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Summary 
Restricting the size of computational domain in the simulation is 
highly important to save computational resources. Absorbing 
boundary conditions (ABCs) are used for limiting the 
computational area together with other boundary conditions (i.e. 
Dirichlet or Neumann boundary conditions). ABCs such as 
Perfectly Matched Layers (PMLs) are implemented for the 
analysis of electromagnetic problems such scattering, photonic 
crystals, and radiation. The objective of this paper is to present 
the efficient implementation of ABCs by using Finite Difference 
Time Domain (FDTD) algorithm. In comparison to other 
numerical algorithms, FDTD technique offers high level 
performance in a single simulation run, even if the problem area 
and range of frequencies increased. This paper shows the 
implementation of Convolutional Perfectly Matched Layer 
(CPML) absorbing boundary condition instead of PML by 
preparing CPML code in FDTD algorithm. It is demonstrated 
from the computational results that CPML is more efficient in 
terms of performance of absorbing electromagnetic waves. 
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1. Introduction 

In today’s computational electromagnetic (CEM) world, 
the theoretical and technological progress of the 
computational resources made the finite difference time 
domain (FDTD) algorithm most admired numerical 
technique.  
FDTD algorithm is used for the design and 
electromagnetic analysis of antenna, microwave circuits 
and photonic devices. In the electromagnetic simulation, 
the computational domain is required to be truncated to 
simulate infinite space. For this purpose, Absorbing 
boundary conditions (ABCs) are implemented at the 
boundaries of the computational domain in FDTD 

simulations. ABCs are used to absorb electromagnetic 
waves. The efficient and accurate implementation of the 
ABCs in FDTD technique is highly challenging task.  The 
simulation of the FDTD lattice needs to be extended to 
infinity for efficient and accurate implementation of ABCs. 
The perfectly matched layer (PML) is a famous ABC 
which can absorb electromagnetic waves of any 
polarization, incident angle and frequency (or wavelength). 
It had been proved to be effective for regions of 
homogeneous, inhomogeneous, dispersive, linear, 
nonlinear as well as anisotropic media. Berenger [1] in 
1994 has introduced the PML which was based on the 
field-splitting method of unbounded Maxwell’s equations 
in FDTD. It produces sufficient discretization error in the 
lattices of FDTD.  Then, Uniaxial PML (UPML) with 
anisotropic media (i.e. permittivity tensors) has been 
proposed in [2]. The UPML was implemented by Gedney 
[3] in 1996 for the truncation of FDTD lattices. As 
compared to split-field PML, the discretization error is 
minimized in UPML while keeping efficiency same [4]. 
After the recognition of the concept of PML, different 
modifications in the PML [5] have been proposed such as 
stretched coordinate (SC), complex frequency shifted 
(CFS), recursive convolution and Convolutional PML 
(CPML) formulation for the absorption of electromagnetic 
waves. The SC PML formulation has broadened the 
utilization of PML into general curvilinear [6] as well in 
orthogonal [7] coordinate systems. The PML based SC 
formulation has the disadvantage of being weak causal. 
The causality of PML has been improved by using CFS 
tensor coefficients based formulation [8]. Roden and 
Gedney have proposed CPML for arbitrary media [9]. It is 
independent of the primary medium and it does not require 
any modification when applying in arbitrary media such as 
lossless, lossy, inhomogeneous, nonlinear, anisotropic and 
dispersive media. It has higher performance as compared 
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to other PMLs. Recently, several improvements in the 
CPMLs have been demonstrated [10, 11]. 
In this paper, CPML is implemented by using FDTD 
algorithm for 2-dimensional (2D) case. The CPML ABC is 
defined at the top and bottom layer of the computational 
domain. CPML coefficients and parameters are computed 
for the efficient implementation. Section-1 gives the brief 
introduction and literature review of PMLs. Section-2 
provides the details of the implementation of the FDTD 
method. Results are demonstrated and discussed in 
Section-3. Finally, Section-4 concludes the outlined 
research work.  

2. Implementation 

In order to implement the CPML boundary conditions by 
using FDTD method. Out of four Maxwell’s equation, the 
two unbounded equations of differential form are utilized 
in FDTD. The one Maxwell’s equation describes the 
Faraday’s law of electromagnetic induction, and the other 
equation defines the Ampere’s law together with continuity 
equation. Yee’s [12] has developed a technique which is 
used for discretization of the differential form of 
Maxwell’s equations. In this technique, two cubic lattices 
are introduced which are orthogonal to each other. The 
Computational domain is made up of those orthogonal 
cubic lattices. The one cube is called primary and the other 
cubic lattice which is orthogonal to first one is called 
secondary cubic lattice. The electric field components are 
spatially placed at the primary cubic lattice, while 
magnetic field components are sampled at the corners of 
secondary cubic lattice. Since, both the cubic lattices are 
orthogonal to each other; the electric and magnetic field 
components would encircle each other in spatial domain. 
For differential time domain, electric and magnetic field 
are discretized at half time space from each other. For a 2D 
simulation, either transverse electric (TE) or transverse 
magnetic (TM) mode is selected. Here, TM mode is 
chosen; which is constituted of Hx, Ey and Hz components. 
The updating 2D Maxwell’s equations are given by Eq. (1) 
to Eq. (3) [12],   
 

, (1) 

  (2) 

 (3) 
 
The time-stepping process defined in the FDTD algorithm 
is entirely explicit; therefore there is no need to do 
inversion of matrix. This property of the FDTD makes it to 
be implemented easily [13]. For the numerical stability of 

the simulation in FDTD method, the time step  is 
required to be smaller than the differential size (∆s) of the 
lattice in space. The differential time of ∆t= ∆s/c0 is 
needed to be propagated at a distance of single cubic cell 
[13].  The numerical stability in FDTD can be achieved by 
satisfying the Courant condition i.e. ∆t= ∆s/√n c, where n 
and c are simulation dimension and the speed of light in 
vacuum, respectively [14].  
For the implementation of ABC, a novel method known as 
CPML is introduced by J. Alen Roden and Stephen 
Gedney in the paper [9]. The time dependent form of the 
Maxwell’s equations in the stretched space coordinate is 
the basis for the CPML. For a 2-D TMy case, the CPML 
region is updated by the following equations (Eq. 4 to Eq. 
6) [11, 14]. 
 

  (4) 

 (5) 
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 (6) 

where

 

are

 

auxiliary  expressions and are updated using Eq. (7) to Eq. 
(24). 

 (7) 

 (8) 

 (9) 

  (10) 
Where, the coefficients αmz, αmx, αez, αex, bmz, bmx, bez, 

and bex are computed by Eq. (11) to Eq. (18) [15]. 

, (11) 

, (12) 

, (13) 

, (14) 

, (15) 

, (16) 

,  (17) 

  (18) 
In this technique, PML is started with the zero conductivity 
at the interface and the value of the conductivity is 
increased gradually as the depth of the PML is increased. 
For example, a polynomial distribution is used to set up the 
conductivity (Eq. (19)) taken from [9],  

   (19) 
The value of the conductivity increases from 0 at the 

interface (z = 0) to  at the truncation boundary (z = 
l). Hence, both finite thickness truncation error and 
discontinuous conductivity error can be suppressed to a 
desired level [11, 15]. 
By setting ε = ε0 and µ = µ0, and enforcing the following 
condition given in Eq. (20). 

     (20) 

With η0 = η1 and the reflection coefficient . There 
is no reflection coming from the interface, therefore region 
1 and region 2 are perfectly matched for incident condition 
as shown in Fig. 1.  

In order to reduce discretization error  must be scaled 

between 1 and  (Eq. (21)) such that it is 1 at the 

front boundary and  at the PEC wall (see Fig. 1) [16, 
17]. For a PML of depth d with boundary interface z = 0, 
hence 

  (21) 

It is required to scale  such that it is maximum at the 
interface and minimum at the back wall [15]. The two 
different recommended polynomial scaling are [16] given 
by Eq. (22). 

 (22) 
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Fig. 1  Convolutional Perfectly Matched Layer (i.e. CPML)  absorbing 
boundary condition at the top and bottom of the computational domain 

along the z-direction 

3. Results and Discussion 

 For the computation of the CPML, consider the FDTD 
model as shown in Fig. 1, where CPML is implemented at 
the top and bottom of the computational domain in the 
vertical directions (along z-direction).  
In order to implement the CPML in the time-marching 
scheme, coefficients and auxiliary parameters are required 
to be defined and initialized before the start of loop for 
time marching [18]. Before assigning arrays, the size of the 
computational domain must be computed by taking into 
account the thickness of CPML [18]. In this case, the 
problem space consists of 260 cells in the x-direction and 
260 cells in the z-direction which includes 10 cells up and 
down for CPML region. After the CPML the boundaries 
are considered to be PEC, the CPML parameters 

  
are distributed towards the thickness of CPML in one-
dimensional array. The CPML parameters are used to 

update electric and magnetic field components. Positions 
of the field components and the distances from the CPML 
interface are considered to be compensated from the first 
CPML cell by half cell size. The coefficients αmz, αmx, 
αez, αex, bmz, bmx, bez, and bex are also one-dimensional 
functions of the depth of the CPML. The distribution of the 
CPML parameters and the coefficients in the bottom and 
top layers are shown in Fig. 3 and Fig. 4, respectively. The 
CPML parameters are calculated by Eq. (23) to Eq. (28).   

  (23) 

  (24) 

 (25) 

 (26) 

 (27) 

 (28) 
 

For this example, the values of  are 

[18]: , , ,  

and . Where,  is the order of the 

polynomial scaling and is equal to and . 
The updating equations for auxiliary parameters and 
electric and magnetic field components are implemented 
by using Eq. (4) to Eq. (10). 
The bottom and top CPML is comprised of 10 cells each 
starting from cell 1 to cell 10 along vertical direction i.e. y-
direction (see Fig. 1). For bottom CPML, cell 10 is at the 
interface between Region 1 and Region 2, while the cell 1 
is at the interface between region 2 and PEC, as shown in 
Fig. 2. For top CPML, cell 1 is at the interface between 
Region 1 and Region 2, while the cell 10 is at the interface 
between region 2 and PEC, as shown in Fig. 3. The value 
of conductivity (sigma) is zero at the interface between 
Region 1 and Region 2 and is gradually increasing with 
depth of the CPML reached to a maximum value at the 
PEC boundary. The value of kappa (k) is 1 at the interface 
between Region 1/Region 2 and is scaled to maximum at a 
PEC wall. The value of alpha (αz) is maximum at the 
interface of Region1/Region2 and is decreasing with depth 
of CPML reaches to a minimum value at the PEC 
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boundary. Hence, both finite thickness truncation error and 
discontinuous conductivity error are suppressed.  
 

 
(a) 

 

 
(b) 

Fig. 2  The distribution of CPML parameters and coefficients in the 
bottom layer as a function of depth (horizontally). 

 
(a) 

 
(b) 

Fig. 3  The distribution of CPML parameters and coefficients in the top 
layer as a function of depth (horizontally). 

4. Conclusions 

The CPML ABC is implemented by using FDTD method. 
The 2D computational domain is modeled in FDTD for the 
computation of boundary conditions. The CPML boundary 
conditions are implemented on the top and bottom side of 
the computational domain. CPML boundary conditions are 
used as absorbing boundary conditions. The CPML 
parameters and coefficients are computed. The results of 
CPML have shown that it has negligible reflection together 
with finite thickness truncation error and discontinuous 
conductivity errors. The CPML is proved to be an efficient 
boundary condition for the absorption of electromagnetic 
waves. 
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