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Summary 
In recent years, there is a great demand for algorithms solving 
constrained multi-objective optimization problems (CMOPs) in 
real-world engineering applications. Unlike the box-constrained 
problems, an additional constraint handling technique (CHT) is 
required to solve CMOPs. In real-world engineering applications, 
there are cases in which 50 or more constraints are considered 
simultaneously. Thus, it is important to examine the behavior of 
each CHT on a large number of constraints. However, well-
known test problems such as CF functions and C-DTLZ 
functions have only a small number of constraints. One or two 
constraints are considered among CF functions and all problems 
included in C1-DTLZ and C2-DTLZ functions have a single 
constraint. In this context, we propose test problems that can 
freely change the number of constraints. In designing such test 
problems, we extend the WFG toolkit, which is proposed for 
creating box-constrained multi-objective test problems. The 
performance of a number of popular CHTs is compared on the 
proposed test problems with up to 100 constraints. We can 
observe severe performance deterioration by the increase in the 
number of constraints. 
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1. Introduction 

In real-world optimization problems, it is often required to 
consider multiple objectives simultaneously. A number of 
evolutionary multi-objective optimization (EMO) 
algorithms such as MOEA/D [1] and NSGA-II [2] have 
been proposed for solving multi-objective optimization 
problems. Among them, solving constrained multi-
objective optimization problems (CMOPs) is a challenging 
task. On the box-constrained multi-objective optimization 
problems, multi-objective optimization algorithms only 
consider the upper and lower limits of the decision variable. 
When these algorithms apply to CMOPs, an additional 
constraint handling technique (CHT) is required. 
Various approaches for the hybridization of EMO 
algorithms and CHTs have been proposed for CMOPs. 
Constraint dominance principle (CDP) [2] is one of the 
most popular CHTs proposed by Deb et al. In CDP, a 
feasible solution always dominates an infeasible one. 
When infeasible solutions are compared, the solution with 

a smaller constraint violation is preferred. CDP is 
originally introduced with NSGA-II and its successful 
applications to the other EMO algorithms have been 
reported [3, 4]. The concept underlying CDP is the 
separation of constraints and objectives. The objectives 
and constraints are separately handled. The stochastic 
ranking [5] and epsilon constraint handling [6] are also 
classified into this category. 
An integration of the constraints into objectives or vice 
versa is another promising approach. The objective 
function values of each solution are modified based on its 
constraint violations in [7]. Angle-based constrained 
dominance principle (ACDP) utilizes the information of 
the angle between two solutions compared in the objective 
space to adjust the dominance relation in CDP [8]. In [9], 
constraint functions are regarded as objectives. A CMOP 
with m objectives and p constraints is redefined to an 
unconstrained problem with (m + p) objectives. Similar 
mechanisms have been adopted in the constrained 
optimization by multi-objective genetic algorithms 
(COMOGA) [10]. 
When a CMOP has two or more constraints, algorithms 
need to handle multiple constraints simultaneously. As a 
simple extension from a single constraint problem, 
multiple constraint violations are integrated into a single 
violation measure. For example, CDP prefers the solution 
having the smaller total violation. In the in-feasibility 
driven evolutionary algorithm (IDEA) [11], Cai and 
Wang’s method [12], and the adaptive trade-off model [13], 
an integrated violation measure is treated as an additional 
objective function instead of p objectives in COMOGA. 
The critical issue here is how to integrate multiple 
constraint violations into a single violation measure. One 
straightforward approach is the sum of its constraint 
violations such as CDP. The number of the violated 
constraints and the violation of the most violated constraint 
are also used. 
To evaluate the performance of EMO algorithms, a 
number of test CMOPs have been proposed. Table 1 
summarizes the properties of representative test CMOPs. 
These CMOPs have a fixed and a small number of 
constraints. It is, however, often required to deal with a 
large number of constraints in real-world optimization 
problems [14 18]. For example, a vehicle structure 
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design problem includes 54 constraints such as 
crashworthiness, body torsional stiffness, and robustness in 
the environment with a low-frequency vibration [18]. 
Assuming such real-world optimization problems, existing 
test CMOPs are insufficient for the algorithm development. 
In this paper, we examine the behavior of the EMO 
algorithms on CMOPs with a large number of constraints. 
As test problems, we extend the walking fish group (WFG) 
toolkit [19] to design a test problem framework that can 
freely change the number of constraints. The WFG toolkit 
is a framework for creating unconstrained multi-objective 
minimization problems with an arbitrary number of 
objectives. In the proposed framework, both the number of 
objectives and the number of constraints are scalable. 
For designing various relationships among the constraints 
as seen in real-world optimization problems, we adopt 
three types of constraint functions: (i) a correlation 
function, (ii) a conflict function, and (iii) a separation 
function. These functions specify the relationship among 
an arbitrary number of constraints. The constraint 
violations are highly correlated and conflicted in the 
correlation functions and the conflict function, respectively. 
In the separation function, the constraint violations are 
highly conflicted and separately violated. 
This paper is organized as follows. In Section 2, we 
explain how our test problems with various characteristics 
are constructed from the WFG toolkit. Three types of 
constraint functions are also introduced in Section 2. In 
Section 3, we discuss the features of CMOPs created using 
the proposed framework. Experimental results on our test 
problems are reported in Section 4 where the performance 
of a number of popular EMO algorithms is examined on 
the proposed test problem instances with up to 100 
constraints. We also show that the effect of the number of 
constraints on the algorithm performance depends on the 
relationship among the constraints. Section 5 concludes 
this paper. 

Table 1: Common properties of existing benchmark problems for 
constrained multi-objective optimization. 

Problem Number of 
objectives Number of constraints 

CF1-3 [20] 2 1 
CF4-7 [20] 2 1 or 2 

CF8-10 
[20] 3 1 

C1-DTLZ 
[4] Scalable 1 

C2-DTLZ 
[4] Scalable 1 

C3-DTLZ 
[4] Scalable Same as the number of 

objectives 
BNH [21] 2 1 
CTP [22] 2 1 
SRN [23] 2 2 

2. Proposed Test Problem Framework 

Let us consider the following CMOP with m objectives 
and p constraints: 
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where x = (x1, x2, ..., xn)T is an n-dimensional vector of 
decision variables, fi(x) is the ith objective to be minimized 
and gj(x) is the jth constraint. When any constraint is not 
satisfied, the solution is an infeasible solution. On the other 
hand, solutions satisfying all constraints are called feasible 
solutions. If gj(x) has a negative value, |gj(x)| can be 
regarded as the violation of the jth constraint. The constraint 
violation of all the feasible solutions is zero. 
In this section, we describe the configuration of the 
proposed framework where the number of constraints can 
be specified in an arbitrary number. First, we explain the 
detail of the WFG toolkit in subsection 2.1. Subsection 2.2 
describes how to implement constraints into the WFG 
toolkit, and subsection 2.3 shows an example of constraint 
functions. 

2.1 WFG Toolkit 

The WFG toolkit [19] is a framework for creating 
unconstrained multi-objective minimization problems 
proposed by Huband et al. It consists of transformation 
functions and shape functions. The transformation 
functions change the characteristics of each problem 
instance such as multi-modality and non-separability. The 
shape functions determine the shape of the Pareto front. 
Each objective function of the m-objective minimization 
problem is expressed by the following equations: 
 

fi(x) = ym + si hi (y1, …, ym-1), (i = 1, 2, …, m), (2) 
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In (2), hi(y) is a shape function, s is a set of scale 
parameters of the objective functions and the vector y is 
referred to as underlying variables. The range of y is set as 
[0, 1]m. Among them, ym is called an underlying distance 
variable. That is, if ym is close to zero, the solution is also 
close to the Pareto front. The underlying variables are 
calculated by using transformation functions from decision 
variables as shown in (3) and (4). In (4), t is a transition 
vector during the transformation from x to y and a symbol 
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←  represents a calculation of the transition vector via 
transformation functions. The underlying variables are 
calculated from decision variables through a q-step 
transformation. In (3), Ai controls the dimensionality of 
the Pareto front. When each Ai is specified as Ai = 1, an 
m-objective problem has an (m − 1)-dimensional Pareto 
front. 
Fig. 1 shows the Pareto front and the search space of 
WFG1. Since the distance between a solution and the 
Pareto front is determined by ym, the search space of all 
problems created by the WFG toolkit spreads to the upper 
right. 
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Fig. 1  Search space in WFG1 with two objectives. The gray area shows 
all feasible solutions of the box-constraint specified in the WFG toolkit. 

2.2 Constraint Implementation 

All the multi-objective minimization problems created by 
the WFG toolkit are unconstrained. In the proposed 
framework, additional constraint functions are employed. 
The constraint functions are defined as follows: 
 

Subject to 0)()( ≥−= + jmmjj yybg x , (j = 1, 2, …, p),
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where bj(ym) is a base function based on the underlying 
distance variable, (ym+1, ym+2, ..., ym+p)T are additional 
underlying variables for constraint functions and x’ = 
( 1x′ , 2x′ , ..., cx′ )T is a c-dimensional vector of additional 
decision variables utilized to calculate the underlying 
constraint variables. For convenience, (ym+1, ym+2, ..., ym+p)T 
are labeled as underlying constraint variables. When the 

values of the base functions are larger than those of the 
underlying constraint variables, the constraints are satisfied.  
The base functions determine the geometry of the 
constraint functions in the range of [-1, 1]. Fig. 2 shows an 
example of the landscape of a base function. The feasible 
and infeasible regions in the objective space of a two-
objective WFG1 are shown in Fig. 3. To clarify the 
feasible and infeasible regions, the underlying constraint 
variable is specified as zero in the figure in this section. 
Since there are the band-shaped infeasible regions in the 
search space, EMO algorithms are required to handle the 
constraint to converge toward the Pareto front. 
The underlying constraint variables control the difficulty to 
satisfy the constraint. When the jth underlying constraint 
variable is close to 1, the jth constraint is difficult to be 
satisfied. Note that the range of the underlying constraint 
variables is [0, 1]. The characteristics of the underlying 
constraint variables are determined by the transformation 
functions. If all underlying constraint variables are created 
by the same transformation function, all constraints have 
the same difficulty. 
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Fig. 2  Landscape of a constraint function: g(ym) = cos(10ymπ). When 
the underlying constraint variable is zero, the feasible area and the 

infeasible area are shown by the gray line and the blue line, respectively. 
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Fig. 3  Search space in WFG1 with a single constraint. Red line shows 
the Pareto front. Solutions in the gray regions are feasible while those in 

the blue regions are infeasible. 
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2.3 Examples of the Base Functions for Creating 
Constraints 

In this subsection, we introduce three types of the base 
functions having different relations among the constraints 
where the number of constraints can be arbitrarily 
specified. 
Correlation function: 
 









≥







−

−

=≥
= otherwise,0)sin(

)1(
1cos

1if,0)cos(
)( πwy

j
πwy

jπwy
yb

mm

m

mj

      (8) 
 
where w is a rotation rate that determines the width of the 
infeasible region. An example of the correlation function 
when w = 4 is shown in Fig. 4. Since the same underlying 
distance variable ym maximizes all constraint violations 
(e.g., 0.25 and 0.75 in the case of Fig. 4), the increase and 
decrease in the constraint violation are highly correlated. 
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Fig. 4  Landscape of the correlation function with w = 4. 

Conflict function: 
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where F(wym) is a triangular function shown in Fig. 5. In 
conflict function, each constraint violation is maximized by 
the different ym value. That is, the increase and decrease of 
the constraint violation partially conflict each other. For 
example, the constraint violation of b1(ym) increases while 
one of b3(ym) decreases on 0.6 < ym < 0.7 in Fig. 6. It 
should be noted that the first conflict function b1(ym) is 
exactly the same as one of the correlation functions. 
 

 

Fig. 5  Triangular function F(wym) for the conflict function. 
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Fig. 6  Landscape of the conflict function with w = 1. 

Separation function: 
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where Confj(ym) is the jth conflict function and sign( ⋅ ) 
represents the function that extracts the sign of a real 
number. Fig. 7 shows the separation function when p = 3 
and w = 2. In the correlate function and the conflict 
function, b1(ym) is violated in the entire infeasible region. 
On the other hand, in the separation function, any 
constraint function is not always violated. Therefore, EMO 
algorithms need to handle all constraints for finding 
feasible solutions. 
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Fig. 7  Landscape of the separation function with p = 3 and w = 2. 
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3. The Features of the Proposed Constraint 
Functions 

3.1 The Infeasible Solutions Dominate the Pareto 
Optimal Solutions 

As pointed out in [24], it is possible to obtain the Pareto 
optimal solutions without considering the constraints when 
there is no infeasible solution that dominates the Pareto 
optimal solutions. In the base functions shown in 
subsection 2.3, all constraint functions have positive values 
when ym is 0. That is, the Pareto optimal solutions of the 
original WFG problems are feasible. In computational 
experiments, we make the following modification to ym 
within the constraint function to avoid these solutions. As 
shown in Fig. 8, all the original Pareto optimal solutions 
become infeasible. 
 

/w +  = yy mm 55.0′     (11) 

3.2 The Similarity of the Constraint Functions 

The proposed constraint functions are constructed by the 
base function and the underlying constraint variables. To 
satisfy the jth constraint, the jth underlying constraint 
variable should be minimized. The underlying constraint 
variables are calculated as follows: 
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vj = {2j, 2(j + 1), …, 2(j + c)},   (13) 
 
where vj is the weight vector, n is the number of decision 
variables utilized to calculate (y1, y2, ..., ym)T in the original 
WFG toolkit, and c is the number of additional decision 
variables utilized to calculate the underlying constraint 
variables. The number of elements in v is the same as c. By 
varying the constants of the weight vector v, the underlying 
constraint variables are independently calculated.  
In this subsection, we examine the similarity of the 
constraints based on the Spearman’s rank correlation 
coefficient [25]. This metric can be calculated as the rank 
correlation between the two constraints. Let us assume that 
a large number of well-distributed solutions are sampled in 
the decision space. These solutions are sorted in ascending 
order of the constraint violation. That is, each constraint 
gives the ranking which starts with rank 1 for the solution 
with the worst constraint violation. The Spearman 

correlation rs between constraint gi and gj is stated as 
follows: 
 

rs(gi, gj)= 
))(())((

))(),((
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  (14) 

 
where rank(gi) represents the ranking of the solutions for the 
ith constraint violation and cov( ⋅ ) is the covariance of the 
rankings, std( ⋅ ) represents the standard deviation. In our 
experiments, we randomly generate 1,000,000 infeasible 
solutions. The range of the Spearman correlation is [-1, 1]. 
When the Spearman correlation between two constraints will 
be high, they give a similar ranking. When the Spearman 
correlation between two constraints will be low, they give a 
dissimilar ranking. The Spearman correlation among 50 
constraints is summarized in Fig. 9. We can observe that the 
correlation function has similar constraint functions while 
the other functions have the combinations with dissimilar 
constraint violations.  
 

 

Fig. 8  Search space in WFG1 with a modification. The Pareto optimal 
solutions shown by a red line are dominated by the original Pareto front. 
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Fig. 9  The Spearman correlation among 50 constraints. Each square 
represents the correlation between gi  and gj . For example, the upper right 

square shows the correlation between g1 and g50. The square on the 
diagonal is always one because they show the correlation among the 

same constraints. Red square and blue square show similar and 
dissimilar results, respectively. 

4. Computational Experiments 

In this section, we compare the search performance of the 
following three representative EMO algorithms on the 
proposed framework with up to 100 constraints. Each test 
problem instance is represented by the name of the 
constraint function and the number of constraints. For 
example, a constraint problem with two correlation 
functions is referred to as “Correlation_2”. 
NSGA-II-CDP [2]: This algorithm is an extended version 
of NSGA-II to adopt CDP. In CDP, a feasible solution is 
always preferred to an infeasible one. In the population 
update, the feasible solutions are selected first. Then, when 
the number of feasible solutions is smaller than the 
population size, infeasible solutions are selected. For the 
feasible solutions, the fitness evaluation is the same as 
NSGA-II. For the infeasible solutions, the total violation is 
utilized as the fitness evaluation. 
IDEA [11]: IDEA introduces a ranking-based constraint 
violation measure where solutions are separately sorted 
using each constraint violation. Each solution has p ranks. 
The ith rank represents the ranking position of the solution 
based on its ith constraint violation value. Then, the final 
rank is calculated as the sum of the p violation ranks.  
In IDEA, this rank is regarded as the additional objective 
function. More precisely, solutions are compared with the 

same evaluation criteria as NSGA-II for the (m + 1)-
objective problem. Besides, IDEA explicitly holds an 
infeasible solution in the current population. The number 
of infeasible solutions in the current population is 
determined by a user-defined parameter. That is, all 
solutions in the population are divided into two 
subpopulations for the generation update. The first 
subpopulation only includes feasible solutions and the 
second subpopulation only includes infeasible ones. In 
both subpopulations, IDEA optimizes the objective 
functions and the constraint violation measures 
simultaneously. 
MOEA/D-IEpsilon [26]: MOEA/D-IEpsilon is an 
extended version of MOEA/D [1] to be able to deal with 
constraints by embedding an epsilon constraint handling 
approach [6]. In MOEA/D-IEpsilon, an infeasible solution 
having the total violation less than the epsilon level is 
regarded as a feasible solution. The epsilon level is 
determined based on the maximum total violation in the 
initial population and the number of feasible solutions in 
the population. The epsilon level basically decreases at 
every generation update. Finally, the epsilon level equals 
to zero at Tcth generation. That is, MOEA/D-IEpsilon 
always prefers feasible solutions after Tcth generation. 

4.1 Parameter Setting 

We use the following parameter specifications in all the 
three EMO algorithms. 

Population size: 105, 
Crossover: SBX crossover [27], 
Mutation: Polynomial mutation [28], 
Termination condition: 250 generations, 
Ratio of infeasible solutions in IDEA: 20%, 
Scalarizing function in MOEA/D-IEpsilon: Tchebycheff, 
Tc in MOEA/D-IEpsilon: 200 generations. 
The detailed parameters of the framework are listed as 

follows: 
Number of objectives m: 3, 
Number of decision variables n: 24, 
Number of additional decision variables utilized to 

calculate the underlying constraint variables c: 5, 
Rotation rate w for constraint functions: 10, 
Number of constraints p: 2, 10, 50, 100. 

In [19], nine problems called WFG1-WFG9 have been 
proposed. Here, we extend WFG1 with a small 
modification. In WFG1, randomly generated underlying 
variables y are biased with the following transformation 
function. 
 

b_poly(y, α) = yα,    (15) 
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where α is a parameter controlling the distribution of 
underlying variables. If α is close to zero, a randomly 
generated solution tends to be far from the Pareto front. The 
original WFG1 uses 0.02. We specify α to 0.25 for the clear 
performance comparison. Fig. 10 shows randomly generated 
105 solutions on WFG1. The randomly generated solutions 
with α = 0.25 are widely spread. 
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Fig. 10  Randomly generated 105 solutions. Black circles show the 
solutions with α = 0.25 and red circles show the solutions with α = 0.02. 

4.2 Experimental Results and Discussions 

The average inverse generational distance (IGD) values over 
100 runs are shown in Fig. 11. The IGD metric measures the 
convergence and diversity of the obtained solutions [29]. 
The detailed definition is as follows: 
 

IGD(Z, A)= ∑
=

=

Z

i
ji
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j
azd

Z 1 1
),(min1 ,  (16) 

 
where d(zi, aj) is the Euclidean distance between zi and aj. zi 
is a reference point on the Pareto front and aj is a non-
dominated solution in the final population. We uniformly 
sampled 10,000 points for the reference points.  
From Fig. 11, the performance of MOEA/D-IEpsilon is 
good at the instances with two constraints. However, the 
performance of MOEA/D-IEpsilon is severely degraded by 
the increase in the number of constraints. Among them, 
MOEA/D-IEpsilon does not work well on the conflict 
function and the separation function with a large number of 
constraints. The dissimilar constraint violations may have a 
negative effect to control the epsilon level. The worst 
performance is obtained by NSGA-II-CDP for almost all 
instances except Conflict_50 and Conflict_100. A feasible 
solution is always preferred to an infeasible solution in 
CDP. In the proposed framework, EMO algorithms are 
required to pass through the infeasible region to converge 
toward the Pareto front. Thus, no selection pressure is 
given toward the Pareto front when all solutions in the 
current population are feasible. We can also observe that 

performance deterioration of IDEA by the increase in the 
number of constraints is relatively small.  
In Fig. 12, we show the history of the underlying distance 
variable of feasible solutions included in the population for 
the instances with 100 constraints. MOEA/D-IEpsilon well 
converge toward the Pareto front in the initial generations. 
This observation suggests the strong convergence property 
of the epsilon constraint handling approach. 
 

 

Fig. 11  Average IGD values on the proposed framework with up to 100 
constraints. 
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Fig. 12  The history of the underlying distance variable of the feasible 
solution in the current population on the instances with 100 constraints. 

Next, we consider the integration techniques of multiple 
constraints into a single violation measure. In NSGA-II-
CDP and MOEA/D-IEpsilon, the summation of constraint 
violation is utilized as a violation measure. In IDEA, the 
rank-based measure is adopted. Since many existing EMO 
algorithms employ a single violation measure, the behavior 
of such algorithms is affected by how to integrate multiple 
constraints. Here, we examine the effect of the following 
integration techniques with IDEA. 

(i)  The summation of constraint violations (Sum). 
(ii) The violation of the most violated constraint 

(Max). 
(iii) The ranking position in the rank-based measure of 

IDEA (Rank). 
These measures are regarded as an additional objective 
function of IDEA. We also examine the performance of 
IDEA when the constraints are considered as the objectives. 
That is, IDEA solves an unconstrained problem with (m + 
p) objectives in the following way. 

(iv) The conversion of the constraints to the objectives 
(CtoO). 

Table 2 shows the average IGD values over 100 runs 
together with the standard deviation on the instances with 2 
and 100 constraints. The worst result for each instance is 

shown by bold face. All the IGD values of IDEA with 
CtoO deteriorate due to the increase in the number of 
constraints. This is because 102 objectives are optimized 
when CtoO applied to a CMOP with 100 constraints. As 
reported in [30], the performance of EMO algorithms is 
often severely degraded by the increase in the number of 
objectives. There is no clear performance deterioration of 
IDEA with the other integration techniques. An interesting 
observation is that there is no clear performance 
deterioration of IDEA with Sum while the performance of 
MOEA/D-IEpsilon, where Sum is utilized as a violation 
measure, is severely degraded by the increase in the 
number of constraints in Fig. 11. This observation suggests 
that the epsilon constraint handling approach is not suitable 
to handle a large number of constraints. 

Table 2: The IGD by IDEA with the different integration techniques. 
Standard deviation is shown in parentheses. 

Instance Sum Max Rank CtoO 
Correlation_2 0.731 

(0.111) 
0.759 

(0.111) 
0.731 

(0.088) 
0.712 

(0.113) 
Correlation_100 0.736 

(0.103) 
0.755 

(0.157) 
0.728 

(0.089) 
0.798 

(0.155) 
Conflict_2 0.748 

(0.133) 
0.770 

(0.089) 
0.758 

(0.109) 
0.775 

(0.127) 
Conflict_100 0.752 

(0.109) 
0.756 

(0.105) 
0.772 

(0.127) 
1.002 

(0.222) 
Separation_2 0.750 

(0.125) 
0.783 

(0.099) 
0.743 

(0.130) 
0.746 

(0.113) 
Separation_100 0.756 

(0.117) 
0.729 

(0.126) 
0.776 

(0.123) 
1.050 

(0.191) 

4.3 Comparison of the Proposed Constraint 
Functions to the Real-World Engineering Design 
Optimization Problem 

In this subsection, we verify the validity of the framework 
by comparing the difficulty of the three constraint 
functions to the vehicle structure design problem (VSDP) 
[18]. VSDP has 222 design variables, two objective 
functions, and 54 constraints. The design variables 
represent the thickness of the parts of the vehicle. These 
parts are used in three vehicle models. The two objective 
functions are the minimization of the total weight of the 
three models and the maximization of the number of 
common thickness parts. The constraints include the 
crashworthiness, body torsional stiffness, and robustness in 
the low-frequency vibration modes.  
First, we show the Spearman correlation among the 
constraints of VSDP in Fig. 13. The Spearman correlation 
among 54 constraints of VSDP is calculated in the same 
way in Section 3. The Spearman correlation of some 
constraints is not shown. This is because they are not 
violated in all 1,000,000 infeasible solutions. The 
Spearman correlation cannot be calculated for these 
constraints. We can observe that most of the combinations 
of the constraints in VSDP are dissimilar. From the 
viewpoint of the Spearman correlation, the conflict 
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function and the separation function may be suitable to 
investigate the performance against VSDP. 
We summarize the average hypervolume over 35 runs of 
each population in Table 3. Following the experimental 
settings in [31], the population size is 100 and the stopping 
criterion is set by 30,000 solution evaluations. Other 
experimental settings are the same in subsection 4.1. 
Hypervolume is the size of the dominated region by a set 
of solutions in the objective space [32]. For the 
hypervolume calculation, the objective functions are 
normalized as recommended in [31]. The best result is 
shown by bold face. In Fig. 14, we also show all solutions 
during the search iterations in a single run of each EMO 
algorithm on VSDP. The gray circles and the blue circles 
represent feasible solutions and infeasible solutions, 
respectively. 
In Table 3, the best hypervolume is obtained by IDEA. 
The performance of MOEA/D-IEpsilon is not good. This 
observation is consistent with the results on Conflict_50, 
Conflict_100, Separation_50, and Separation_100. From 
Fig. 14, we can see that the infeasible solutions generated 
by IDEA are widely spread. This observation may suggest 
the potential usefulness of maintaining the infeasible 
solutions in the population. On the other hand, well-
converged solutions are obtained by NSGA-II-CDP while 
the low convergence ability of NSGA-II-CDP is shown on 
our framework. This is because the existence of feasible 
solutions keeps the selection pressure toward the Pareto 
front in VSDP. 
 

gi
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…

1
2

50
1, 2,              …                       , 50

 

Fig. 13  The Spearman correlation among 54 constraints of VSDP. Red 
square and blue square show similar and dissimilar results, respectively. 

Table 3: The average hypervolume over 35 runs on VSDP. Standard 
deviation is shown in parentheses. 

NSGA-II-CDP IDEA MOEA/D-IEpsilon 
0.081 

(0.014) 
0.105 

(0.031) 
0.069 

(0.015) 

 

 

 

 

Fig. 14  All individuals during the search iterations on VSDP. The first 
objective is minimized and the second objective is maximized. 

5. Conclusion 

In this paper, we proposed a framework that creates 
CMOPs. The framework is aimed to generate test 
problems where the number of constraints can be 
arbitrarily set. In existing benchmark CMOPs, the number 
of constraints is fixed. Three types of relationships among 
the constraints are also specified in the framework. 
Through computational experiments with three 
representative constrained EMO algorithms, we examined 
the effect of the number of constraints on the performance 
of EMO algorithms. 
From the experimental results on the framework with 2 to 
100 constraints, we obtained the following interesting 
observations: (i) the search ability of MOEA/D-IEpsilon 
was degraded by the increase in the number of constraints, 
(ii) the performance of MOEA/D-IEpsilon severely 
deteriorated on the problems where the fitness landscapes 
of the constraint violations are dissimilar, (iii) IDEA 
showed the stable performance regardless of the violation 
measure to be utilized as an additional objective, and (iv) 
NSGA-II-CDP did not pass through the infeasible region 
to converge toward the Pareto front. We also demonstrated 
that the performance of MOEA/D-IEpsilon and IDEA on 
the real-world engineering design optimization problem 
was consistent with the results on the framework when the 
fitness landscapes of the constraint violations for the 
framework were relatively similar to the real-world 
optimization problem. 
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Whereas we can obtain these observations about the search 
behavior of each EMO algorithm from the proposed 
framework, we need further research on the 
implementation of the constraints. For example, the shape 
of the infeasible region and the dependency of the 
constraint to the diction variables are important issues for 
discussing the characteristics of EMO algorithms.  
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