency representation. 
Time-frequency can disclose characteristic signal patterns. 
It is also a powerful tool for characterizing medical signals 
[1], [18]. Furthermore, it holds more hidden features of 
signals and may offer a better performance in a 
classification tool compared with other feature extraction 
methods. Examples of this approach can be found in recent 
research. Time and frequency representation can be 
generated using three types of representations associated 
with the Fourier transform. The Fourier transform has a 
giant number of variants, relying on a series of properties 
on the data. In the spectrogram image, the different energy 
values represented vary with time and different colors. 
Therefore, researchers use spectrogram images as CNN 
inputs without any feature selection or extraction procedure. 
In [19], spectrogram images were used to train a CNN for 
automatic AF detection. The CNN was trained on 8,528 
ECGs and tested on 3,685 ECGs ranging from 9 to 60 
seconds in length. The researchers proposed a 16-layer 
CNN. The classification accuracy for the CNN was 82%, 
meaning the proposed CNN recognized normal rhythm, AF 
and other rhythms with an accuracy of 90%, 82% and 75%, 
respectively. They concluded that a CNN is able to 
automatically perform ECG signal classification and further, 
can also possibly aid in robust patient diagnosis. 
Other studies have focused on diagnosing sleep disorders, 
such as insomnia, narcolepsy or sleep apnea, using a CNN 
with time-frequency images. For example [20], a time-
frequency domain was generated from EEG signals in order 
to classify sleep stages. Multi-taper spectral estimation was 
used to reduce bias and variance in spectrogram images. 
VGGNet was used with two approaches, first with one 
VGG-FE that used the network as a feature extractor. The 
second approach pertained to VGG-FT. The highest 
accuracy was achieved for VGG-FE with 89%, wherein 
most of the sleep stages were correctly detected, namely 

Slow Wave Sleep (89%) with the Rapid Eye Movement 
(REM) stage (81%), wake stage (78%) and N2 sensitivity 
(75%). However, the N1 stage was incorrectly classified at 
a rate of 44%. 
A similar study was conducted using a CNN for automatic 
sleep-stage scoring based on a single-channel EEG [21]. 
This study used an openly available dataset on 20 healthy 
young adults for evaluation and applied a 20-fold cross 
validation. The CNN was used with stochastic gradient 
descent (SGD) optimization. We achieved the high mean 
F1-score of 81%, whereas overall accuracy regarding the 
sleep stages was 74%. 
In addition, ECG time-frequency images have been 
classified using a CNN. In this study [2], the time-frequency 
image for a heartbeat signal was created by applying a 
modified frequency slice wavelet transform (MFSWT). 
Features were automatically extracted by the stacked 
denoising auto-encoder (SDA) from the time-frequency 
image. A DNN classifier was used to classify the heartbeat. 
The proposed model was evaluated based on the MIT-BIH 
arrhythmia database. The proposed method achieved an 
overall accuracy of 97.5%. The spectrogram image was 
produced from EEG signals in order to identify motor 
impairment neural disorder in a person. Each image was 
passed to train the CNN [22]. The CNN combined with the 
recurrent neural network RNN was employed to estimate 
kinematic information for myoelectric control from the 
channels of EMG signals [23]. The EMG signals were 
converted to the time-frequency domain as inputs to the 
CNN. The experimental results proved that the CNN with 
RNN offered higher accuracy compared with using the 
CNN alone. 
Another study [18] attempted to analyze an EEG via 
spectrogram images by using a CNN. Their motivation was 
to identfy clinical brain death diagnosis. In this paper, a 
deep learning structure named “Caffe” was used to design 
the CNN. The EEG signals were obtained from brain-
damaged patients. The EEG datasets contained 36 patients, 
including 19 coma patients and 17 brain-dead patients. 
Spectrogram images were generated from these signals 
using STFT. And in order to increase the number of images 
created, six channels of the EEG signals were used to create 
spectrogram images. In addition, every window of STFT 
overlapped by 20% with the adjacent windows. 

3. Methods 

In this study, three CNN architectures will be explored and 
evaluated and the influence of some factors, such as the 
learning rate and type of optimization, will be analyzed.  
Furthermore, two types of data representation will be 
evaluated: the spectrogram and scalogram images. In this 
study, CNN transfer learning will be used.  The study 
experiment will be implemented using eight channels that 
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recorded the EMG signals of 10 aggressive and 10 normal 
actions of three men and one woman, which were then 
analyzed to classify the normal and aggressive actions.  
Figure 1 illustrates the main approach of using end-to-end 
learning via two types of time-frequency representations. 
 

 

Fig. 1  The experiment procedure 

3.1 EMG data set 

In this paper, the EMG physical action signals from the 
machine learning repository (UCI) [11] was used. The 
signals were recorded from four subjects (3 men, 1 woman) 
aged 25 to 30 years. Each subject was asked to perform a 
different set of physical exercises. Each subject had to 
perform 10 normal and 10 aggressive activities. The normal 
activities and the aggressive activities are represented in 
Table 1. Eight channels were collected from eight 
electrodes, which corresponded to eight input time series, 
one for each muscle channel (ch1–8): the right bicep (ch1), 
right tricep (ch2), left bicep (ch3), left tricep (ch4), right 
thigh (ch5), right hamstring (ch6), left thigh (ch7), and left 
hamstring (ch8). Each time series contained about 10,000 
samples, which were 10 s in length. 

Table 1: The data set description 
Data sets 

Subject (3 men, 1 woman) 
Electrode 8 channels 

Aggressive 
classes 

10 type of aggressive activity (elbowing, 
front kicking, hammering, headering, 

kneeing, pulling, punching, pushing, side 
kicking, and slapping) 

Normal 
classes 

10 types of normal activity (bowing, 
clapping, handshaking, hugging, jumping, 
running, seating, standing, walking, and 

waving) 
Length of 

EMG signals 10,000 samples 

 
 

 

Fig. 2(a)  EMG Normal Actions 

 

Fig. 2(b)  EMG Aggressive Actions 

As shown in Figure 2, the EMG signals in Figure 2(a) that 
presented normal actions for channel 1 is quite different 
than EMG signals for aggressive actions which is illustrated 
in Figure 2(b). 

3.2 Data preparation 

The experiment procedure is shown in Figure 1. First, the 
raw EMG signals of each subject were downloaded from 
[18]. The EMG data was pre-processed to prepare for 
generating two types of time-frequency representations, 
namely the spectrogram and scalogram images. Since 
recording signals can be affected by a number of noises, 
which will badly impact the signals, filtering signals were 
applied to reduce the noise. First, a first-order 1-Hz low-
pass Butterworth filter was applied as recommended in [10]. 
In order to increase the number of generated images the 
CNN input, each signal was divided into three segments, 
with the 20% that overlapped each part used to produce one 
spectrogram image. In addition, eight channels of the EMG 
signals were used to create spectrogram images. The 
individual differences of each subject were discounted, so 
the images generated from different subjects were taken as 
one class of the dataset. 
Overall, the EMG data was used to create 1,920 
spectrogram or scalogram images, including 960 images 
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generated from normal activity and 960 images generated 
from aggressive activity. In the next section, time-
frequency representation will be highlighted and briefly 
introduced. 

3.2.1 Time-frequency representation 

Time-frequency characterizes a signal in both the time and 
frequency domains. Different types of methods can be used 
to extract time-frequency representations and the most 
popular types are spectrograms and scalograms. A 
spectrogram is a visual time-frequency representation of the 
signal using the STFT, whereas a scalogram uses the WT. 
The main difference between the two methods is that 
spectrograms have a fixed frequency resolution based on 
the window’s size, whereas scalograms have a frequency 
based on frequency resolution. 
In this study, the effectiveness of these two types of time-
frequency representation will be evaluated. These types of 
time-frequency representations will be extracted as 2D 
images and passed into the CNN. 

3.2.1.1. Spectrograms: Short-Time Fourier Transform (STFT) 

Spectrograms are generated using the STFT. They can be 
represented as 2D images where the 𝑥𝑥-axis represents time 
and the 𝑦𝑦-axis represents frequency, and the color scale of 
the image shows the amplitude of the frequency. The STFT 
representation is based on a series of sinusoidal functions. 
The frequency spectrum represented on the spectrogram 
image varies with time. Different colors on the spectrogram 
image show different energy values. 
A spectrogram image holds more unknown features of 
EMG signals and it can achieve a better performance in 
classification tools [11], [23]. In order to create spectrogram 
images from EMG signals, a Matlab function was created 
to compute the STFT. 
 

 

Fig. 3(a)  Spectrogram image for       Fig. 3(b)  Spectrogram image  for               
Normal action                                       Aggressive action 

3.2.1.2. Scalograms: Wavelet Transform (WT) 

Scalograms represent the WT. WTs are extracted based on 
the wavelet instead of sinusoidal functions. The WT is an 
optimal method for non-stationary and transient signals [25]. 
 

 

Fig. 4(a)  Scalograms image for       Fig. 4(b)  Scalograms image for             
Aggressive Action                                 Normal Action 

3.3 Convolutional Neural Network Architectures 

The architecture of a convolutional neural network differs 
from that of a traditional artificial neural network (ANN). 
The CNN involve three main types of layers, namely the 
convolutional layer, pooling layer and fully connected layer 
as been illustrated in Figure 6. Each of these layers is 
represented as a block that contains the number of layers. 
Convolutions and pooling operations are employed on the 
input data with the use of a filter to produce an optimal 
feature map. In the end, these feature maps are put together 
as the final output of the convolution layers. Finally, 
classification is performed in the last fully connected layers 
[9]. 
 

 

Fig. 5(a)  Convlution Networks via scalograms 

 

Fig. 5(b)  Convolution network via spectrogram 

A number of CNNs are discussed in the literature, such as 
AlexNet, VGGNet, GoogLeNet and ResNet. But AlexNet 
are commonly used for end-to-end learning and achieve 
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very good results. For example, AlexNet have also been 
used to recognize cells infected with malaria and achieved 
98.13% and 95.79% accuracy, respectively. Conversely, 
traditional machine learning tools, including support vector 
machine SVMs, obtained a lower accuracy of 91.66% [26]. 
However, these networks are pre-trained networks such as 
ALexNet. They were used to classify 1,000 possible 
categories after training on millions of images to achieve 
low error rates. In this study, this CNNs will not be trained 
from scratch; alternative pretrained CNNs with sufficient 
fine-tuning will be used. Furthermore, another experiment 
will be considered by running a simple CNN to learn from 
the EMG signals. 

3.3.1 Convolutional layers 

The convolutional layer operates on the input data by using 
a convolution algorithm and creating a feature map that 
holds the convolution calculation outputs from the previous 
layers. These layers performed as feature extractors to find 
the high-level features. So, each unit in a convolutional 
layer is organized in the feature maps, whereas each unit is 
attached to local patches in the feature maps of the previous 
layer with a set of weights called a filter bank. These 
weights will be summed up and passed to a non-linearity 
activation function, such as ReLU. However, the whole 
units associated with the feature map share the same filter 
bank. 

3.3.2 Pooling layers 

Though the task of the convolutional layer is to find the 
optimal features that resulted from the previous layer, the 
task of the pooling layer is to combine semantically similar 
features into select the proper feature [17]. A typical 
pooling unit calculates the maximum of a local area of units 
in feature maps. Neighboring pooling units receive input 
from areas that are shifted by more than one row or column, 
so they will reduce the number of the feature and create an 
invariance to small modifications and distortions. Two or 
three stages of convolution, non-linearity and pooling are 
joint, and followed by more convolutional and fully 
connected layers. 

3.3.3 Fully connected layers 

The final fully connected layer is employed to perform 
classification. After the data passes through multiple 
convolutional layers and pooling layers, the size of the 
output feature maps is decreased. For the classification layer, 
every feature map comprises only one neuron and converts 
to one feature vector. The feature vector is fully connected 
with a classifier. Usually, these layers perform as a 
traditional fully connected neural network. 
 
 

3.4 Pretrained network 

The trained CNNs were expansively trained on the large-
scale, well-organized ImageNet. ImageNet is a Large-Scale 
Annotated Natural Image Dataset ImageNet [1] that 
contains more than 1.2 million images classified into 1,000 
object categories. Each class has more than 1,000 images. 
The database is ordered according to the WordNet [55] 
hierarchy. Some examples of object categories in ImageNet 
are “sandwich,” “vase,” “cup” and so forth. ImageNet is 
considered the largest image dataset for visual recognition.  
The aim of employing pretrained CNNs is that they can be 
transferred to efficiently identify EMG activity images 
since they were trained on large-scale images. On the other 
hand, learning CNN architectures (e.g., AlexNet) from 
scratch required tens of millions of free parameters to train, 
and hence a sufficiently large size of labeled images was 
needed, whereas recording large numbers of signals is so 
challenging. Therefore , applying pretrained network was 
recommended by a number of studies [28]–[30], wherein all 
CNN layers except the last are fine-tuned. 
In this study, The pre-trained AlexNet architecture will be 
used. AlexNet was proposed in [27] and won the ImageNet 
Large Scale Visual Recognition Challenge (ILSVRC) in 
2012. This success marked the revolution of the CNN in 
computer vision. The network has 11x11, 5x5 and 3x3 
convolutions, max pooling, dropout, and fully connected 
layers. AlexNet was used to experiment with 25 layers. 

3.5 Simple CNN 

Simple CNN is network that learn from scratch all 
parameters are update according to training set. It contains 
3 convolutionl layers , 3 pooling layers and 2 fully 
connected layer. Each output of convolution layers will be  
normalized by learning the data mean and variance and bass 
it to the next layers. 

3.6 Data augmentation 

Data augmentation is usually used to overcome overfitting 
on CNN and imitate the size data set, whereby the amount 
of training data is increased by using information from the 
original training data. The field of data augmentation has 
been addressed in a number of works. Data augmentation 
was developed by Tanner and Wong to improve simulation 
and make it more reasonable and simple [28], [31]. In the 
CNN build-up, using the number of parameter data 
augmentations plays a vital role in generating enough data 
to attain a satisfactory performance [28]. Previous research 
has confirmed the effectiveness of data augmentation by 
using simple techniques, such as rotating and flipping 
images [28], [32]. In this study, rotating and flipping 
methods have been used to generate extra data sets from the 
original data. 
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4. Experiments 

End-to-end learning approaches were conducted in order to 
automatically solve the classification problem without 
needing multi-step machine learning tools. This section 
describes the experiments carried out to evaluate the two 
types of pre-trained CNNs and one simple CNN to learn 
directly from EMG time-frequency representation. The 
performance of each CNN was estimated using six types of 
evaluation measurements: sensitivity, specificity, accuracy, 
and Precision. The first two quantities were calculated by 
finding the true positives, true negatives, false positives and 
false negatives. True positives were correctly detected as 
aggressive. True negatives were correctly detected as 
normal. False positives and false negatives were the number 
of uncorrected aggressive and normal detections, 
respectively. Table 2 showed the confusion matrix to 
compute the evaluation measurements. 

Table 2: The Confusion Matrix 
 Predicted Positive Predicted Negative 

Actual Positive TP (True Positive) FN (False Negative) 
Actual Negative FN (False Positive) TN (True Negative) 

 
based on the confusion matrix in Table 2, the five 
measurements can be computed as follows: 
 

Sensitivity = TP/(TP+FN)   (1) 
Specificity = TN/(TN+FP)   (2) 
Accuracy = (TP+TN)/(TP+TN+FP+FN) (3) 
F1=2TP/(2TP+FP+FN)   (4) 
Precision = TP/(TP+FP)   (5) 

 
The training options were changed in order to fit the 
problem. The size of the mini-batch, which is a subset of the 
training set to be used in each iteration of the experiment, 
was set at 20. Max epochs, which represent the maximum 
number of epochs to be used in training, were also set at 10. 
In this study, two learning rates were used [ 0.001, 0.0001] 
in order to estimate the best learning rate. The root mean 
square propagation was used as an optimizer for both CNNs. 
This experiment used MATLAB 2018. For the purposes of 
reproducibility, the network was trained in a standalone 
system with an Intel Core Processor i7-7500U CPU that had 
2.70 GHz, 2904 MHz, two cores and 64 GB of RAM. 

4.1 Result 

In this study, four training experiments were performed in 
order to classify the patterns on EMG signals as either 
normal or aggressive class. Each experiment consisted of 
training  pre-trained  AlexNet, and a simple CNN.  
In the initial step, each signal was filtered to removing noise. 
Then time-frequency representation was used to extract two 
types of images. Each image was fed into the CNN input. 
For each CNN, the training-testing rate was randomly 

chosen as 80% to 20% as recommended by [33]. In the next 
sections, the results of each experiment will be presented. 

4.1.1 The spectrogram images 

In this section, the results of each CNN will be represented 
in Table 3. Each spectrogram images ware fed into the CNN 
as an input. From the Table 4, it can be observed that pre-
trained AlexNet performance was good compared to 
another CNN. It achieved high accuracy with sensitivity and 
specificity.  Furthermore, the performance increased when 
the learning rate decreased. Both CNNs achieved the best 
result with LR = 0.0001. 

Table 3: The performance of simple CNN for the Spectrogram 
 Lr = 0.001 Lr = 0.0001 
 Training Testing Training Testing 

Accuracy 61% 61% 99.35% 69.59% 
F1 0.8878 0.5769 0.9916 0.7333 
SV 81.58% 0.4688 0.9935 0.7448 
SP 98.34% 0.8000 0.9867 0.6333 

Precision 0.9842 0.7500 0.9896 0.7222 

Table 4: The performance of AlexNet for the Spectrogram 
 Lr = 0.001 Lr = 0.0001 
 Training Testing Training Testing 

Accuracy 60.00% 56.14% 86.67% 73.91 
F1 0.7181 0.7191 0.8878 0.811 
SV 1.00 1.00 0.8086 1 
SP 0.00 0.00 0.9834 0.4066 

Precision 0.5602 0.5614 0.9842 0.6822 

4.1.2The scalogram images 

In this section, the results of each CNN will be represented 
in Tables 5. Each scalogram image was passed into the 
CNN as an input. From the Tables 5, it can be observed that 
the performance result for both CNNs were improved when 
scalogram mages was been used to train CNNs. However, 
from table 6, the pre-trained AlexNet performance was 
good compared to simple CNN. The high sensitivity and 
specificity were achieved.. Furthermore, the performance 
increased when the learning rate decreased. It achieved the 
best result with LR = 0.0001. 

Table 5: The Simple CNN’ Performance Results in Scalogram Images 
 Lr = 0.001 Lr = 0.0001 
 Training Testing Training Testing 

Accuracy 95.96% 77% 100% 84.17% 
F1 0.9710 0.8426 1 0.8824 
SV 0.9805 0.8646 1 0.8594 
SP 0.9133 0.5814 1 0.8023 

Precision 0.9617 0.8218 1 0.9066 

Table 6 : ALexNet’ Performance Results in Scalogram Images 
 Lr = 0.001 Lr = 0.0001 
 Training Testing Training Testing 

Accuracy 69.70% 60% 100% 87% 
F1 0.7648 0.7082 0.9803 0.9096 
SV 0.7150 0.7013 0.9701 0.8906 
SP 0.6570 0.3768 0.9798 0.8488 

Precision 0.8221 0.7152 0.9907 0.9293 
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4.1.3 Data augmentation 

To test the effectiveness of augmentation technique, we ran 
two experiments on EMG signals. The results of the 
experiments are presented in the following Tables 7-10 for 
both spectrogram and scolgram images , respectively. The 
highest test accuracy at all the epochs was reported as the 
best score. It can be observed from the Table 6 that the 
performance of the simple CNN increased. The increasing 
size of the data set enhanced the CNN’s performance with 
suitable information to increase its classification ability. 

Table 7: Simple CNN’ Performance for spectrogram  images with data 
augmentation 

 Lr = 0.001 Lr = 0.0001 
 Training Testing Training Testing 

Accuracy 76.3% 63.45 99.35% 84.8% 
F1 0.8221 0.7444 0.9948 0.7960 
Sv 0.9870 0.9479 0.9935 0.83330 
SP 0.4718 0.2333 0.9950 0.6667 

Precision 0.7045 0.6128 0.9961 0.7619 

Table 8: AlexNet’s performance for spectrogram images with data 
augmentation 

 Lr = 0.001 Lr = 0.0001 
 Training Testing Training Testing 

Accuracy 50% 43.8% 87.77% 83.09% 
F1 0 nan 0.9033 0.8646 
Sv 0 0 0.8290 0.7813 
SP 1 1 0.9856 0.9419 

Precision nan nan 0.9922 0.9677 

Table 9: Simple CNN’ performance of scelgram images with data 
augmentation 

 Lr = 0.001 Lr = 0.0001 
 Training Testing Training Testing 

Accuracy 99.62% 78.8% 100% 94.61% 
F1 0.9970 0.8499 0.9980 0.8939 
Sv 0.9955 0.8698 0.9987 0.9219 
SP 0.9974 0.6062 0.9942 0.6860 

Precision 0.9985 0.8308 0.9974 0.8676 

Table 10: AlexNet’ performance for sclogram images with data 
augmentation 

 Lr = 0.001 Lr = 0.0001 
 Training Testing Training Testing 

Accuracy 68.95% 69.92%  93% 91% 
F1 0.8162 0.8167 0.9521 0.9367 
Sv 1 1 0.9376 0.9154 
SP 0 0 0.9289 0.9130 

Precision 0.6895 0.6901 0.9670 0.9591 

5. Discussion 

This study presents the novel approach of using 
spectrogram and scalogram images produced from surface 
EMG signals as the input dataset of CNNs. A deep CNN 
was trained to classify the physical activity patterns on 
EMG signals into normal and aggressive categories. The 
simple architecture of the CNN led to the execution of 
several tests to evaluate the effects of data representation, 
the learning rate and data augmentation. From the results of 
the experiments represented above, it can be observed that 

each CNN performed differently in each experiment. In 
general, applying a CNN for end-to-end learning is 
sufficient compared with the traditional machine learning 
methods. The CNN was able to achieve a high performance, 
especially with scalogram images. Despite offering the 
simplest frequency domain analysis, the spectrogram 
cannot sufficiently model time differences and transient 
signals. 
Furthermore, it could be observed that the augmentation 
approach significantly enhanced the CNN’s performance, 
as shown in Figure 4. In general, the augmentation method 
can lead to genrate the mass generation, as asserted by [28]. 
For example in this study circular patterns were artifacts 
added to generate images. A significant improvement in the 
CNN performance could be observed. The generated 
images increased the ability of the simple CNN to classify 
images with sufficient accuracy.  Moreover, the 
implementation of data augmentation techniques was 
effective in avoiding over-fitting to some degree and the gap 
between training and testing accuracy increased. 
However, In ALexNet’s performance as illustrated in 
Figure 5, there is no improvement compared to the simple 
CNN. This is might related to that simple when CNN learn 
from scratch with sufficient amount of data has significantly 
improved simple CNN ability to learn from data to detect 
the right class in testing dataset. In case of pre-treained 
ALexNet, where network does not learn from scratch, the 
increasing of data does not enhance the network 
performance. Furthermore, the issue of overfitting has been 
decreased in both simple CNN and ALexNet specially when 
learning rate =0.0001. 
 

 

Fig. 6  Simple CNN’ performance results for spectrogram images 
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Fig. 7  AlexNet’s performance results for spectrogram images 

 

Fig. 8  simple CNN’s accuracy result for sclogram images 

 

Fig. 9  AlexNet’s accuracy result for sclogram images 

In order to evaluate the effectiveness of transfer learning, a 
simple CNN was applied in this study. The experiments 
explored pretrained CNN architectures and a simple CNN. 
The results show that using a simple CNN to learn from 
scratch does not provide any improvements to the accuracy  
as shown in Figures 4. From Figure 5-7, We found that pre-
trained CNNs made the gradients drop faster than those in 
the sample CNN in which the network was trained from 
scratch. 

The classification accuracy was compared with a set of 
traditional machine learning methods used on the same 
datasets. For example, Amenh et al., 2017 [28] achieved 
92% accuracy using random forest with wavelet packet 
decomposition (WPD). They used a number of feature 
extraction and feature reduction models in order to achieve 
the best performance. They applied decision tree classifiers, 
such as CART, random forest, C4.5 and rotation forest. 
Nevertheless, the results in this study were lower than the 
results achieved with the best reference approaches in our 
tests. They used the bispectrum and the quadratic phase 
coupling of each EMG episode was determined. However, 
the present study is novel, showing that CNNs have the 
ability to automatically extract and evaluate a set of the 
optimal features. This is related to the highly complex 
structure of CNN architectures and the fact that the present 
tests were designed to identify the features that help to 
distinguish between the two classes of EMG signals. To 
conclude, the viability of these two pretrained CNNs for 
physical activity pattern detection was fully demonstrated 
in terms of specificity, sensitivity, accuracy and Precision. 
Though, some EMG signals for aggressive actions  show 
similar behaviors with EMG normal actions as been 
illustrated in Figure 2. 
The requirement and the importance of monitoring human 
activity has been addressed in a number of research studies 
[34].This study can provide a suitable approach for 
monitoring human activity and it can be used to ensure the 
safety of human health, especially when people are 
performing their exercises to evaluate the type of exercise 
that they are able to do. In addition, the findings can be used 
to build a wearable sensor to monitor physical activity. 

6. Conclusion 

It can be concluded that end-to-end learning can be used to 
automatically analyze the EMG signals from small datasets. 
The results show that convolutional neural networks with a 
very simple architecture can create accurate results 
comparable to the traditional machine learning methods 
with feature engineering eliminated. Aggressive and normal 
EMG signals were analyzed using a CNN with time-
frequency representation. The best performance was 
obtained using simple CNN with data augmentation, which 
offered accuracy of 94.61%. Furthermore, in this study, a 
comparison of two types of time-frequency representation 
was performed in the EMG signals. The spectrogram and 
scalogram images of the aggressive and normal activities of 
the EMG were generated each episode and fed into the 
inputs of the CNN.  Thus, the scalogram of the EMG signal 
was applicable to discrete aggressive and normal activities. 
This effective method could help physical specialists in 
defining aggressive activities to monitoring patients. This 
can help the healthcare industry to improve activity 
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monitoring on EMG signals. In future work, we plan to 
investigate the utilization of time-frequency representations 
(e.g., HTT) as a preprocessing step, as well as more 
complex CNN architectures. 
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